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Abstract
This paper applies an optimal control approach to study the dynamics of a basic Oncolytic Virotherapy model. This

study applies mathematical modeling based on an established basic oncolytic virotherapy model for tumor growth. Choosing
an appropriate control strategy is essential to reduce the cost of the therapy. By applying optimal control theory, we seek to
minimize the cost of virotherapy and reduce the load of tumor cells. The existence of optimal control is proved. State solution
given an optimal strategy and the optimal control is determined. Numerical simulation is carried out to visualize and support
our results.
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1. Introduction

Oncolytic virotherapy is a cancerous treatment using a native or programmed virus that has the
potential to targeting and killing cancerous cells. This kind of treatment has a long history of research
and clinical attempts. The results obtained so far are promising therapeutic. The treatment, at least
theoretically, causes tumor cell lysis after oncolytic virus being replicated in the tumor cell. As a result,
three main changes can occur; a local inflammation can occur causing a destruction of tumor micro
invironment, release of virus progeny causing infecting more nearby tumor cells, and release of tumor
antigens causing systematic anti-tumor immune response.

One of the main advantage of applying the oncolytic virotherapy is that it can selectively damage
cancerous tissues leaving normal cells unharmed. In addition, oncolytic viruses can mediate the killing of
the normal cells by indirect mechanisms such as the destruction of tumor blood vessels, the amplification
of specific anticancer immune responses or through the specific activities of transgene-encoded proteins
expressed from engineered viruses.

In recent years, several models were proposed to study the dynamics of oncolytic viruses, the main
goal was to capture the behavior of the solutions and to study the role of some components of the
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treatment, and the ultimate goal was to understand the cancer virus dynamics and find better treatment
strategies. For example, Wu et al. [12] and Wein et al. [9] proposed and analyzed some partial differential
equations models to study some aspects of cancer virotherapy. For ordinary differential equations models,
Wodarz in [11] and [10], Komarova and Wodarz [5], Novozhilov et al. [7], Bajzer et al. [2], and Tian [8]
studied ODE models. Abu-Rqayiq and Zannon [1] studied a fractional order version of Tian’s proposed
model. Tian’s model was introduced to describe the development of a growing tumor and an oncolytic
virus population. That basic model is given by the following system of ordinary differential equations

dx

dt
= λx

(
1 −

x+ y

K

)
−βxv,

dy

dt
= βxv− δy,

dv

dt
= bδy−βxv− γv,

(1.1)

where variables x, y and v stand for the population of uninfected cells, infected tumor cells, and oncolytic
viruses (free viruses), respectively. The coefficient β represents the infection of the virus. The tumor
growth is modeled by logistic growth, and K is the maximal tumor size (the carrying capacity). λ is the
per capita tumor growth rate. δ means the lysis rate of the infected tumor cells. b represents the burst
size of new viruses coming out from the lysis of an infected tumor cell. γ represents the death rate of the
virus. See Table 1 for parameters’ description. [12]

In [8], it was shown that when the threshold b < 1 + γ
Kβ , the equilibrium solution (K, 0, 0) is globally

asymptotically stable, which indicates that the virotherapy does not have any affect, and unstable for
b > 1 + γ

Kβ .
In this paper we develop a model for the controlled infected brain tumor cells. Optimal control theory

is applied to the cost functional and is supposed to achieve the ultimate goal of optimizing that functional
and find a best strategy for minimizing the cost of the virotherapy. The goal of this paper is to model,
analyze, and explore optimal ways that can minimize a tumor and the cost of the virotherapy.

This paper is organized as follows: Section 2 describes the controlled Oncolytic Virotherapy model
with some background from the Control Theory. Our objective functional and the existence of the optimal
control is also introduced and proved in this section. In Section 3, we carried out a numerical study of
our controlled model followed by a discussion of our results.

2. The model with control

2.1. Introduction
Optimal control theory is a branch of the applied mathematics that deals with finding the best possible

control that can take a dynamical system from one state to another.
The Hamiltonian of optimal control theory was developed by the Russian mathematician Lev Pon-

tryagin as a part of his investigation into the maximum principle. Pontryagin proved that the necessary
condition for solving certain optimal control problems is that the control should be chosen in such a way
that minimizes the Hamiltonian.

A control function u(t) is to be chosen so that it minimizes the objective function

J(u(t)) = Ψ(x(T)) +

∫T
0
L(x(t),u(t), T(t))dt,

where x(t) is the system state which evolves according to the state equation

ẋ = f(x(t),u(t), t), x(0) = x0, t ∈ [0, T ],

and the control u(t) must satisfy the constraint a 6 u(t) 6 b. The purpose of introducing controls in the
model is to find the optimal level of the intervention strategy to reduce the spreads of the disease and the
cost of implementation of the control.
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The Hamiltonan is defined as

H(x,Ψ,u, t) = ΨT (t)f(x,u, t) + L(x,u, t),

where Ψ(t) is a vector of costate variables of the same dimension as the state variable x(t) such that

Ψ̇(t) = −
∂H

∂x
.

The basic steps to set up and to solve an optimal control problem should include [10]

• Modeling the situation with a system of ODEs.

• Choosing format and bounds of Controls.

• Designing an appropriate objective functional.

• Proving existence( and uniqueness) of the optimal control.

• Deriving necessary conditions for the optimal control.

• Characterizing the optimal control.

• Computing the optimal control numerically.

2.2. The model

Our goal is to formulate an optimal control problem to find the optimal oncolytic virotherapy cost
strategy that (maximizes) the fraction of the normal cells with least infected cells and least cost associated
with the control. We formulate model (1.1) by introducing a control function u(t) which represents the
efforts on damaging the tumor cells. Hence, (1 − u(t)) represents the growth rate of the infected cells.
The control u is adjusted in the dynamical system to achieve our goals. Therefore, the model under
consideration is given by

dx

dt
= (1 − u(t))λx

(
1 −

x+ y

K

)
−βxv,

dy

dt
= βxv− (1 − u(t))δy,

dv

dt
= bδ(1 − u(t))y−βxv− γv.

(2.1)

The control u(.) is bounded between 0 and umax with umax < 1. We assume that umax is never equal
to 1. In this study, the control is bounded as 0 6 u(t) 6 0.9. This makes the model more realistic from a
medical view point.

Table 1: Pameters’ Description.

Parameter Description Value Dimentions

λ Tumor growth rate 2× 10−2 1/h
δ Death rate of infected tumor cells 1/18 1/h
β Infection rate of the virus 7/10× 10−9 mm3h/ virusl
k Immune killing rate of virus 10−8 mm3h/ immune cell
b Burst size of free virus 50 viruses/cell
γ Clearance rate of virus 2.5× 10−2 1/h
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We find the optimal value u∗ of the control u along the time interval [0, T ] such that the associated state
trajectories x∗,y∗, and v∗ are solutions of the system in model (2.1) with the following initial conditions

x(0) > 0, y(0) > 0, v(0),

and u∗(.) maximizes the objective functional given by

J(u(t)) =

∫T
0
y(t) +

1
2
Bu2dt, (2.2)

where B is a measure of the relative cost of interventions associated to the control u(t). We want to
minimize the number infected tumor cells which can be established by choosing an appropriate control
strategy that can result in lowering the number of free viruses as well, which leads to a lower cost of the
treatment. The set of admissible control functions is [6]

Ω = {u(·) ∈ L∞ (0, tf) : 0 6 u(t) 6 umax, ∀t ∈ [0, T ]} .

In order to make computations a bit easier, we non-dimensionalize the system by rescaling the parameters
and variables. Setting τ = δt x = Kx∗,y = Ky∗, v = Kv∗, r = λ

δ ,a = βK
δ , and c = γ

δ and dropping the stars
over variables

dx

dt
= (1 − u)rx(1 − x− y) − axv,

dy

dt
= axv− (1 − u)y,

dv

dt
= b(1 − u)y− axv− cv,

(2.3)

with the initial conditions x(0) = x0, y(0) = y0, and v(0) = v0.

2.3. Pontryagin’s principle

Pontryagin’s maximum principle for fractional optimal control can be used to solve the problem. The
Hamiltonian associated with our optimal control problem is

H = y(t) + B
2 u

2 +Ψ1((1 − u)rx(1 − x− y) − axv) +Ψ2(axv− (1 − u)y) +Ψ3(b(1 − u)y− axv− cv).

The adjoint system uphold that the co-state variables Ψi(t), i = 1, 2, 3 verify the following system

Ψ̇1 = −Ψ1(1 − u)(r− 2rx− ry) + av(Ψ1 −Ψ2 +Ψ3),
Ψ̇2 = −1 + rx(1 − u)Ψ1 + (1 − u)(Ψ2 − bΨ3),
Ψ̇3 = ax(Ψ1 −Ψ2 +Ψ3) + cΨ3.

(2.4)

The condition of that establishes the optimal control is given by

u(t) = min
{

max
{

0,
rx(1 − x− y)Ψ1 − y(Ψ2 + bΨ3)

B

}
,umax

}
,

where B is the weight factor associated to the control u(t). The optimal controls u(.) maximize H as a
function of u(.) according to the Pontryagin’s Maximum Principle. The existence of the optimal control
u(.) comes from the convexity of the integrand of the minimizer functional with respect to controls and
regularity of the system.

According to The Pontryagin’s Maximum Principle, if u(.) ∈ Ω is optimal for the problem under
consideration, the minimizer with the initial conditions and fixed final time T , then there exists a nontrivial
absolutely continuous mapping Ψ : [0, 1] −→ R3.
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The minimization condition

H(x∗(t),y∗(t), v∗(t)) = min
06u1,u261

H(x∗(t),y∗(t), v∗(t),Ψi,u1(t),u2(t)),

holds almost everywhere on [0, T ]. Moreover, the transversality conditions Ψi(T) = 0, i = 1, 2, 3 hold.
Now we state a main result of our work.

Theorem 2.1. Problem (2) with fixed initial conditions x(0),y(0), v(0) and a fixed final time T , admits a unique
optimal solution (x∗(·),y∗(·), v∗(·)) associated to an optimal control (u∗) on [0, T ]. Moreover, there exists adjoint
functions Ψ∗

1 ,Ψ∗
1 , and Ψ∗

3 , such that with transversality conditions Ψ∗
i (T) = 0, i=1, 2, 3. Furthermore,

u∗(t) =
rx(1 − x− y)Ψ1 − y(Ψ2 + bΨ3)

B
. (2.5)

Proof. By [9, Corollary 3.1], the existence of the optimal control exists due to the convexity of the integrand
of (2.3) with respect to u, boundeness of the state solutions on the finite time interval [0, T ], and the
Lipschitz property of the state system with respect to the state variables. Applying the Pontryagin’s
Maximum Principle, we obtain

Ψ̇1 = −
∂H

∂x
,Ψ1(T) = 0,

Ψ̇2 = −
∂H

∂y
,Ψ2(T) = 0,

Ψ̇3 = −
∂H

∂v
,Ψ3(T) = 0.

These are evaluated at u∗and the corresponding states, which implies the adjoint system (2.4). Now we
obtain the characterization u∗ by considering the optimality condition ∂H

∂u = 0 and solving for u∗. This
gives us the characterization in (2.5).

3. Numerical simulations and discussion

3.1. Numerical simulations

Numerical simulations leading to the approximation of the optimal control are carried out by im-
plementing a forward-backward fourth-order Runge-Kutta method. The state and adjoint differential
equations together with the (2.5) control characterization are solved numerically to illustrate our control
results.

We implement the forward fourth-order Runge-Kutta method for state system and the backward
one for the adjoint system. We define the state, adjoint, and control variables at the mesh points. An
initial guess is given for the control u which is then updated continuously until the objective functional
satisfies the conditions. Given an initial guess for the control, to compute the optimal state values, the
program solves (2.3) with initial its initial conditions forward in time using a fourth-order Runge-Kutta
method. Resulting state values are placed in adjoint system (2.4). These adjoint equations with given final
conditions are then solved backwards in time. Again, a fourth order Runge-Kutta method is employed.
Both state and adjoint values are used to update the control using the characterization (2.5) and the entire
process repeats itself.

For this purpose, we use the following parameter values: r = 0.36, a = 0.11, and c = 0.44. We also
pick the weight factor B = 500.
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Figure 1: Optimal state variables for the controlled and the uncontrolled systems subject to the initial values x = 0.5, y = 0.5,
and v = 1.5, b = 4, and the admissible control set versus trajectories without control measures.

Figure 2: Optimal state variables for the controlled and the uncontrolled systems subject to the initial values x = 0.5, y = 0.5,
and v = 1.5, b = 9, and the admissible control set versus trajectories without control measures.



A. Abu-Rqayiq, H. Aayed, M. Zannon, J. Math. Computer Sci., 24 (2022), 119–126 125

Figure 3: Damped oscillators appear for the controlled and the uncontrolled systems subject to the initial values x = 0.5, y = 0.5,
and v = 1.5, b = 26, and the admissible control set versus trajectories without control measures.

Figure 4: The optimal ontrol u∗ for the Oncolytic virotherapy model subject to the initial values x = 0.5, y = 0.5, and v = 1.5,
b = 9, and the admissible control.

3.2. Discussion and conclusion

In this paper, we studied an optimal control problem of a basic model of oncolytic virotherapy. The
model was first introduced to present a better understanding of oncolytic virotherapy dynamics in the
presence of burst size. Analysis of this model suggests that the tumor load can drop to a undetectable
level either during the oscillation or when the burst size is large enough [8]. Controlled variables were
introduced into the originally uncontrolled model. We considered a L1 type objective functional to mini-
mize the tumor cells and the therapy viruses which, in turns, minimizes the cost of the therapy. Through
this study, we showed that an optimal control exists for this problem as stated in Theorem 2.1 and proved.

We estimated the optimality controlled system to determine the optimal control situation and predict
the evolution of the tumors cells relative to specific choices of virus bust size in time scale of 100 days
for burst size b = 4 as shown in Figure 1, 200 days for burst size b = 9 as shown in Figure 2, and 1000
days for the oscillation to capture that behavior as shown in Figure 3. Figure 1 shows that the existence
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of the control can improve the growth of the normal cells population until approximately 60 days of the
therapy and it will be stabilized after then. The number of infected cells will be dropped significantly after
approximately the fifth day of the treatment until they are terminated in the 50th day of the treatment.
Figure 2 shows more power of the existence of the control u in the system, where the number of the
uninfected cells increases significantly, the size of the infected cells becomes less, and the number of free
viruses is significantly less which results in minimizing the cost of the therapy. In figure 3 we notice
the periodic behavior of the solution for both of the uncontrolled and controlled systems. The numerical
simulations displayed in the paper validate the existence of optimality of the control variables and show
that the virotherapy reduces the tumor load within days of the therapy and reduces number of viruses
used in the therapy as well. As a result, the cost of the therapy is minimized.
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