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Abstract

This paper addresses the design of wavelet neural network(WNN) based control scheme for non-affine nonlinear system
with unknown control direction. Wavelet neural network is employed to approximate the uncertain part of control system. Since
the learning capability of WNN is superior than any conventional NN for system identification. The update laws are derived
from Lyapunov stability theory with Nussbaum technique so that all signals in closed loop system are stable and bounded.
Finally, simulation example and analysis are provided to prove the effectiveness of controller.
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1. Introduction

The control of systems with uncertain non-affine nonlinear dynamics has been a predominant focused
area for decades. For the systems with uncertainties that can be parametrized linearly, the variety of
adaptive controllers [8, 23, 24] have been utilized in the past. Some recent adaptive neural, fuzzy and
wavelet controllers have also been reported in the literature, where the systems are not linear in the
parameters [2, 6, 14, 19, 27]. Several learning schemes have also been studied for the systems where the
disturbance is periodic [1]. Many methods have been used to compensate the structured uncertainty,
unstructured uncertainty and unknown disturbance with in the system like sliding mode controllers
[24, 25], robust controller [21], neural network and fuzzy controllers [10, 20].

In [7] a class of SISO nonlinear control systems has been considered in which the unknown func-
tion depends on the response and its derivatives. In practice, there are numerous systems which can be
represented by this kind of control systems. In the paper [27], the authors developed a neural network
based robust adaptive scheme for a class of nonlinear systems represented by input-output models with
un-modeled dynamics. In [6], the wavelet adaptive backstepping control (WABC) system is presented for
a second order class of nonlinear systems. The WABC consists of a neural backstepping controller and a
robust controller. Even further, entering in the analysis field, neural networks are also trained to estimate

∗Corresponding author
Email addresses: kumar.pramendra@rediffmail.com (Pramendra Kumar), vikasdma@gmail.com (Vikas Panwar)

doi: 10.22436/jmcs.024.01.05

Received: 2020-09-05 Revised: 2020-09-26 Accepted: 2020-11-14

http://dx.doi.org/10.22436/jmcs.024.01.05
http://dx.doi.org/10.22436/jmcs.024.01.05
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.024.01.05&domain=pdf


P. Kumar, V. Panwar, J. Math. Computer Sci., 24 (2022), 49–58 50

properties of complex theoretical problems formulated by partial differential equations (related, for in-
stance, to porous media or membrane structures); [11, 12, 26] moreover, the Galerkin method, employed
to approximate solutions to general PDEs, uses a deep neural network instead of a linear combination of
basis functions.

In [13] a robust adaptive fuzzy controller is presented for non-affine nonlinear system represented by
input-output models. The Fuzzy logic and Nussbaum theory are utilized to fix the structured uncertainty
of given system. In the work of [9], an RBF neural adaptive control scheme is proposed for a class of
uncertain non-affine nonlinear system. In the paper [17], the authors presented a novel tracking controller
for a class of uncertain non-affine systems with time-varying asymmetric output constraints. The stability
of non-affine nonlinear system is much more challenging than that of linear one. In spite of, several
control systems fall into such category, where the structure is non-affine nonlinear like chemical system,
wind turbine, aircraft flight control and mechanical systems [18, 28] etc.

In this paper, we have proposed a wavelet neural network based controller for a class of non-affine
nonlinear systems. First, the unconstrained non-affine nonlinear system is transformed into constrained
normal form system. Then converted non-affine system transformed into affine one using some mathe-
matical expansion method. The WNN is utilized to approximate the unknown affine part of the control
system. The update laws of WNN are derived via Lyapunov synthesis and hence all the the signals in
closed-loop system are proved stable along with the control law. Finally the theoretical results are given
through numerical simulation studies.

The rest of the paper is as follows. Section 2 gives the problem formulation, description of wavelet
neural network and Nussbaum function. In Section 3 the control law and stability analysis are presented.
An example is presented in Section 4 to demonstrate the effectiveness of addressed controller. Finally, the
conclusion of this paper is described in the Section 5.

2. Problem formulation

Lets us consider the following single input-single output (SISO) non-affine nonlinear system given by

yn = f (P,Q) , (2.1)

where P =
[
y, ẏ, ÿ, . . . ,yn−1

]
and Q = [u, u̇, ü, . . . ,um]; u,y ∈ R are the input and output of system (2.2);

ẏ, ÿ, . . . are the first and higher order derivative of y; u̇, ü, . . . are the first and higher order derivative of
u; and f is the smooth unknown nonlinear function. Let

x1 = y, x2 = ẏ, . . . , xn = y(n−1), z1 = u, z2 = u̇, . . . , zm = u(m−1).

Using the above substitution, the system (2.1) can be written as
ẋi = xi+1, (i = 1, 2, 3, . . . ,n− 1) ,
ẋn = f (x, z, v) ,
żj = zj+1, (j = 1, 2, 3, . . . ,m− 1) ,
żm = v,

(2.2)

where x = [x1, x2, . . . , xn]
T , z = [z1, z2, . . . , zm]T are the state variables and available for system (2.2), and

v = um is the control input of augmented system (2.2). The initial states of the system are chosen such
that z(0) ∈ Z0, x(0) ∈ X0, where Z0 & X0 are the compact subsets of Rm & Rn, respectively. Using mean
value theorem, the function f in system (2.2) can be written as:

f(x, z, v) = f(x, z, v∗) + g (v− v∗) , (2.3)

where g =
∂f(x, z, v)

∂v
and v∗ ∈ V0 ⊂ R. By choosing v∗ = 0, [5, 22], the function f(x, z, v) in Eq. (2.3) can
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be expressed as:
f(x, z, v) = f(x, z) + gv.

Using the above equation, the system (2.2) can be transformed into the form:
ẋi = xi+1,
ẋn = f (x, z) + gv,
żj = zj+1,
żm = v.

(2.4)

Let Yd =
[
yd,y(1)

d ,y(2)
d , . . . ,y(n−1)

d

]
. Regarding the development of control law, we will make the follow-

ing assumptions.

Assumption 1: The desired signal yd(t) and its derivatives y(n)d (t) are smooth and bounded.

Assumption 2: The sign of nonlinear function g =
∂f

∂v
is unknown and satisfies 0 < gmin 6 |g| 6 gmax,

where gmin and gmax are the positive constants.
Assumption 3: The disturbance term ε∗ is bounded and it is bounded by ε > 0 such that |ε∗| 6 ε.

Let e = [e1, e2, . . . , en]
T , where e1 = x1 − yd, e2 = x2 − y

(1)
d , . . . , en = xn − y

(n−1)
d . Define a new variable es

(sliding surface) as follows:

es =

(
d

dt
+α

)n−1

e1 = [Λ1] e, (2.5)

where Λ =
[
αn−1, (n− 1)αn−2, (n−1)(n−2)

2! αn−3, . . . , (n− 1)α
]T

and α is a positive constant. It has been
shown in [24] that es −→ 0 as t −→ ∞. From which, we can conclude that e and consequently all the
derivatives of e up to (n− 1)th order converge to zero. Using (2.4), the time derivative of (2.5) can be
written as

ės = f(s) +β+ gv− y
(n)
d , (2.6)

where s = [xT , zT ]T and β = [0 Λ]T e. Before the construction of controller design, we first introduce
the wavelet neural network to approximate the unknown function f(s) in (2.6) and basic of Nussbaum
function.

2.1. Wavelet neural network

Mathematically, Wavelet neural network is a nonlinear mapping from an input space Rp to an output
space R (p = m+n), i.e., f(s) : Rp → R defined as [19]:

f(s) = wTΨ (s,d, c) ,

where s = [s1, s2, . . . , sp]
T ∈ Rp is the input vector, w = [w1,w2, . . . ,wq]

T ∈ Rq is the weight vector
of the output layer, q is the number of neurons in the translation layers, d =

[
dT1 ,dT2 , . . . ,dTq

]T ∈ Rqp
is dilation parameters vector, c =

[
cT1 , cT2 , . . . , cTq

]T ∈ Rqp is the translation parameters vector, di =[
di1,di2, . . . ,dip

]
∈ Rp, ci =

[
ci1, ci2, . . . , cip

]
∈ Rp, where i = 1, 2, . . . ,q and Ψ (., ., .) = [ψ1,ψ2, . . . ,ψq]

T ∈
Rq is the translation layer output, given as:

ψi = ωi (s) exp

(
−

∑p
j=1 d

2
ij(sj − cij)

2

2

)
,
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where ωi(s) =
∏p
j=1

(
1 − d2

ijs
2
j

)
is the ”Mexican hat” mother wavelet function. According to universal

approximation theorem [29], ∃ a wavelet neural network such that

f(s) = f∗(s) + δ∗(s) = w∗TΨ (s,d∗, c∗) + δ∗(s),

where δ∗(s) is the bounded wavelet neural network approximation error |δ∗(s)| 6 δm; δm > 0. w∗,d∗, and
c∗ are the bounded optimal parameter values of w,d, and c. Though, it is not easy to find the exact values
of above mentioned optimal parameters, so we use estimated values of the optimal parameters provided
by:

f̂(s) = ŵTΨ(s, d̂, ĉ), f̂(s) = ŵT Ψ̂,

where ŵ, d̂ and ĉ are the estimated values ofw,d, and c. Assuming w̃ = w∗− ŵ, d̃ = d∗− d̂, c̃ = c∗− ĉ, Ψ̃ =

Ψ∗ − Ψ̂ =
[
ψ̃1, ψ̃2, . . . , ψ̃q

]T . Now, using the above notations, we can define:

f̃ = f− f̂ = f∗ − f̂+ δ∗,

f̃ = w∗Ψ∗ − ŵT Ψ̂+ δ∗ =
(
ŵT + w̃T

) (
Ψ̂+ Ψ̃

)
− ŵT Ψ̂+ δ∗,

f̃ = w̃T Ψ̂+ ŵT Ψ̃+ w̃T Ψ̃+ δ∗.

(2.7)

Using the Taylor expansion method, the semi linear form of ψ̃ can be obtained for the derivation of online
update laws of wavelet neural network parameters:

ψ̃i =

p∑
j=1

(
∂ψi
∂dij

)
(d̂ij,ĉij)

d̃ij +

(
∂ψi
∂cij

)
(d̂ij,ĉij)

c̃ij + ηi; i = 1, 2, . . . ,q,

ψ̃i = Aid̃i +Bic̃i + ηi,

(2.8)

where Ai =
[
∂ψi
∂di1

, ∂ψi
∂di2

, . . . , ∂ψi
∂dip

]
, Bi =

[
∂ψi
∂ci1

, ∂ψi
∂ci2

, . . . , ∂ψi
∂cip

]
, and ηi represent the higher order terms

obtained in the expansion of Taylor series. Equation (2.8) can be written in the vector form as:

Ψ̃ = Ad̃+Bc̃+ η, (2.9)

whereA = blokdiag [A1,A2, . . . ,Aq] ∈ Rq×qp, B = blokdiag [B1,B2, . . . ,Bq] ∈ Rq×qp, and η = [η1,η2, . . . ,ηq] ∈
Rq. Using Eq. (2.9) in (2.7), we get the following form of f̃:

f̃ = w̃T Ψ̂+ ŵT
(
Ad̃+Bc̃+ η

)
+ w̃T

(
Ad̃+Bc̃+ η

)
+ δ∗,

f̃ = w̃T Ψ̂+ ŵTAd̃+ ŵTBc̃+ ŵTη+ w̃TA
(
d∗ − d̂

)
+ w̃TB (c∗ − ĉ) + w̃Tη+ δ∗,

f̃ = w̃T
(
Ψ̂−Ad̂−Bĉ

)
+ ŵTAd̃+ ŵTBc̃+ ε∗,

where ε∗ = ŵTη+ w̃TAd∗ + w̃TBc∗ + w̃Tη+ δ∗ is the disturbance term, which represents the estimation
errors. By using the above wavelet neural network approximation of function f(s), the error dynamics of
system (2.2) can be written as:

ės = ŵ
T Ψ̂+ w̃T

(
Ψ̂−Ad̂−Bĉ

)
+ ŵTAd̃+ ŵTBc̃+β+ gv− y

(n)
d + ε∗. (2.10)

2.2. Nussbaum function
A function is said to be a Nussbaum function, if it satisfies the following two conditions [4, 16]{

limr−→+∞ sup 1
r

∫r
0 N(ζ)dζ = +∞,

limr−→+∞ inf 1
r

∫r
0 N(ζ)dζ = −∞.

(2.11)

There are many functions that satisfy the above two conditions. The continuous functions et
2

sin t, t2 cos t,
et

2
cos(π2 t) satisfy the Eq. (2.11) and hence they are the good examples of Nussbaum functions. The

following lemma is used to design the controller of the system defined in Eq. (2.2).
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Lemma 2.1 ([3, 15]). Let V(t) and ζ(t) be the smooth functions defined on [0, tf) with V(t) > 0,∀t ∈ [0, tf) and
N(ζ) be an Nussbaum function. If the following inequality holds:

0 6 V(t) 6 a0 +

∫t
0
(H(·)N(ζ) + 1) ζ̇dσ,

whereH(·) is a piecewise time varying continuous function that belongs to the unknown closed intervals I = [t−, t+]
with 0 /∈ I and a0 is a constant, then V(t), ζ(t) and

∫t
0 H(·)N(ζ)ζ̇dσ are bounded on [0, tf).

3. Controller design and stability analysis

In this section, the controller design, stability analysis and update laws are presented for the given
system (2.2).

Theorem 3.1. Consider the error dynamics represented by (2.10). Let, the control law be chosen as:

v = N(ζ)ζ̇, (3.1)

ζ̇ = esŵ
T Ψ̂+ ke2

s + esβ− esy
(n)
d , (3.2)

with k is a positive constant. If the WNN parameters update laws are chosen as:

˙̂w = Γw
((
Ψ̂−Ad̂−Bĉ

)
es − γŵ

)
, (3.3)

d̂ = ΓdA
T ŵes, (3.4)

ĉ = ΓcB
T ŵes, (3.5)

let the assumptions hold from 1-3. Consider a compact set Ω(x,z) ∈ Rm+n, for any (x(0), z(0)) ∈ Ω(x,z), ∃
the positive constants k and γ such that all the signals in closed loop system are bounded and the tracking error
e(t)→ 0, where the matrices Γw ∈ Rq×q, Γd ∈ Rqp×qp and Γc ∈ Rqp×qp are positive definite.

Proof. Let us take the following as Lyapunov function:

V(t) =
1
2
e2
s +

1
2
w̃T Γ−1

w w̃+
1
2
d̃T Γ−1

d d̃+
1
2
c̃T Γ−1

c c̃.

Using the fact that ˙̃w = − ˙̂w, ˙̃d = − ˙̂d, ˙̃c = − ˙̂c, the derivative of V with respect to time can be written as:

V̇(t) = esės − w̃
T Γ−1
w

˙̂w− d̃T Γ−1
d

˙̂d− c̃T Γ−1
c

˙̂c. (3.6)

Using (2.10), the Eq. (3.6) can be written as:

V̇(t) = es(ŵ
T Ψ̂+ w̃T (Ψ̂−Ad̂−Bĉ) + ŵTAd̃+ ŵTBc̃+β+ gv− y

(n)
d + ε∗)

− w̃T Γ−1
w

˙̂w− d̃T Γ−1
d

˙̂d− c̃T Γ−1
c

˙̂c.
(3.7)

Substituting the WNN update laws (3.3), (3.4), and (3.5) in Eq. (3.7), yields:

V̇(t) = esŵ
T Ψ̂+ γw̃T ŵ+ esβ+ esgv+ esε

∗ − esy
n
d , (3.8)

according assumption 3, |ε∗| 6 ε, ε > 0 and using the inequality esε 6
e2
s

4
+ ε2, we can write Eq. (3.8) as:

V̇(t) 6 esŵ
T Ψ̂+ γw̃T ŵ+ esβ+ esgv+

e2
s

4
+ ε2 − esy

n
d , (3.9)
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adding and subtracting ke2
s and after substituting (3.1) and (3.2) in Eq. (3.9), yields:

V̇(t) 6 −(k−
1
4
)e2
s + (esgN(ζ) + 1)ζ̇+ γw̃T ŵ+ ε2. (3.10)

Using the inequalities:

γw̃T ŵ = −
γ

2
‖w̃‖2 −

γ

2
‖ŵ‖2 +

γ

2
‖w̃+ ŵ‖2 , γw̃T ŵ 6 −

γ

2
‖w̃‖2 +

γ

2
‖w∗‖2 ,

the Eq. (3.10) can be bounded as:

V̇(t) 6 −(k−
1
4
)e2
s −

γ

2
(‖w̃‖2 − ‖w∗‖2) + ε2 + (esgN(ζ) + 1)ζ̇.

Let us choose H = esg and λ =
γ

2
‖w∗‖2 + ε2. Then, we have

V̇(t) 6 −(k−
1
4
)e2
s −

γ

2
‖w̃‖2 + λ+ (HN(ζ) + 1)ζ̇. (3.11)

Assuming that k1 >
1
4

, then by integrating Eq. (3.11) on [0, t], yields

0 6 V(t) 6 a0 +

∫t
0

[
HN(ζ) + 1)ζ̇

]
dσ, (3.12)

where a0 = V(0) +
∫∞

0 λ(t)dt. By using Lemma 2.1 and Eq. (3.12), we can deduce the boundedness of∫t
0 [HN(ζ) + 1)ζ̇]dσ,V(t) and ζ̇(t) on [0, tf) . According to [15], it can be concluded that the system is also

true for tf = ∞. This proves that all the signals involved in closed loop system (2.2), i.e., x, z, and w are
bounded. Furthermore, the tracking error is also bounded. This completes the proof.

4. Simulation results

For simulation purpose, the following non-affine nonlinear system in normal form is used to validate
the effectiveness of proposed controller.

ẋ1 = x2,
ẋ2 = x3,
ẋ3 = z1 + x1 − x3 + x1x2 + x

2
2 + x1x3 sin(v) − z1v+ d(t),

ż1 = v,

where d(t) = 0.1 sin(15t) is the disturbance term. The control objective is to force the controller that
system output y = x1(t) tracks the desired trajectory yd = 0.1 sin t. With in this simulation, we have used
wavelet neural network to approximate the unknown function f(x, z). Let the input variables of wavelet
neural network be x1, x2, x3, and x4 = z1. The wavelet neural network consists of two neurons in the
translation layer. The design parameters are selected as: β = 6.2,γ = 0.001,k = 0.6 and the matrices
Γw, Γd, Γc are selected as Γw = 80I2, Γd = 100I8 and Γc = 100I8. The states are initialized by [x(0), z(0)] =
[.01, 0.1, 0.1, 0.1]. The initial value of ζ = 0. The controller is simulated in MATLAB environment.

To analyze the simulation results of proposed controller, we are taking the following three cases.
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Case 1: In the first case, we are taking the same system based controller by considering that no structured
uncertainty and Nussbaum technique are exist, however unknown disturbance is present in the system
dynamics.

Case 2: In the second case, we are taking the same system dynamics based controller by considering that
no structured uncertainty and unknown disturbance exist in the system.

Case 3: In the third case, the proposed wavelet neural network based controller with all above mentioned
constraints in the system is used.

The performance of all three controllers are shown in Figures 1-6 with their error curve. Fig. 1 gives
the output of desired trajectory vs system system trajectory of Case 1 controller. Fig. 2 shows the tracking
error of Case 1 controller. Fig. 3 shows the system vs desired trajectory of Case 2 controller. Fig. 4 is
the tracking error of Case 2 controller. Fig. 5 is the output of the closed loop system vs desired trajectory
of Case 3 controller and Fig. 6 is the tracking error of Case 3 controller. From the Figs. 1-6, it is clear
that the WNN controller can learn the structured uncertainty effectively. Also, the tracking error of WNN
controller is smaller than the other two controllers. The curve of ζ is shown in Fig. 7.

We are using the scalar valued L2 norm for entire error curve to study the performance of controllers
from Cases 1-3. The L2 norm calculate the RMS average of tracking errors and it is given by:

L2[e] =

√
1

tf − t0

∫tf
t0

‖e(t)‖2 dt. (4.1)

The smaller L2[e] norm represents the less tracking error of controller and it reflects the good performance
of controller. To check the performance of each Cases 1-3 controllers statistically, the simulation experi-
ment were performed for 20 times with same learning matrices but with different parameters. For each
execution, the root mean square values of tracking errors are recorded. The average of these RMS values
and variances of Cases 1-3 controllers are plotted in Figs. 8 and 9. An unpaired pooled t-test is used
through MS office excel 2013 with significance level α = 0.05 and equal variances. The pooled t-test is
applied for the controller Case 3 with all other Cases 1-2 controllers. The result of t-test of root mean
square error is shown in Table 1. It can be drawn from the Table 1 that the value of t stat is bigger than
the t critical values. Also the P value obtained in one tail and two tail test is smaller than the significance
level α. Thus it can be concluded that the mean RMS error for the Case 3 controller is less than the other
two controllers Cases 1-2 and this difference is statistically significant.
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Figure 1: Desired Trajectory vs system trajectory of Case
1 controller.
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Figure 2: Tracking error of Case 1 controller.
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Figure 3: Desired Trajectory vs system trajectory of Case
2 controller.
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Figure 4: Tracking error of Case 2 controller.
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Figure 5: Desired Trajectory vs system trajectory of Case
3 controller.
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Figure 9: Variance about mean of the controllers 1-3.

Table 1: t-test for two samples assuming equal variances for RMS tracking error.
RMS tracking error

Case 1 Case 2 Case 3
Mean 5.32×10−2 1.43×10−2 1.56×10−3

Variance 1.42×10−4 9.93×10−6 4.17×10−8

Observations 20 20 20
Pooled variance 7.13 ×10−5 4.98×10−6

Hypothesized mean difference 0 0
df 38 38
t stat 19.35 18.08
P(T 6 t)one-tail 1.41 ×10−21 1.46×10−20

t Critical one-tail 1.68 1.68
P(T 6 t)two-tail 2.82×10−21 2.92 ×10−20

t Critical two-tail 2.024 2.024

5. Conclusion

In the present work, we have presented an adaptive feedback scheme for a class of SISO non-affine
nonlinear systems with unknown controller gain. The WNN neural network and Nussbaum function
have been used to fix the unknown dynamics of system (2.2). Using Lyapunov stability theory, it has been
proven that the signals in closed loop system are stable and bounded. The computer simulation studies
shows that the wavelet neural network controller with updating laws can efficaciously achieve the desired
performance. In addition, the unpaired pooled t-test results show that the presented WNN based scheme
is shown to be statistically significant in comparison to other controllers.
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