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Abstract
In this paper, we shall study the existence of at least one continuous solution for a nonlinear neutral differential equation via

Chandrasekhar integral. Next, continuous dependence of the solution of that equation on the delay functions will be studied.
Also, we use Kransnoselskii theorem to prove the existence of solutions and estimate upper and lower bounds for solutions
defined in unbounded interval. Some particular cases and remarks are presented to illustrate our results.
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1. Introduction

Neutral differential equations arise in many areas of applied mathematics and for this reason these
equations have been investigated extensively in the last decades.

The dynamical systems which depend on present and past states are often described by neutral delay
differential equations. Practical examples of neutral delay differential systems include biological models
of single species growth [14], processes including steam or water pipes, heat exchanges [11], population
ecology [12] and other engineering systems [11].

The study of neutral differential equations has grown rapidly. This is largely due to the fact that
often the qualitative behavior of solutions of neutral differential equations is very different from those of
nonneutral equations. For example, [10, 15, 16, 19]. It has been shown in the literature that even when all
the characteristic roots of a neutral differential equation have negative real parts, it is still possible for the
equation to have unbounded solutions. Such a behavior is impossible for nonneutral equations. Banaś
et al. [1] proved the existence and asymptotic behaviour of solutions of the differential equation with a
deviating argument of neutral type

x ′(t) = f(t, x(H(t)), x ′(h(t))), t ∈ R+ = [0,∞) (1.1)
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together with the initial condition of the form x(0) = 0. The considered equation contains both delayed
and advanced arguments. The method used in the proof of the main result depends on conjunction of
the classical Schauder fixed point theorem with the technique of measures of noncompactness [2]. The
problem (1.1) was considered in many research papers and monographs under various assumptions, for
example [7]. In general, if both types of deviation of argument are admitted, i.e., both delay and advance,
the theory of the problem (1.1) is rather difficult and requires strong assumptions.

Chang et al. [4] considered the existence of mild solutions for a class of first-order impulsive neutral
integro-differential equations with state-dependent delay such as

d

dt
[x(t) − F(t, xt)] = A

[
x(t) +

∫ t
0
f(t − s)x(s)ds

]
+G

[
t, xρ(t,xt)

]
,

t ∈ J = [0, a], t 6= ti, i = 1, 2, . . . , n,
x0 = φ ∈ B,∆x(ti) = Ii(xti), i = 1, 2, . . . , n,

where A is the infinitesimal generator of a compact, analytic resolvent operator R(t), t > 0 in a Banach
space (X, ||.||), f(t), t ∈ J is a bounded linear operator.

Hussain et al. [9] presented some fixed point and coupled fixed point results in the generalized setting.
Moreover, their purpose in this paper is to concern with the solution of nonlinear neutral differential
equation

x ′(t) = −a(t)x(t) + b(t)g(x(t − r(t))) + c(t)x ′(t − r(t))

with unbounded delay using fixed point theory in F-metric space, where a(t), b(t) are continuous, c(t) is
continuously differentiable and r(t) > 0 for all t ∈ R and is twice continuously differentiable. The paper
[6] is concerned with the existence of a positive solution of the neutral differential equation of the form

d

dt
[x(t) − a(t)x(t − τ)] = p(t)f(x(t − σ)), t > t0

where τ > 0,σ > 0, a ∈ C([t0,∞), (0,∞)), p ∈ C(R, (0,∞)), f ∈ C(R,R), f is nondecreasing function, and
xf(x) > 0, x 6= 0. [6] contains some sufficient conditions for the existence of positive solutions which are
bounded below and above by positive functions for the first-order nonlinear neutral differential equations.
These equations can also support the existence of positive solutions approaching zero at infinity.

Our paper is concerned with the existence of the nonlinear neutral integro-differential equation of the
form 

d
dt

[
x(t) − a2f2

(
t, x(φ2(t)),

∫1
t0

t
t+sg(s, x(φ3(s)))ds

)]
= a1f1(t, x(φ1(t))),[

x(t) − a2f2

(
t, x(φ2(t)),

∫1
t0

t
t+sg(s, x(φ3(s)))ds

)]
t=t0

= 0,
(1.2)

where t ∈ I = [t0, T ], a1, a2 ∈ R.
Motivated by this works, we shall prove the existence of at least one positive solution for the nonlinear

neutral integro-differential equation via Chandrasekhar integral (1.2) by applying Schauder fixed point
theorem, prove the existence of unique solution and prove that this solution is continuously depending
on the delay functions. Our next result is concerned with (1.2) on the real half-axis R+ by applying
Kransnoselskii theorem to prove an existence result which give sufficient conditions for the existence of a
positive solution which is bounded by two positive functions.

By a solution of the nonlinear neutral integro-differential equation (1.2) we mean a function x ∈ C[I,R]
such that

(i) the function t→ x(t) − a2f2

(
t, x(φ2(t)),

∫1
t0

t
t+sg(s, x(φ3(s)))ds

)
is continuously differentiable on I;

(ii) x satisfies the equations in (1.2).
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Theorem 1.1 (Schauder fixed point theorem [5]). Let Q be a nonempty, convex, compact subset of a Banach
space X, and T : Q→ Q be a continuous map. Then T has at least one fixed point in Q.

Theorem 1.2 (Kransnoselskii’s fixed point theorem [6]). Let X be a Banach space, let Ω be a bounded closed
convex subset of X and S1,S2 be maps of Ω into X such that S1x+ S2y ∈ Ω for every pair x,y ∈ Ω. If S1 is
contractive and S2 is completely continuous, then the equation S1x+ S2x = x has a solution in Ω.

2. Existence results on bounded interval

(i) The functions φi : I→ I, i = 1, 2, 3 are continuous.

(ii) f1, g : I× R+ → R+ satisfy Carathéodory condition, i.e., f1, g are measurable functions in t for any
x ∈ R+ and continuous in x for almost all t ∈ I. There exist two nonnegative constants b, b1 and two
functions t→ α(t), t→ m(t), such that

|g(t, x)| 6 α(t) + b1|x|,∀(t, x) ∈ I× R+, and | f1(t, x)| 6 m(t) + b | x |,∀(t, x) ∈ I× R+,

where α(.),m(.) ∈ L1(I) and sup
t∈I

|α(t)| = k1.

(iii) f2 : I× R+ × R+ → R+ is continuous and there exists three positive constants l0, l1 and l2 satisfying:

| f2(t1, x1, y1) − f2(t2, x2, y2)| 6 l0|t1 − t2|+ l1 | x1 − x2 | +l2 | y1 − y2 |,

∀(t1, x1, y1), (t2, x2, y2) ∈ I× R+ × R+.

(iv) k = sup
t∈I

{f2(t, 0, 0)},
∫T
t0
m(s)ds 6M.

Theorem 2.1. Let assumptions (i)-(iv) be satisfied. If 1 > |a1|bT + |a2|b1l2 + |a2|l1, then there exists at least one
continuous positive solution for the nonlinear neutral integro-differential equation via Chandraseker integral (1.2).

Proof. From assumption (iii), we obtain

|f2(t, x, y) − f2(t, 0, 0)| 6 l1 | x | +l2 | y |,
|f2(t, x, y)| 6 |f2(t, 0, 0)|+ l1 | x | +l2 | y | 6 k+ l1 | x | +l2 | y |.

Let C[I,R+] be the set of all continuous function with the norm ‖x‖ = sup
I

|x(t)|. Now define a closed,

bounded, and convex subset Ω of C[I,R+] as follows:

Ω = {x : x ∈ C[I,R+], ||x|| 6 r, r > 0}.

Let A be an operator defined on Ω by the formula

Ax(t) = a1

∫ t
t0

f1(s, x(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
.

We shall prove that for each x ∈ Ω⇒Ax ∈ Ω. First we make an estimate for r:

| Ax(t) | =

∣∣∣∣a1 ∫t
t0

f1(s, x(φ1(s))ds + a2f2

(
t, x(φ2(t))),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)∣∣∣∣
6| a1 |

∫T
t0

[m(s) + b | x(φ1(s)) |]ds+ | a2 | k+ | a2 || l1 | x(φ2(t)) | +|a2|l2 |

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds |
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6 | a1 |

∫T
t0

m(s)ds+ | a1 | b

∫T
t0

| x(φ1(s)) | ds+ | a2 | k+ | a2 || l1 | x(t) |

+ |a2|l2α(t) + a2l2b1

∫ 1

t0

| x(s)|ds

6| a1 |M+ | a1 | b

∫T
t0

| x(s) | ds + |a2|k+ | a2 | l1r+ |a2|l2k1 + |a2|b1l2r

∫ 1

t0

ds

6| a1 |M+ | a1 | br

∫T
t0

ds + |a2|k+ | a2 | l1r+ |a2|l2k1 + |a2|b1l2r

6| a1 |M+ | a1 | brT + |a2|k+ | a2 | l1r+ |a2|l2k1 + |a2|b1l2r

6 r.

From the last estimate we can deduce that

r =
| a1 |M+ |a2|k+ |a2|l2k1

1− | a1 | bT− | a2 | b1l2 − |a2|l1
.

This means that x ∈ Ω ⇒ Ax ∈ Ω. Now, we shall show that AΩ is relatively compact. It is sufficient
to show that AΩ is uniformly bounded and equicontinuous by the Arzela Ascoli theorem. The uniform
boundedness follows from the definition of Ω. For x ∈ Ω and t1, t2 ∈ I, t2 > t1 (without loss of generality)
we get

| Ax(t2) − Ax(t1) | =

∣∣∣∣a1 ∫ t2

t0

f1(s, x(φ1(s)))ds + a2f2

(
t2, x(φ2(t2)),

∫ 1

t0

t2
t2 + s

g(s, x(φ3(s)))ds

)

− a1

∫ t1

t0

f1(s, x(φ1(s)))ds − a2f2

(
t1, x(φ2(t1)),

∫ 1

t0

t1
t1 + s

g(s, x(φ3(s)))ds

)∣∣∣∣
6| a1|

∫ t2

t1

|f1(s, x(φ1(s)))|ds + |a2|

∣∣∣∣f
2

(
t2, x(φ2(t2)),

∫ 1

t0

t2
t2 + s

g(s, x(φ3(s)))ds

)

− f2

(
t1, x(φ2(t1)),

∫ 1

t0

t1
t1 + s

g(s, x(φ3(s)))ds

)∣∣∣∣
6| a1|

∫ t2
t1

[m(s) + b|x(φ1(s))|]ds + |a2|

[
l0|t2 − t1|+ l1|x(φ2(t2)) − x(φ2(t1))|

+ l2

∣∣∣∣ ∫ 1

t0

t2
t2 + s

g(s, x(φ3(s)))ds −

∫ 1

t0

t1
t1 + s

g(s, x(φ3(s)))ds

∣∣∣∣]
6 | a1|

∫ t2

t1

m(s)ds + | a1|br|t2 − t1|+ |a2|

[
l0|t2 − t1|+ l1|x(t2) − x(t1)|

+ l2

∣∣∣∣ ∫ 1

t0

t2
t1 + s

g(s, x(φ3(s)))ds −

∫ 1

t0

t1
t1 + s

g(s, x(φ3(s)))ds

∣∣∣∣]
6 |a1|

∫ t2

t1

m(s)ds+ | a1|br|t2 − t1|+ |a2|

[
l0|t2 − t1|+ l1|x(t2) − x(t1)|

+ l2|t2 − t1|

∫ 1

t0

1
t1 + s

|g(s, x(φ3(s)))|ds

]
6| a1|

∫ t2

t1

m(s)ds+ | a1|br|t2 − t1|+ |a2|

[
l0|t2 − t1|+ l1|x(t2) − x(t1)|

+ l2|t2 − t1|

∫ 1

t0

1
t1 + s

[
α(s) + b|x(φ3(s))|

]
ds

]
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6| a1|

∫ t2

t1

m(s)ds+ | a1|br|t2 − t1|+ |a2|l0|t2 − t1|+ |a2|l1|x(t2) − x(t1)|

+ |a2|l2
[k1

t0
+ br

]
|t2 − t1|.

Then
|(Ax)(t2) − (Ax)(t1)|→ 0 as t2 → t1.

This means that the functions from AΩ are equi-continuous on I. Then by Arzela-Ascoli Theorem [5]
the closure of AΩ is compact. It is clear that the set Ω is nonempty, bounded, closed and convex.
Assumptions (ii) and (iii) imply that A : Ω→ C[I,R+] is a continuous operator. Since all conditions of the
Schauder fixed-point theorem hold, then A has a fixed point in Ω.

Remark 2.2. In general, we can study the existence of the nonlinear neutral integro-differential equation
of the form 

d
dt

[
x(t) − a2f2

(
t, x(φ2(t)),

∫1
t0
κ(t, s)g(s, x(φ3(s)))ds

)]
= a1f1(t, x(φ1(t))),[

x(t) − a2f2

(
t, x(φ2(t)),

∫1
t0
κ(t, s)g(s, x(φ3(s)))ds

)]
t=t0

= 0,
(2.1)

where t ∈ I = [t0, T ], a1, a2 ∈ R. Assume that

(V) κ : I× I→ R+ is a continuous function and the operator K defined by

(Ky)(t) =

∫ t
t0

κ(t, s)y(s)ds, t ∈ I

and ∫ 1

t0

|κ(t, s)|α(s)ds < Λ.

By a similar way, we can deduce that

r =
| a1 |M+ |a2|k+ |a2|l2Λ

1− | a1 | bT− | a2 | b1l2||K||− |a2|l1
.

Moreover, we easily can prove the following result.

Theorem 2.3. Let assumptions (i)-(iv) and (V) be satisfied. If 1 > |a1|bT + |a2‖b1l2||K||+ |a2|l1, then there exists at
least one continuous positive solution for the nonlinear neutral integro-differential equation (2.1).

2.1. Existence of unique solution
Let the functions f1 and g satisfy the following assumption

(v)

| f1(t, x) − f1(t, y)| 6 L|x − y|, | g(t, x) − g(t, y)| 6 L ′|x − y|, ∀(t, x), (t, y) ∈ I× R+.

Let x(t) and x̃(t) be two solutions of the nonlinear neutral integro-differential equations

| x(t) − x̃(t) | =

∣∣∣∣a1

∫ t
t0

f1(s, x(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)

− a1

∫ t
t0

f1(s, x̃(φ1(s)))ds − a2f2

(
t, x̃(φ2(t),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣



H. H. G. Hashem, H. O. Alrashidi, J. Math. Computer Sci., 24 (2022), 173–185 178

6| a1|

∫ t
t0

|f1(s, x(φ1(s))) − f1(s, x̃(φ1(s)))|ds + |a2|

∣∣∣∣f2
(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)

− f2

(
t, x̃(φ2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣
6| a1|TL sup

t∈I
|x(φ1(t)) − x̃(φ1(t))|+ |a2|

[
l1|x(φ2(t)) − x̃(φ2(t))|

+ l2

∣∣∣∣ ∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds −

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

∣∣∣∣]
6| a1|TL||x(t) − x̃(t)||+ |a2|

[
l1|x(t) − x̃(t)|+ l2

∣∣∣∣ ∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds −

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

∣∣∣∣]
6| a1|TL||x(t) − x̃(t)||+ |a2|

[
l1||x(t) − x̃(t)||+ l2

∫ 1

t0

t

t + s
|g(s, x(φ3(s))) − g(s, x̃(φ3(s)))|ds

]
6| a1|TL||x(t) − x̃(t)||+ |a2|

[
l1||x(t) − x̃(t)||+ l2L

′ sup
t∈I

|x(φ3(t)) − x̃(φ3(t))|

]
6| a1|TL||x(t) − x̃(t)||+ |a2|[l1||x(t) − x̃(t)||+ l2L

′||x(t) − x̃(t)||]

6| a1|TL||x(t) − x̃(t)||+ |a2|[l1||x(t) − x̃(t)||+ l2L
′||x(t) − x̃(t)||].

Then

||x(t) − x̃(t)|| 6 |a1|TL||x(t) − x̃(t)||+ |a2|[l1||x(t) − x̃(t)||+ l2L
′||x(t) − x̃(t)||],[

1 − |a1|TL− |a2|l1 − |a2|l2L
′] ||x(t) − x̃(t)|| 6 0.

Since, |a1|TL− |a2|l1 − |a2|l2L
′ < 1, then

||x(t) − x̃(t)|| = 0⇒ x(t) = x̃(t).

Then the following result is proved

Theorem 2.4. Let assumptions (i)-(v) be satisfied. If |a1|TL− |a2|l1 − |a2|l2L
′ < 1, then there exists unique contin-

uous solution for the nonlinear neutral differential equation via Chandrasekhar integral (1.2).

2.2. Continuous dependence of solutions on delay functions
Here, we study the continuous dependence of solutions of the nonlinear neutral integro-differential

equation via Chandrasekhar integral (1.2) on the functions φi, i = 1, 2, 3.

Definition 2.5. The solutions x ∈ C(I,R+) of (1.2) are continuously dependent on the function φ1, if
∀ε > 0,∃δ > 0 such that ||φ1 − φ̃1|| 6 ε implies that ||x − x̃|| 6 δ, where

x̃(t) = a1

∫ t
t0

f1(s, x̃(φ̃1(s)))ds + a2f2

(
t, x̃(φ2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)
.

Theorem 2.6. Let assumptions of Theorem 2.4 be satisfied. If |a1|LT + |a2|l1 + |a2|l2L
′ < 1, then the solution

x ∈ C(I,R+) of the nonlinear neutral integro-differential equation via Chandrasekhar integral (1.2) depends contin-
uously on φ1.

Proof. Let x and x̃ be two solutions of the nonlinear neutral integro-differential equation via Chandrasekhar
integral (1.2),

|x(t) − x̃(t)| =

∣∣∣∣a1

∫t
t0

f1(s, x(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
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− a1

∫ t
t0

f1(s, x̃(φ̃1(s)))ds − a2f2

(
t, x̃(φ2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣
6 |a1|

∫ t
t0

|f1(s, x(φ1(s))) − f1(s, x̃(φ̃1(s)))|ds

+ |a2|

∣∣∣∣f2
(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
− f2

(
t, x̃(φ2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣
6 |a1|L

∫ t
t0

|x(φ1(s)) − x̃(φ̃1(s))|ds

+ |a2|l1|x(φ2(t)) − x̃(φ2(t))|+ |a2|l2

∣∣∣∣ ∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds −

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

∣∣∣∣
6 |a1|L

∫ t
t0

|x(φ1(s)) − x(φ̃1(s)) + x(φ̃1(s)) − x̃(φ̃1(s))|ds

+ |a2|l1|x(φ2(t)) − x̃(φ2(t))|+ |a2|l2L
′
∫ 1

t0

|x(φ3(s)) − x̃(φ3(s))|ds

6 |a1|L

∫ t
t0

|x(φ1(s)) − x(φ̃1(s))|ds + |a1|L

∫ t
t0

|x(φ̃1(s)) − x̃(φ̃1(s))|ds

+ |a2|l1|x(t) − x̃(t)|+ |a2|l2L
′
∫ 1

t0

|x(s) − x̃(s)|ds

6 |a1|LL

∫ t
t0

|φ1(s) − φ̃1(s)|ds + |a1|LT |x(t) − x̃(t)|, L = sup
∀t∈I

{x ′(t)}

+ |a2|l1|x(t) − x̃(t)|+ |a2|l2L
′|x(t) − x̃(t)|

6 |a1|LLTε+ |a1|LT |x(t) − x̃(t)|+
[
|a2|l1 + |a2|l2L

′] |x(t) − x̃(t)|.

Then

(1 − (|a1|LT + |a2|l1 + |a2|l2L
′))||x − x̃|| 6 |a1|LLTε,

||x − x̃|| 6
|a1|LLTε

1 − (|a1|LT + |a2|l1 + |a2|l2L ′)
= δ.

Since |a1|LT + |a2|l1 + |a2|l2L
′ < 1, then the solution x ∈ C(I,R+) of (1.2) is continuously dependent on the

function φ1.

As done above we can prove the continuous dependence of solutions of (1.2) on the functions φ2 and
φ3.

Theorem 2.7. Let assumptions of Theorem 2.4 be satisfied. If |a2|l2L
′ + |a2|l1 + |a1|LT < 1, then the solution

x ∈ C(I,R+) of the nonlinear neutral integro-differential equation via Chandrasekhar integral (1.2) depends contin-
uously on φ2.

Proof. Let x and x̃ be two solutions of the nonlinear neutral differential equation via Chandrasekhar inte-
gral (1.2), where

x̃(t) = a1

∫ t
t0

f1(s, x̃(φ1(s)))ds + a2f2

(
t, x̃(φ̃2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)
,

|x(t) − x̃(t)| =

∣∣∣∣a1

∫ t
t0

f1(s, x(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
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− a1

∫ t
t0

f1(s, x̃(φ1(s)))ds − a2f2

(
t, x̃(φ̃2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣
6 |a1|

∫ t
t0

|f1(s, x(φ1(s))) − f1(s, x̃(φ1(s)))|ds

+ |a2|

∣∣∣∣f2
(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
− f2

(
t, x̃(φ̃2(t)),

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

)∣∣∣∣
6 |a1|L

∫ t
t0

|x(φ1(s)) − x̃(φ1(s))|ds

+ |a2|l1|x(φ2(t)) − x̃(φ̃2(t))|+ |a2|l2

∣∣∣∣ ∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds −

∫ 1

t0

t

t + s
g(s, x̃(φ3(s)))ds

∣∣∣∣
6 |a1|L

∫ t
t0

|x(φ1(s)) − x̃(φ1(s))|ds + |a2|l1|x(φ2(t)) − x(φ̃2(t))|

+ |a2|l1|x(φ̃2(t)) − x̃(φ̃2(t))|+ |a2|l2L
′
∫ 1

t0

|x(φ3(s)) − x̃(φ3(s))|ds

6 |a1|L

∫ t
t0

|x(φ1(s)) − x̃(φ1(s))|ds + |a2|l1L|φ2(t) − φ̃2(t)|

+ |a2|l1|x(t) − x̃(t)|+ |a2|l2L
′
∫ 1

t0

|x(s) − x̃(s)|ds

6 |a1|LT ||x(t) − x̃(t)||+ |a2|l1Lε+ |a2|l1|x(t) − x̃(t)|+ |a2|l2L
′||x(t) − x̃(t)||

6 |a2|l1Lε+
[
|a1|LT + |a2|l1 + |a2|l2L

′] ||x(t) − x̃(t)||.

Then

(1 − (|a2|l2L
′ + |a2|l1 + |a1|LT))||x − x̃|| 6 |a2|l1Lε,

||x − x̃|| 6
|a2|l1Lε

1 − (|a2|l2L ′ + |a2|l1 + |a1|LT)
= δ.

Since |a1|LT + |a2|l1 + |a2|l2L
′ < 1, then the solution x ∈ C(I,R+) of (1.2) is continuously dependent on the

function φ2.

Similarly, we have the following result.

Theorem 2.8. Let assumptions of Theorem 2.4 be satisfied. If |a2|l2L
′ + |a2|l1 + |a1|TL < 1, then the solution

x ∈ C(I,R+) of the nonlinear neutral integro-differential equation via Chandrasekhar integral (1.2) depends contin-
uously on φ3.

3. Estimating upper and lower bounds for solutions

In most literature, the existence of solutions which are bounded by constants is handled. In this
section, we shall study the existence of positive solutions of the neutral differential equation (1.2) on the
interval I = [t0,∞) and estimate upper and lower bounds for solutions of the neutral integro-differential
equation (1.2) by applying Kransnoselskii, under the following assumptions.

(i:) The functions φi : R+ → R+, i = 1, 2, 3 are continuous.
(ii:) f1, g : I× R+ → R+ satisfy Carathéodory condition, i.e., f1, g are measurable functions in t for any

x ∈ R+ and continuous in x for almost all t ∈ I. There exist a nonnegative constant b and a function
t→ m(t), such that

| g(t, x) − g(t, y)| 6 L ′|x − y|, ∀(t, x), (t, y) ∈ I× R+,
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and
| f1(t, x)| 6 m(t) + b | x |,∀(t, x) ∈ I× R+,

where m(.) ∈ L1(t).
(iii:) f2 : I× R+ × R+ → R+ is continuous and there exists three positive constants l0, l1, and l2 satisfying:

| f2(t1, x1, y1) − f2(t2, x2, y2)| 6 l0|t1 − t2|+ l1 | x1 − x2 | +l2 | y1 − y2 |,

∀(t1, x1, y1), (t2, x2, y2) ∈ I× R+ × R+.
(iv:) f2 is monotonic nondecreasing function in second and third argument.
(v:) f1, g is monotonic nondecreasing function in second argument.

By integrating both sides of (1.2) on R+, we get

x(t) = a1

∫∞
t

f1(s, x(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)
. (3.1)

Now, we define a subset Ω of C([t0,∞),R+) as follows:

Ω = {x = x(t) ∈ C([t0,∞),R+) : u(t) 6 x(t) 6 v(t), t > t0},

and two maps S1 and S2 : Ω −→ C[[t0,∞),R+] as follows:

(S1x)(t) =

{
a2f2

(
t, x(φ2(t)),

∫1
t0

t
t+sg(s, x(φ3(s)))ds

)
, for t > t1,

(S1x)(t1), for t0 6 t 6 t1,

(S2x)(t) =

{
a1
∫∞
t f1(s, x(φ1(s)))ds, for t > t1,

(S2x)(t1) + v(t) − v(t1), for t0 6 t 6 t1.

Then the functional integral equation (3.1) can be written as:

x(t) = (S1x)(t) + (S2y)(t).

In this section, we shall consider the existence of a positive solution for the equation (1.2). The next
theorem gives us the sufficient conditions for existence of a positive solution which is bounded by two
positive functions.

Theorem 3.1. Let assumptions (i:)-(v:) be satisfied and suppose that there exist bounded functions u, v∈C1([t0,∞),
(0,∞)) and t1 > t0 such that

u(t) 6 v(t), t > t0,
v(t) − v(t1) − u(t) + u(t1) > 0, t0 6 t 6 t1.

If |a2|[l1 + l2L
′] < 1, then (1.2) has a positive solution which is bounded by functions u, v.

Proof. Let C([t0,∞),R+) be the set of all continuous functions with the norm ‖x‖ = supt>t0
|x(t) | . Clearly,

the subset Ω of C([t0,∞),R+)is a closed, bounded, and convex.
We shall show that for any x, y ∈ Ω we have S1x + S2y ∈ Ω. For every x, y ∈ Ω and t > t1, we obtain

(S1x)(t) + (S2y)(t) = a1

∫∞
t

f1(s, y(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)

6 a1

∫∞
t

f1(s, v(φ1(s)))ds + a2f2

(
t, v(φ2(t)),

∫ 1

t0

t

t + s
g(s, v(φ3(s)))ds

)
= v(t).
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For t ∈ [t0, t1] we have:

(S1x)(t) + (S2y)(t) = (S1x)(t1) + (S2y)(t1) + v(t) − v(t1) 6 v(t1) + v(t) − v(t1) = v(t).

Furthermore for t > t1 we get:

(S1x)(t) + (S2y)(t) = a1

∫∞
t

f1(s, y(φ1(s)))ds + a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)

> a1

∫∞
t

f1(s, u(φ1(s)))ds + a2f2

(
t, u(φ2(t)),

∫ 1

t0

t

t + s
g(s, u(φ3(s)))ds

)
= u(t).

Let t ∈ [t0, t1], we get:
v(t) − v(t1) + u(t1) > u(t), t0 6 t 6 t1.

Then for t ∈ [t0, t1] and any x, y ∈ Ω we obtain

(S1x)(t) + (S2y)(t) = (S1x)(t1) + (S2y)(t1) + v(t) − v(t1) > u(t1) + v(t) − v(t1) > u(t).

Thus we have proved that S1x + S2y ∈ Ω for any x,y ∈ Ω. We will show that S1 is contraction mapping on
Ω for x, y ∈ Ω and t > t1, we have:

|(S1x)(t) − (S1y)(t)| =

∣∣∣∣a2f2

(
t, x(φ2(t)),

∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds

)

− a2f2

(
t, y(φ2(t)),

∫ 1

t0

t

t + s
g(s, y(φ3(s)))ds

)∣∣∣∣
6 |a2|l1|x(φ2(t)) − y(φ2(t))|+ |a2|l2

∣∣∣∣ ∫ 1

t0

t

t + s
g(s, x(φ3(s)))ds −

∫ 1

t0

t

t + s
g(s,y(φ3(s)))ds

∣∣∣∣
6 |a2|l1|x(t) − y(t)|+ |a2|l2

∫ 1

t0

|g(s, x(φ3(s)))ds − g(s, y(φ3(s)))|ds

6 |a2|l1|x(t) − y(t)|+ |a2|l2L
′|x(φ3(t)) − y(φ3(t))|

6 |a2|l1|x(t) − y(t)|+ |a2|l2L
′|x(t) − y(t)|

6 |a2|[l1 + l2L
′]|x(t) − y(t)|.

Then
||(S1x)(t) − (S1y)(t)|| 6 |a2|[l1 + l2L

′]||x − y||.

Also, for t ∈ [t0, t1] the previous inequality is valid and |a2|[l1 + l2L
′] < 1, we conclude that S1 is a

contraction mapping on Ω. We now show that S2 is completely continuous. First we will show that S2 is
continuous. Let xk = xk(t) ∈ Ω be such that xk(t) −→ x(t) as k −→ ∞. Because Ω is closed, x = x(t) ∈ Ω.
For t > t1 we have

|(S2xk)(t) − (S2x(t)) | 6 |a1|

∫∞
t

|f1(s, xk(φ1(s))) − f1(s, x(φ1(s)))|ds

6 |a1|

∫∞
t1

|f1(s, xk(φ1(s))) − f1(s, x(φ1(s)))|ds.

Also, we have

a1

∫∞
t1

f1(s, v(φ1(s)))ds <∞.
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From assumptions (ii:) and (iii:) we have

|f1(s, xk(φ1(s)))| 6 m(s) + b|xk(φ1(s))| 6 m(s) + b|v(s)| ∈ L1(I)

and the function f1(s, xk(φ1(s))) is continuous in the second argument, i.e.,

f1(s, xk(φ1(s)))→ f1(s, x(φ1(s))) as k→∞.

Therefore the sequence {f1(s, xk(φ1(s)))} satisfies Lebesgue dominated convergence theorem [5]. This
means that S2 is continuous.

We now show that S2Ω is relatively compact. It is sufficient to show by the Arzela-Ascoli theorem
that the family of functions {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞) . The
uniform boundedness follows from the definition of Ω. For the the equicontinuity we only need to show,
according to Levitan’s result [13], that for any given ε > 0 the interval [t0,∞) can be decomposed into
finite subintervals in such a way that on each subinterval all functions of the family have a change of
amplitude less than ε, for x ∈ Ω and any ε > 0, we take t∗ > t1 large enough so that

a1

∫∞
t∗

f1(s, x(φ1(s)))ds <
ε

2
.

Then, for x ∈ Ω, T2 > T1 > t∗, we have

|(S2x)(T2) − (S2x)(T1) |6 |a1|

∫∞
T2

|f1(s, x(φ1(s)))|ds + |a1|

∫∞
T1

|f1(s, x(φ1(s)))|ds 6
ε

2
+
ε

2
= ε.

For x ∈ Ω, t1 6 T1 6 T2 6 t∗, we have

|(S2x)(T2) − (S2x)(T1) | 6 |a1

∫∞
T2

f1(s, x(φ1(s)))ds − a1

∫∞
T1

f1(s, x(φ1(s)))ds|

6 |a1|

∫T2

T1

|f1(s, x(φ1(s)))|ds

6 |a1|

∫T2

T1

m(s)ds + |a1|b

∫T2

T1

|x(φ1(s))|ds

6 |a1|

∫T2

T1

m(s)ds + |a1|b

∫T2

T1

v(s)ds

6 |a1|

∫T2

T1

m(s)ds + b|a1| max
t06s6t∗

|v(s)||T2 − T1|.

Thus there exists δ1 > 0 such that

|(S2x)(T2) − (S2x)(T1) |< ε, if 0 < T2 − T1 < δ1.

Finally for any x ∈ Ω, t0 6 T1 < T2 6 t1, there exists a δ2 > 0 such that

|(S2x)(T2) − (S2x)(T1) |= |v(T2) − v(T1)| 6 |

∫T2

T1

v ′(s)ds |6 max
t06s6t∗

|v ′(s)||T2 − T1| < ε, if 0 < T2 − T1 < δ2.

Then {S2x : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,∞) , and hence S2Ω is relatively
compact subset of C([t0,∞),R). By Theorem 1.2 there is an x0 ∈ Ω such that S1x0 + S2x0 = x0. We conclude
that x0(t) is a positive solution of (3.1). Thus the proof is complete.
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4. Some applications and remarks

Observe that the equation (1.2) includes several classes of functional, integral, and functional integral
equations considered in many literature. As particular cases of equation (1.2), we obtain the following.
•When a1 = 0, f2(t, x, y) = q(t) + xyψ(t), then we get a quadratic integral equation of Chandrasekhar type

x(t) = c + q(t) + x(φ2(t))

∫ 1

0

t

t + s
ψ(s)x(φ3(s))ds, t ∈ [0, 1], (4.1)

where c is a real constant and q(t) is continuous function and ψ is the characteristic function. Moreover,
the quadratic functional integral (4.1) reduces to the well-known Chandrasekhar integral equation in
radiative transfer [3],

x(t) = 1 + x(t)

∫ 1

0

t

t + s
ψ(s)x(s)ds, t ∈ [0, 1].

It describes a scattering through a homogeneous semi-infinite plane atmosphere. In particular, solutions
for this equations need not to be continuous.
• When a1 = 0 and f2(t, x, y) = −p(t)f(x(t)) + r(t), then we obtain the delay differential equation with a
forcing term

x ′(t) = −p(t)f(x(φ2(t))) + r(t), t > 0,

where p : R+ → R+ and f : R → R are continuous functions with xf(x) > 0 for x 6= 0, and r : R+ → R is a
continuous function. Which is more general than the delay differential equation by Qian et al. [18] with
φ2(t) = t− τ, τ > 0.

•When a1 = 0 and f2(t,N,M) =
(
p
K−N(φ2(t))
K+cpN(φ2(t))

+ r(t)
)
N(t), then we obtain

N ′(t) =

(
p
K−N(φ2(t))

K+ cpN(φ2(t))
+ r(t)

)
N(t),

which is more general than the well-known delay-logistic equation. For more details about this model,
see [8],

N ′(t) =

(
p
K−N(t − τ)

K+ cpN(t − τ)
+ r(t)

)
N(t), t > 0, (4.2)

and with initial conditions of the form

N(t) = φ(t) for − τ 6 t 6 0,

where φ(t) ∈ C[[−τ, 0], [0,∞)] with φ(0) > 0. So, the solution on [0, τ] is given by

N(t) = φ(0)e
∫t

0

(
p
K−N(t−τ)
K+cpN(t−τ)+r(t)

)
. (4.3)

Remark 4.1. Also, we can consider the nonlinear neutral retarded differential equations of the form{
d
dt

[
x(t) − a2f2

(
t, x(t − τ2),

∫1
0

t
t+sg(s, x(s − τ3))ds

)]
= a1f1(t, x(t − τ1)), t > 0,

x(t) = φ(t) for − τ 6 t 6 0, τ = max{τi, i = 1, 2, 3},
(4.4)

where a1, a2 ∈ R, τi > 0, i = 1, 2, 3.
By similar way as done before, we can proof the following theorem.

Theorem 4.2. Let assumptions (ii:)-(vi:) be satisfied and suppose that there exist bounded functions u, v ∈ C1([t0,∞),
(0,∞)) and t1 > t0 + τ such that

u(t) 6 v(t), t > t0, v(t) − v(t1) − u(t) + u(t1) > 0, t0 6 t 6 t1.

If |a2|[l1 + l2L
′] < 1, then (4.4) has a positive solution which is bounded by functions u, v.
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Conclusion 4.3. We have given some existence theorem for a class of neutral integro-differential equations
(1.2) which involved many key integral and functional differential equations that appear in applications
of nonlinear analysis. The existence of solutions which are bounded by constants has been treated and
received much attention in many papers. The existence of positive solutions which are bounded below
and above by positive functions for the nonlinear neutral differential equations (1.2) is proved. In aim of
estimating lower bound and upper bound of the solutions, we have made a use of Kransnoselskii fixed
point theorem and monotonicity conditions.
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