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Abstract
In the current work, we investigate the solvability of a general class of fractional delay functional equations subject to an

infinite point non-classical condition, and the Riemann-Stieltjes integral condition as well. First, the existence of solutions is
investigated. Second, the continuous dependence of solution is studied in three different cases. Third, illustrative examples are
given to support our results. Our work extends some developments published recently in that field.
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1. Introduction

Studying functional integro-differential equations is of significance, since integro-differential equations
can describe successfully many applications in biological, chemical, and physical sciences. For example,
the mathematical models in biological populations depend on Volterra integro-differential equations with
delay, the behavior of the nuclear reactor in a continuous medium can be described by a system of integro-
differential equations, and many other problems in economics, mechanics, visco-elasticity as well. Also,
these types of equations occur when we convert the Cauchy and boundary value problems to integral
equations, (see [3, 5, 6, 15] and the cited references therein for more explanations).

The nonlocal conditions give more initial measurements which are more precise than the local con-
dition. So, these conditions allow us to get more accurate model of the phenomena being studied and
therefore, better results can be derived. Recently, the study of existence of solutions for initial value
problems subject to non-classical conditions such as the Riemann-Stieltjes and the infinite point nonlocal
conditions becomes an issue of great importance, see [14, 18]. As a continuation in that progress, El-
Sayed et al. studied in [10] the evolution of a physical model described by a nonlocal integro-differential
equation on the form

dz

dt
= g

(
t, z(t),

∫t
0
h(τ, z(τ))dτ

)
, a.e. t ∈ (0, 1), (1.1)

Email address: miyoussef283@gmail.com (M. I. Youssef)

doi: 10.22436/jmcs.024.01.04

Received: 2020-07-21 Revised: 2020-09-22 Accepted: 2020-11-20

http://dx.doi.org/10.22436/jmcs.024.01.04
http://dx.doi.org/10.22436/jmcs.024.01.04
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.024.01.04&domain=pdf


M. I. Youssef, J. Math. Computer Sci., 24 (2022), 33–48 34

subject to the condition

m∑
k=1

bkz(τk) = z0, bk > 0, τk ∈ (0, 1). (1.2)

The authors proved the existence of continuous solutions to the model characterized by Eqs. (1.1)-(1.2)
provided some sufficient conditions are verified. They studied the data dependence of solutions and,
moreover, investigated Eq. (1.1) subject to the Riemann-Stieltjes integral condition∫ 1

0
z(τ)dh(τ) = z0,

and the infinite-point condition ∞∑
k=1

bkz(τk) = z0,

to demonstrate the applicability of their model. In this article, we study a more general fractional evolu-
tion model of Eqs. (1.1)-(1.2) which was not discussed in [10]. This fractional model has many real world
applications in environmental science, electrochemistry, viscoelasticity, dynamical systems, biomedicine,
control theory and signal processing, see [4, 8, 16, 17]. Consequently, we are concerned with the existence
of solutions for a generalized fractional nonlinear physical delayed model described by(

CD
β,ρ
0+ −Λ

)
z(t) =

N∑
i=1

gi

(
t,L(z)(t),

∫Φ(t)

0
h(τ, z(τ))dτ

)
, a.e. t ∈ (0, T ], (1.3)

subject to the following three cases of nonlocal conditions
m∑
k=1

bkz(τk) = z0, bk > 0, τk ∈ (0, T ], (1.4)

∞∑
k=1

bkz(τk) = z0, bk > 0, τk ∈ (0, T ], (1.5)

∫T
0
z(τ)d h(τ) = z0, (1.6)

where CDβ,ρ
0+ denotes the left-sided Caputo-Katugampola fractional derivative [2, 13]. The parameters

β ∈ (0, 1), and ρ ∈ R>0 := {x ∈ R : x > 0} such that ρβ > 1. The function Φ(t) is called the vanishing lag
function and defined by Φ(t) := (t−ϕ(t)), with a fading lag ϕ(t), where ϕ(0) = 0, and 0 < ϕ(t) < t, ∀t ∈
J := [0, T ] \ {0}, [7]. The operators Λ and L are linear closed self-operators on C(J, R). The functions gi,
1 6 i 6 N <∞, Φ and h are assumed to be measurable with respect to t on J preserving some properties
which will be stated in Section 2. The next sections of this work are organized as follows. Sections 2-6 are
devoted to the main results regarding the existence, and continuous dependence of solution. We give two
illustrative examples in Section 7 to support the importance of the current work. In Section 8, we present
a conclusion and some suggested future work.

2. Existence results

Applying the definition of generalized fractional integral due to the Katugampola in [12] to both sides
of Eq. (1.3), then utilizing theorem 6 in [16] formally yields

z(t) = z(0) +
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ.
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Using condition (1.4), and let A :=
∑m
k=1 bk, where A 6= 0, it is easy to obtain the following integral

representation for z(t),

z(t) = A−1

[
z0 −

ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ

]
+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ

−
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ.

(2.1)

Definition 2.1 ([11]). A solution for the problem (1.3) under the nonlocal condition (1.4) is called a mild
solution if it satisfies the integral equation (2.1).

In what follows, let the following conditions be satisfied.

(V1) The mappings gi, 1 6 i 6 N <∞, are non-self mappings from J×R2 into R and have the following
attributes

(a) ∀ i ∈ {1, 2, · · · ,N} the function gi(t, ·, ·) is continuous on R2 for almost all t ∈ J;
(b) ∃ a function bi ∈ L1 ([0, T ]), i ∈ {1, 2, · · · ,N} and two constants νi ∈ R>0 := {x ∈ R : x > 0},

i ∈ {1, 2}, such that for almost all (t,y, z) ∈ J×R2 we have

|gi(t,y, z)| 6 bi(t) + ν1|y|+ ν1|z|, sup
t∈J

I
β,ρ
0+ bi(t) 6 ν2, ∀ i ∈ {1, 2, · · · ,N}.

(V2) The mapping h is defined on J×R with values in R>0 such that:
(a) ∀t ∈ J, the function h(t, ·) is continuous on R;
(b) ∀(t, z) ∈ J×R, ∃ ϑi > 0, i ∈ {1, 2} such that |h(t, z)| 6 ϑ1 + ϑ2 |z| .

(V3) ρβΓ(1 +β) > 2ηTρβ, where η := γ(1 + ν1N) + ν1ϑ2NT > 0 and γ > 0.
(V4) The vanishing delay function Φ is a continuous self-mapping on J.

Theorem 2.2. Suppose the hypotheses V1-V4 are fulfilled. Then the nonlocal problem (1.3)-(1.4) has at least one
continuous mild solution.

Proof. Define an operator W corresponding to the integral equation (2.1) by

W(z)(t) = A−1z0 −
A−1ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ +

ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ

−
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ.

So, to prove the existence of at least one solution to the integral equation (2.1), it is sufficient to show the
functional equation (2.2) has at least one fixed point

z =W(z). (2.2)

Consider the set Sr := {z ∈ C(J, R) : ‖z‖∞ = supt∈J{|z(t)|} 6 r}, where the radius r is given by r :=
(A−1|z0|+2ν2N)Γ(1+β)+2ν1ϑ1Nρ

−βT (1+ρβ)

Γ(1+β)−2ηρ−βTρβ .
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Step 1 in the proof is to show the operator W is a self-operator of the set Sr as follows.

|W(z)(t)| 6 A−1|z0|+
A−1ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 ‖Λ(z)‖∞ dζρ +

ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 ‖Λ(z)‖∞ dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ
+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

∣∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ.

The operator Λ is a linear closed self-operator on the Banach space (C(J, R), ‖ · ‖∞). So, it is bounded from
applying the closed graph theorem and hence ‖Λ(z)‖∞ 6 γ1‖z‖∞,γ1 > 0. Also, ‖L(z)‖∞ 6 γ2‖z‖∞,γ2 > 0
from applying the closed graph theorem as well, see [9, 20]. Now using conditions V1b and γ = max{γi :
i = 1, 2} implies

|W(z)(t)| 6 A−1|z0|+
A−1ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 γ‖z‖∞ dζρ +

ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 γ‖z‖∞ dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

[
bi(ζ) + ν1γ‖z‖∞ + ν1

∫Φ(ζ)

0
|h(s, z(s))|ds

]
dζρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

[
bi(ζ) + ν1γ‖z‖∞ + ν1

∫Φ(ζ)

0
|h(s, z(s))|ds

]
dζρ.

Applying condition V2b and the properties of the lag function yields

|W(z)(t)| 6 A−1|z0|+
A−1γrρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 dζρ +

γrρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 [bi(ζ) + ν1γr+ ν1 (ϑ1 + ϑ2r) (Φ(ζ) −Φ(0))]dζρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 [bi(ζ) + ν1γr+ ν1 (ϑ1 + ϑ2r) (Φ(ζ) −Φ(0))]dζρ.

After calculating and simplifying the above integrals we obtain

|W(z)(t)| 6 A−1|z0|+ 2ν2N+
2ρ−βTρβ

Γ(1 +β)
[ν1ϑ1NT + ηr] .

Taking supremum over t ∈ J on both sides of the last inequality, then substituting the radius r yields
‖W(z)‖∞ 6 r. Now, let t1 and t2 ∈ J, such that t1 < t2.∣∣∣W(z)(t2) −W(z)(t1)

∣∣∣
6
ρ−β

Γ(β)

N∑
i=1

∫t1

0

[
(tρ1 − ζρ)β−1 − (tρ2 − ζρ)β−1] ∣∣∣∣∣gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ
+
ρ−β

Γ(β)

N∑
i=1

∫t2

t1

(tρ2 − ζρ)β−1

∣∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ
+
ρ−β

Γ(β)

∫t1

0

[
(tρ1 − ζρ)β−1 − (tρ2 − ζρ)β−1] |Λ(z)(ζ)|dζρ + ρ−β

Γ(β)

∫t2

t1

(tρ2 − ζρ)β−1 |Λ(z)(ζ)|dζρ.
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Using an argument similar to what we have used above implies

|W(z)(t2) −W(z)(t1)| 6
ρ−β [ηr+ ν1ϑ1NT ]

Γ(1 +β)

[
t
ρβ
1 − (tρ2 − tρ1 )

β − tρβ2 + (tρ2 − tρ1 )
β
]

.

Using the inequality |tρβ − sρβ| 6 ρβtρβ−1|t− s|, where ρβ > 1, t > s > 0, see [19], implies

|W(z)(t2) −W(z)(t1)| 6
ρ−β [ηr+ ν1ϑ1NT ]

Γ(1 +β)
ρβTρβ−1|t2 − t1| −→ 0 as t2 −→ t1.

So, W(z)(t) ∈ C(J, R), ∀ t ∈ J. Therefore, the operator W is a self-operator of the set Sr.
Step 2 in the proof is to show the operator W is completely continuous (i.e. to prove that W is

a continuous operator and the set W(Sr) is compact) as follows. Suppose the sequence (zn)
∞
n=1 with

zn ∈ Sr and let zn → z ∈ Sr when n→∞.

|W(zn)(t) −W(z)(t)| 6
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 |Λ(zn)(ζ) −Λ(z)(ζ)|dζ

ρ

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

∣∣∣∣gi
(
ζ,L(zn)(ζ),

∫Φ(ζ)

0
h(s, zn(s))ds

)

− gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣dζρ.

Since the operator Λ is continuous, therefore limn→∞ zn = z implies limn→∞Λ(zn) = Λ(z). Also,
limn→∞L(zn) = L(z) because the operator L is continuous as well. From condition V1a, the function
gi(t,y, z) is continuous in y and z ∀ i ∈ {1, 2, . . . ,N} and for almost all t ∈ J. The function h(t, z) is
continuous in z for almost all t ∈ J from condition V2a as well. Now conditions V1 and V2 allow us to
use the dominated convergence theorem due to Lebesgue as follows,

lim
n→∞

∫t
0
(tρ − ζρ)β−1 |Λ(zn)(ζ) −Λ(z)(ζ)|dζ

ρ =

∫t
0
(tρ − ζρ)β−1 lim

n→∞ |Λ(zn)(ζ) −Λ(z)(ζ)|dζ
ρ = 0,

lim
n→∞

∫Φ(ζ)

0
h(s, zn(s))ds =

∫Φ(ζ)

0
lim
n→∞h(s, zn(s))ds =

∫Φ(ζ)

0
h(s, z(s))ds,∫t

0
(tρ − ζρ)β−1 lim

n→∞
∣∣∣∣gi
(
ζ,L(zn)(ζ),

∫Φ(ζ)

0
h(s, zn(s))ds

)
− gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣dζρ = 0.

From Eqs. above, we have limn→∞W(zn) = W(z) and so, the operator W is continuous. Suppose the
sequence (W(zn))

∞
n=1 with zn ∈ Sr. It is easy to see that (W(zn))

∞
n=1 is uniformaly bounded because

∀n ∈N and ∀t ∈ J we have ‖W(zn)‖∞ 6 r. Also, ∀n ∈N, we have

‖W(zn)(t2) −W(zn)(t1)‖∞ 6 ρ−β [ηr+ ν1ϑ1NT ]

Γ(1 +β)
ρβTρβ−1|t2 − t1| −→ 0 as t2 −→ t1,

which proves the sequence of continuous functions (W(zn))
∞
n=1 is equicontinuous. From the theorem of

the Ascoli-Arzela, there exists a uniformly convergent sub-sequence (W(znk))
∞
nk=1 in (W(zn))

∞
n=1 and

hence the set W(Sr) is compact. Henceforth, the operator W is completely continuous. Applying the
fixed point principle due to Schauder’s theorem [1] implies the existence of at least one fixed point to
Eq. (2.2) and hence the existence of continuous solution in Sr to the integral equation (2.1). The proof is
verified. �
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3. The infinite point non-classical condition

In this section, we shall study the existence of mild solutions for the integro-differential equation (1.3)
subject to the infinite point non-classical condition (1.5) as follows. Let the infinite series of numbers∑∞
k=1 bk = limn→∞∑m

k=1 bk be convergent. Since |bkz(τk)| = |bk||z(τk)| 6 bk‖z‖∞, so
∑∞
k=1 bkz(τk) is

convergent, where τk ∈ J, from applying the Weierstrass M-test. So, the condition
∑∞
k=1 bkz(τk) = z0

makes sense. From Eq. (2.1), we have

zm(t) =
z0∑m
k=1 bk

−
ρ−β

Γ(β)
∑m
k=1 bk

[ m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ

+

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

]

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(zm)(ζ),

∫Φ(ζ)

0
h(s, zm(s))ds

)
dζρ

+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(zm)(ζ)dζρ.

Passing the limit to both sides of the above equation when m −→∞ yields

lim
m→∞ zm(t) =

z0∑∞
k=1 bk

−
ρ−β

Γ(β)
∑∞
k=1 bk

[ ∞∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ

+

∞∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

]

+
ρ−β

Γ(β)

N∑
i=1

lim
m→∞

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(zm)(ζ),

∫Φ(ζ)

0
h(s, zm(s))ds

)
dζρ

+
ρ−β

Γ(β)
lim
m→∞

∫t
0
(tρ − ζρ)β−1 Λ(zm)(ζ)dζρ.

Now, it is clear from the previous arguments that

ρ−β

Γ(β)

∣∣∣∣∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ

∣∣∣∣ 6 γrρ−βTρβΓ(1 +β)
= c1, ”say”.

So, the series
∑∞
k=1 bk

∫τk
0 (τρk − ζ

ρ)β−1 Λ(z)(ζ)dζρ is convergent from applying the Weierstrass M-test.
Also, we have

ρ−β

Γ(β)

∣∣∣∣∣
N∑
i=1

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

∣∣∣∣∣
6 Nν2 +

ρ−βNν1

Γ(1 +β)
[(γ+ ϑ2T)r+ ϑ1T ]) = c2, ”say”.

So, the series
∑∞
k=1

∑N
i=1 bk

∫τk
0 (τρk− ζ

ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)
0 h(s, z(s))ds

)
dζρ is convergent from ap-

plying the Weierstrass M-test. Now, from the Lebesgue’s dominated convergence theorem, we have
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z(t) =
z0∑∞
k=1 bk

−
ρ−β

Γ(β)
∑∞
k=1 bk

[ ∞∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ

+

∞∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

]

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ.

(3.1)

Equation (3.1) represents the integral representation of the non classical integro-differential Eq. (1.3) under
the condition (1.5).

Definition 3.1 ([11]). A solution for the problem (1.3) under the nonlocal condition (1.5) is called a mild
solution if it satisfies the integral equation (3.1).

Theorem 3.2. Let the series of numbers
∑∞
k=1 bk be convergent and suppose the hypotheses V1-V4 are fulfilled.

Then the nonlocal problem (1.3)-(1.5) has at least one continuous mild solution.

Proof. From Thm. 2.2, the existence of continuous mild solutions for the nonlocal problem (1.3)-(1.4) is
verified. Let m −→ ∞ and use

∑∞
k=1 bk < ∞ . Then the existence of continuous mild solutions for the

problem (1.3)-(1.4) implies directly to the existence of continuous mild solutions to the nonlocal problem
(1.3)-(1.5). The proof is verified. �

4. The Riemann-Stieltjes non-classical condition

In this section, we shall study the existence of mild solutions for the integro-differential equation
(1.3) subject to the Riemann-Stieltjes integral condition (1.6) as follows. Suppose we have a partition,
0 = t0 < t1 < · · · < tk−1 < tk < · · · < tn = T , on the domain J. Let τk ∈ [tk−1, tk] and bk := ∆ hk :=
[ h(tk) −  h(tk−1)] in the nonlocal condition (1.4), where the function  h is assumed to be defined on J and
monotonically increasing. So, we have

lim
n→∞

m∑
k=1

bkz(τk) = lim
n→∞

m∑
k=1

z(τk)∆ hk =

∫T
0
z(τ)d h(τ) = z0.

So, the condition
∫T

0
z(τ)d h(τ) = z0 makes sense. Substituting bk = ∆ hk in Eq. (2.1) gives

z(t) =
z0∑m

k=1∆ hk
−

ρ−β

Γ(β)
∑m
k=1∆ hk

[ m∑
k=1

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ∆ hk

+

m∑
k=1

N∑
i=1

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ∆ hk

]

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ.

Passing the limit to both sides when m −→∞, yields

z(t) =
z0

limm→∞∑m
k=1∆ hk

−
ρ−β

Γ(β) limm→∞∑m
k=1∆ hk

[
lim
m→∞

m∑
k=1

∫τk
0

(τρk − ζ
ρ)β−1 Λ(z)(ζ)dζρ∆ hk
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+ lim
m→∞

m∑
k=1

N∑
i=1

∫τk
0

(τρk − ζ
ρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ∆ hk

]

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ.

Applying the Riemann-Stieltjes definition of integration implies

z(t) =
z0

[ h(T) −  h(0)]
−ρ−β

Γ(β)[ h(T) −  h(0)]

[∫T
0

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρd h(t)

+

N∑
i=1

∫T
0

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρd h(t)

]

+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1 gi

(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)
dζρ

+
ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 Λ(z)(ζ)dζρ.

(4.1)

Equation (4.1) represents the integral representation of the non classical integro-differential problem (1.3)
under the condition (1.6).

Definition 4.1 ([11]). A solution to the nonlocal problem (1.3)-(1.6) is called a mild solution if it satisfies
the integral equation (4.1).

Theorem 4.2. Let the function  h be a monotonically increasing function defined on J with values in R. Let
bk := ∆ hk in the condition (1.4). Suppose the hypotheses V1-V4 are fulfilled. Then the nonlocal problem (1.3)-(1.6)
has at least one continuous mild solution.

Proof. From Thm. (2.2), the existence of continuous mild solutions of the nonlocal problem (1.3)-(1.4) is
verified. Let bk := ∆ hk := [ hk(tk) −  h(tk−1)] in the non classical condition (1.4), where the function  h
is assumed to be defined on J and monotonically increasing, and let m −→ ∞. Then the existence of
continuous mild solutions of the problem (1.3)-(1.4) implies directly to the existence of continuous mild
solutions to the nonlocal problem (1.3)-(1.6). The proof is verified. �

5. Uniqueness results

Assume the following hypotheses are satisfied.

(V5) The mappings gi : J×R2 −→ R, 1 6 i 6 N <∞ are measurable with respect to t, ∀(y, z) ∈ R2 and
verify the assumptions:

(a) |gi(t,y2, z2) − gi(t,y1, z1)| 6 ν1|y2 − y1|+ ν1|z2 − z1|, ν1 > 0, ∀ t ∈ J;
(b) supt∈J I

β,ρ
0+ |gi(t, 0, 0)| 6 ν2, ∀ 1 6 i 6 N <∞, ν2 > 0.

(V6) The mapping h : J×R −→ R>0 is measurable with respect to t, ∀z ∈ R and satisfies the conditions:
(a) |h(t, z2) − h(t, z1)| 6 ϑ2 |z2 − z1| , ϑ2 > 0;
(b) |h(t, 0)| 6 ϑ1, ϑ1 > 0, ∀ t ∈ J.

Theorem 5.1. Assume the conditions V3 − V6 are verified. Then the nonlocal problem (1.3)-1.4 has a unique
continuous mild solution.
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Proof. It is clear that condition V5 implies condition V1, because ∀ 1 6 i 6 N <∞ we have

|gi(t,y, z) − gi(t, 0, 0) + gi(t, 0, 0)| 6 |gi(t, 0, 0)|+ |gi(t,y, z) − gi(t, 0, 0)| 6 |gi(t, 0, 0)|+ ν1|y|+ ν1|z|.

Also, condition V6 implies condition V2. So, the mild solution exists from Thm. 2.2. Let y and z be two
mild solutions of the considered problem (1.3)-(1.4),

|z(t) − y(t)| 6
A−1ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 |Λ(z− y)(ζ)|dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(y)(ζ),

∫Φ(ζ)

0
h(s,y(s))ds

)∣∣∣∣dζρ
+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(y)(ζ),

∫Φ(ζ)

0
h(s,y(s))ds

)∣∣∣∣dζρ + ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 |Λ(z− y)(ζ)|dζρ.

Applying conditions V5a and V6a yields

|z(t) − y(t)| 6
A−1γρ−β‖z− y‖∞

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1dζρ

+
A−1Nρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

[
ν1 |L(z− y)(ζ)|+ ν1ϑ2

∫Φ(ζ)

0
|z(s) − y(s)|ds

]
dζρ

+
Nρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1

[
ν1 |L(z− y)(ζ)|+ ν1ϑ2

∫Φ(ζ)

0
|z(s) − y(s)|ds

]
dζρ

+
γρ−β‖z− y‖∞

Γ(β)

∫t
0
(tρ − ζρ)β−1dζρ.

Simplifying, then using condition V3 gives

|z(t) − y(t)| 6
2ηρ−βTρβ

Γ(1 +β)
‖z− y‖∞.

Taking supremum over t ∈ J on both sides gives[
1 −

2ηρ−βTρβ

Γ(1 +β)

]
‖z− y‖∞ 6 0,

but 2ηρ−βTρβ
Γ(1+β) < 1 from condition V3. So, ‖z− y‖∞ = 0 and hence z(t) = y(t) ∀t ∈ J which implies the

uniqueness of the mild solution. The proof is verified. �

Corollary 5.2. Let the series of numbers
∑∞
k=1 bk be convergent and suppose the hypotheses V3−V6 are fulfilled.

Then the nonlocal problem (1.3)-(1.5) has a unique continuous mild solution.

Proof. The poof follows directly from Thm. 5.1 after using the condition
∑∞
k=1 bk < ∞, then letting

m −→∞. �
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Corollary 5.3. Let the function  h be a monotonically increasing function defined on J with values in R. Let
bk := ∆ hk in the condition (1.4). Suppose the hypotheses V3-V6 are fulfilled. Then the nonlocal problem (1.3)-(1.6)
has a unique continuous mild solution.

Proof. The poof follows directly from Thm. 5.1 after substituting bk := ∆ hk := [ hk(tk) −  h(tk−1)] in the
non classical condition (1.4), then letting m −→∞. �

6. Continuous dependence of solution

Definition 6.1 ([10]). A mild solution z(t; z0), t ∈ J, of Eq. (1.3) under the condition (1.4) depends
continuously on z0 if ∀ε > 0, ∃δ > 0, where δ = δ(ε), such that ‖z− z∗‖∞ < ε, whenever |z0 − z

∗
0 | < δ,

where z∗ := z∗(t; z∗0) is the mild solution associated to the problem

(
CD

β,ρ
0+ −Λ

)
z∗(t) =

N∑
i=1

gi

(
t,L(z∗)(t),

∫Φ(t)

0
h(τ, z∗(τ))dτ

)
, a.e. t ∈ (0, T ], (6.1)

subject to the condition
m∑
k=1

bkz
∗(τk) = z

∗
0 , bk > 0, τk ∈ (0, T ]. (6.2)

Theorem 6.2. Suppose the hypotheses V3-V6 are fulfilled. Then the mild solution of Eq. (1.3) under the condition
(1.4) depends continuously on z0.

Proof. Let z(t) := z(t; z0) and z∗(t) := z∗(t; z∗0) be two solutions for the problems (1.3)-(1.4), and (6.1)-(6.2),
respectively, where |z0 − z

∗
0 | < δ. Then

|z(t) − z∗(t)| 6 A−1|z0 − z
∗
0 |+A

−1 ρ
−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 |Λ(z− z∗)(ζ)|dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(z∗)(ζ),

∫Φ(ζ)

0
h(s, z∗(s))ds

)∣∣∣∣dζρ
+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(z∗)(ζ),

∫Φ(ζ)

0
h(s, z∗(s))ds

)∣∣∣∣dζρ + ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 |Λ(z− z∗)(ζ)|dζρ.

So, we have

|z(t) − z∗(t)| 6 A−1δ+
2ηρ−βTρβ

Γ(1 +β)
‖z− z∗‖∞.

Taking supremum over t ∈ J on both sides yields ‖z− z∗‖∞6 Γ(1+β)A−1

Γ(1+β)−2ηρ−βTρβ δ. Let δ= Γ(1+β)−2ηρ−βTρβ

Γ(1+β)A−1 ε.
Therefore, ‖z− z∗‖∞ 6 ε. The proof is verified. �

Definition 6.3 ([10]). A mild solution z(t;h), t ∈ J, of Eq. (1.3) under the condition (1.4) depends continu-
ously on the function h if ∀ε > 0, ∃δ > 0, where δ = δ(ε), such that ‖z− z∗‖∞ < ε, whenever |h− h∗| < δ,
where h∗ := h∗(t, z∗) and z∗ := z∗(t;h∗) is the mild solution associated to the problem(

CD
β,ρ
0+ −Λ

)
z∗(t) =

N∑
i=1

gi

(
t,L(z∗)(t),

∫Φ(t)

0
h∗(τ, z∗(τ))dτ

)
, a.e. t ∈ (0, T ], (6.3)
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subject to the condition
m∑
k=1

bkz
∗(τk) = z0, bk > 0, τk ∈ (0, T ]. (6.4)

Theorem 6.4. Suppose the hypotheses V3-V6 are fulfilled. Then the mild solution of Eq. (1.3) under the condition
(1.4) depends continuously on the function h.

Proof. Let z(t) := z(t;h) and z∗(t) := z∗(t;h∗) be two solutions of the problems (1.3)-(1.4) and (6.3)-(6.4),
respectively, where |h− h∗| < δ. Then

|z(t) − z∗(t)| 6
A−1ρ−β

Γ(β)

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1 |Λ(z− z∗)(ζ)|dζρ

+
A−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(z∗)(ζ),

∫Φ(ζ)

0
h∗(s, z∗(s))ds

)∣∣∣∣dζρ
+
ρ−β

Γ(β)

N∑
i=1

∫t
0
(tρ − ζρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(z∗)(ζ),

∫Φ(ζ)

0
h∗(s, z∗(s))ds

)∣∣∣∣dζρ + ρ−β

Γ(β)

∫t
0
(tρ − ζρ)β−1 |Λ(z− z∗)(ζ)|dζρ.

Now, we have

|z(t) − z∗(t)| 6
2γρ−βTρβ(1 +Nν1)

Γ(1 +β)
‖z− z∗‖∞

+
A−1Nν1ρ

−β

Γ(β)

m∑
k=1

bk

∫τk
0

∫Φ(ζ)

0
(τρk − ζ

ρ)β−1 |h(s, z(s)) − h(s, z∗(s))|dsdζρ

+
A−1Nν1ρ

−β

Γ(β)

m∑
k=1

bk

∫τk
0

∫Φ(ζ)

0
(τρk − ζ

ρ)β−1 |h(s, z∗(s)) − h∗(s, z∗(s))|dsdζρ

+
Nν1ρ

−β

Γ(β)

∫t
0

∫Φ(ζ)

0
(tρ − ζρ)β−1 |h(s, z(s)) − h(s, z∗(s))|dsdζρ

+
Nν1ρ

−β

Γ(β)

∫t
0

∫Φ(ζ)

0
(tρ − ζρ)β−1 |h(s, z∗(s)) − h∗(s, z∗(s))|dsdζρ.

Evaluating the double integral in the above inequality and simplifying the results gives

|z(t) − z∗(t)| 6
2ηρ−βTρβ

Γ(1 +β)
‖z− z∗‖∞ +

2Nν1ρ
−βT (1+ρβ)

Γ(1 +β)
|h− h∗|.

Passing the supremum over t ∈ J on both sides gives ‖z − z∗‖∞ 6 2Nν1ρ
−βT (1+ρβ)

Γ(1+β)−2ηρ−βTρβ δ. Using δ =

Γ(1+β)−2ηρ−βTρβ

2Nν1ρ−βT (1+ρβ) ε implies ‖z− z∗‖∞ 6 ε. The proof is verified. �

Definition 6.5 ([10]). A mild solution z(t;bk), t ∈ J, of Eq. (1.3) under the condition (1.4) depends
continuously on bk if ∀ε > 0, ∃δ > 0, where δ = δ(ε), such that ‖z− z∗‖∞ < ε, whenever |bk − b

∗
k| < δ,

where z∗ := z∗(t;b∗k) is the mild solution associated to the problem(
CD

β,ρ
0+ −Λ

)
z∗(t) =

N∑
i=1

gi

(
t,L(z∗)(t),

∫Φ(t)

0
h(τ, z∗(τ))dτ

)
, a.e. t ∈ (0, T ], (6.5)
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subject to the condition
m∑
k=1

b∗kz
∗(τk) = z0, bk > 0, τk ∈ (0, T ]. (6.6)

Theorem 6.6. Suppose the hypotheses V3-V6 are fulfilled. Then the mild solution of Eq. (1.3) under the condition
(1.4) depends continuously on bk.

Proof. Let z(t) := z(t;bk) and z∗(t) := z∗(t;b∗k) be two solutions of the problems (1.3)-(1.4), and (6.5)-(6.6),
respectively, where |bk − b

∗
k| < δ. Then

|z(t) − z∗(t)| 6 A−1A∗−1
|z0|

m∑
k=1

|bk − b
∗
k|+

ηρ−βTρβ

Γ(1 +β)
‖z− z∗‖∞

+
A∗−1ρ−β

Γ(β)

m∑
k=1

b∗k

∫τk
0

(τρk − ζ
ρ)β−1 |Λ(z− z∗)(ζ)|dζρ

+
ρ−βA−1A∗−1

Γ(β)

m∑
k=1

|bk − b
∗
k|

m∑
k=1

bk

∫τk
0

(τρk − ζ
ρ)β−1|Λ(z)(ζ)|dζρ

+
A∗−1ρ−β

Γ(β)

m∑
k=1

|bk − b
∗
k|

∫τk
0

(τρk − ζ
ρ)β−1|Λ(z)(ζ)|dζρ

+
A∗−1ρ−β

Γ(β)

m∑
k=1

N∑
i=1

b∗k

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)

− gi

(
ζ,L(z∗)(ζ),

∫Φ(ζ)

0
h(s, z∗(s))ds

)∣∣∣∣dζρ + ρ−βA−1A∗−1

Γ(β)

×
m∑
k=1

|bk − b
∗
k|

m∑
k=1

N∑
i=1

bk

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ
+
A∗−1ρ−β

Γ(β)

m∑
k=1

|bk − b
∗
k|

∫τk
0

(τρk − ζ
ρ)β−1

∣∣∣∣∣gi
(
ζ,L(z)(ζ),

∫Φ(ζ)

0
h(s, z(s))ds

)∣∣∣∣∣dζρ.

Simplifying the above inequality yields

|z(t) − z∗(t)| 6 A−1A∗−1m|z0|δ+ 2NA∗−1ν2mδ+
2ηρ−βTρβ

Γ(1 +β)
‖z− z∗‖∞

+
2ηA∗−1ρ−βTρβmr

Γ(1 +β)
δ+

2A∗−1ρ−βT (1+ρβ)ν1ϑ1m

Γ(1 +β)
δ.

Taking supremum over t ∈ J on both sides yields

‖z− z∗‖∞ 6 A∗−1m[(A−1|z0|+ 2Nν2)Γ(1 +β) + 2ρ−βTρβ(ηr+ ν1ϑ1T)]

Γ(1 +β) − 2ηρ−βTρβ
δ.

Using δ =
Γ(1+β)−2ηρ−βTρβ

A∗−1m[(A−1|z0|+2Nν2)Γ(1+β)+2ρ−βTρβ(ηr+ν1ϑ1T)]
ε implies ‖z− z∗‖∞ 6 ε. The proof is verified.

�

7. Illustrative examples

In this section we present two examples to illustrate the applicability of the results in this paper.
Without loss of generality, let N = 1.
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Example 7.1. Consider the following generalized fractional integro-differential equation:(
CD

1
2 , 9

2
0+ −

1
100

e−ωt
)
z(t)

=
1
6
t2 +

1
150

∫t
0
(t+ sin(s))z(s)ds+

1
300

∫pte−t
0

(
s

3e|z(s)| + (s+ 1)2 + |ln(1 + |z(s)|)|

)
ds,

(7.1)

where, 0 < p < 1, 0 < ω <∞, t ∈ (0, 1] and subject to the non-classical condition

∞∑
k=1

1
k6 z

(
3k− 1

3k

)
= 0. (7.2)

Comparing Eqs. (7.1)-(7.2) with the model (1.3)-(1.5) gives the following. The parameters β = 1
2 , ρ = 9

2 ,
T = 1 and ρβ = 9

4 > 1. The lag function is Φ(t) = pte−t, because pte−t = t− (1 − pe−t)t =⇒ the
fading delay is ϕ(t) = (1 − pe−t)t where ϕ(0) = 0 and 0 < ϕ(t) < t ∀t ∈ (0, 1]. It is clear that the
lag function, Φ(t) = pte−t, is vanishing and continuous self-map on [0, 1] and hence condition V4 is
satisfied. The operator Λ(z)(t) := 1

100e
−ωtz(t), where 0 < ω < ∞. It is clear that Λ is a linear self-

operators on C(J, R). Let (zn)
∞
n=1 be a sequence with zn ∈ D(Λ) such that Zn −→ z, Λ(Zn) −→ y.

Now limn→∞Λ(Zn)(t) = limn→∞ 1
100e

−ωtzn(t) =
1

100e
−ωt limn→∞ zn(t) = 1

100e
−ωtz(t) = Λ(z)(t) =⇒

y = Λ(z) and clearly z ∈ C(J, R) =⇒ z ∈ D(Λ) and hence the operator Λ is closed. From the closed
graph theorem, the operator Λ is bounded where, ‖Λ(z)‖∞ 6 1

100‖z‖∞ =⇒ γ1 = 1
100 . The operator

L(z)(t) :=
∫t

0
1

150(t+ sin(s))z(s)ds and it is clear that L is a linear self-operator on C(J, R). Let (zn)∞n=1 be
a sequence with zn ∈ D(L) such that Zn −→ z, L(Zn) −→ y. Now limn→∞L(Zn)(t) =

1
150 limn→∞ ∫t

0(t+

sin(s))zn(s)ds = 1
150

∫t
0(t+ sin(s)) limn→∞ zn(s)ds = 1

150

∫t
0(t+ sin(s))z(s)ds = L(z)(t) =⇒ y = L(z) and

clearly z ∈ C(J, R) =⇒ z ∈ D(L) and hence the operator L is closed. From the closed graph theorem, the
operator L is bounded where, ‖L(z)‖∞ 6 1

75‖z‖∞ =⇒ γ2 = 1
75 and so γ := max{γ1,γ2} = max{ 1

100 , 1
75 } =

1
75 . Set the function

g

(
t,L(z)(t),

∫Φ(t)

0
h(s, z(s))ds

)

:=
1
6
t2 +

1
150

∫t
0
(t+ sin(s))z(s)ds+

1
150

∫pte−t
0

1
2

(
s

3e|z(s)| + (s+ 1)2 + |ln(1 + |z(s)|)|

)
ds.

It is cleat that the function g(t,y1,y2) is measurable in t, ∀(y1,y2) ∈ R2 and continuous in (y1,y2), ∀t ∈ J.
Also, we have∣∣∣∣∣g

(
t,L(z)(t),

∫Φ(t)

0
h(s, z(s))ds

)∣∣∣∣∣
6

1
6
t2 +

1
150

∣∣∣∣∫t
0
(t+ sin(s))z(s)ds

∣∣∣∣+ 1
150

∣∣∣∣∣
∫pte−t

0

1
2

(
s

3e|z(s)| + (s+ 1)2 + |ln(1 + |z(s)|)|

)
ds

∣∣∣∣∣
6

1
6
t2 +

1
150

∫t
0
(t+ sin(s)) |z(s)|ds+

1
150

∫pte−t
0

1
2

(
s

3e|z(s)| + (s+ 1)2 + |ln(1 + |z(s)|)|

)
ds.

So, b(t) = 1
6t

2 ∈ L1 ([0, T ]), ν1 = 1
150 and moreover, we have

sup
t∈J

I
1
2 , 9

2
0+

(
1
6
t2
)

=
( 9

2)
1
2

6Γ( 1
2)

sup
t∈J

∫t
0
θ

11
2 (t

9
2 − θ

9
2 )

−1
2 dθ = sup

t∈J

(
Γ( 13

9 )

9
√

2Γ( 35
18)
t

17
4

)
=

Γ( 13
9 )

9
√

2Γ( 35
18)

< 1.
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So, we can take ν2 = 1. Therefore, condition V1 is satisfied. Also, set the function

h(t, z(t)) :=
1
2

(
t

3e|z(t)| + (t+ 1)2 + |ln(1 + |z(t)|)|

)
,

and therefore, h(t, z) is positive, measurable in t ∀z ∈ R and continuous in z, ∀t ∈ J. Moreover, we have

|h(t, z(t))| 6
1
8
+

1
2
|z(t)|.

So, we can take ϑ1 = 1
8 and ϑ2 = 1

2 and hence condition V2 is satisfied. Since ρβΓ(1 + β) = ( 9
2)

1
2 Γ(1.5) =

1.88 , and since 2ηTρβ = 2Tρβ(γ(1+ν1N)+ν1ϑ2NT) = 2( 151
11250 +

1
300) = 0.034. So, ρβΓ(1+β) > 2ηTρβ and

hence condition V3 is satisfied. Now conditions V1-V4 are verified and the series of numbers
∑∞
k=1

1
k6 is

convergent. Using Thm. 3.2, the problem (7.1)-(7.2) has at least one continuous mild solution.

Example 7.2. Assume the following generalized fractional integro-differential equation.(
CD

3
4 , 8

3
0+ −

1
100

e−ωt
)
z(t) =

1
4
t5 +

1
15

∫t
0
e−sz(s)ds+

1
60

∫pt
0

(
s

(s+ 3)2 + 5e|z(s)|
+ sin(z(s))

)
ds, (7.3)

where, 0 < p < 1, 0 < ω <∞, t ∈ (0, 1] and subject to the integral condition∫ 1

0
s2z(s)ds =

1
3

. (7.4)

Comparing Eqs. (7.3)-(7.4) with the model (1.3)-(1.6) gives the following. The parameters β = 3
4 , ρ = 8

3 ,
T = 1 and ρβ = 2 > 1. The lag function is Φ(t) = pt, because pt = t− (1 − p)t =⇒ the fading delay is
ϕ(t) = (1 − p)t, where ϕ(0) = 0 and 0 < ϕ(t) < t ∀t ∈ (0, 1]. It is clear that the lag function, Φ(t) = pt, is
vanishing and continuous self-map on [0, 1] and hence condition V4 is satisfied. The operator Λ(z)(t) :=

1
100e

−ωtz(t), where 0 < ω < ∞, is a linear closed self-operator on C(J, R) and bounded as well where
‖Λ(z)‖∞ 6 1

100‖z‖∞ =⇒ γ1 = 1
100 . The operator L(z)(t) :=

∫t
0

1
15e

−sz(s)ds and it is clearly that L is a
linear self-operators on C(J, R). Let (zn)∞n=1 be a sequence with zn ∈ D(L) such that Zn −→ z, L(Zn) −→
y. Now limn→∞L(Zn)(t) = 1

15 limn→∞ ∫t
0 e

−szn(s)ds = 1
15

∫t
0 e

−s limn→∞ zn(s)ds = 1
15

∫t
0 e

−sz(s)ds =
L(z)(t) =⇒ y = L(z) and clearly z ∈ C(J, R) =⇒ z ∈ D(L) and hence the operator L is closed. From
the closed graph theorem, the operator L is bounded, where ‖L(z)‖∞ 6 1

15‖z‖∞ =⇒ γ2 = 1
15 and so

γ := max{γ1,γ2} = max{ 1
100 , 1

15 } =
1

15 . Set the function

g

(
t,L(z)(t),

∫Φ(t)

0
h(s, z(s))ds

)
:=

1
4
t5 +

1
15

∫t
0
e−sz(s)ds+

1
60

∫pt
0

(
s

(s+ 3)2 + 5e|z(s)|
+ sin(z(s))

)
ds.

It is cleat that the function g(t,y1,y2) is measurable in t, ∀(y1,y2) ∈ R2 and continuous in (y1,y2), ∀t ∈ J.
Also, we have∣∣∣∣∣g
(
t,L(z)(t),

∫Φ(t)

0
h(s, z(s))ds

)∣∣∣∣∣ 6 1
4
t5 +

1
15

∫t
0
e−s|z(s)|ds+

1
15

∫pt
0

1
4

∣∣∣∣ s

(s+ 3)2 + 5e|z(s)|
+ sin(z(s))

∣∣∣∣ds.
So, b(t) = 1

4t
5 ∈ L1 ([0, T ]), ν1 = 1

15 and moreover, we have

sup
t∈J

I
3
4 , 8

3
0+

(
1
4
t5
)

=
( 8

3)
1
4

4Γ( 3
4)

sup
t∈J

∫t
0
θ

20
3 (t

8
3 − θ

8
3 )

−1
4 dθ = sup

t∈J

(
3

3
4 Γ( 23

8 )

2
17
4 Γ( 29

8 )
t7

)
=

(
3

3
4 Γ( 23

8 )

2
17
4 Γ( 29

8 )

)
< 1.

So, we can take ν2 = 1. Therefore, condition V1 is satisfied. Also, set the function

h(t, z(t)) :=
1
4

(
s

(s+ 3)2 + 5e|z(s)|
+ sin(z(s))

)
,
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and therefore, h(t, z) is positive, measurable in t ∀z ∈ R and continuous in z ∀t ∈ J. Also, we have

|h(t, z(t))| 6
1
56

+
1
4
|z(t)|.

So, we can take ϑ1 = 1
56 and ϑ2 = 1

4 and hence condition V2 is satisfied. Since ρβΓ(1 +β) = ( 8
3)

3
4 Γ(1.75) =

1.918 and since 2ηTρβ = 2Tρβ(γ(1 + ν1N) + ν1ϑ2NT) = 2( 16
225 + 1

60) = 0.176. So, ρβΓ(1 + β) > 2ηTρβ

and hence condition V3 is satisfied. Now conditions V1-V4 are verified and the integrator,  h(t) = t3, is
monotonically increasing on J. Using Thm. 4.2, the problem (7.3)-(7.4) has at least one continuous mild
solution.

8. Conclusion

In this work, we studied the existence and continuous dependence of solution for a generalized frac-
tional model of integro-differential functional equation with a vanishing delay in the functional part. Our
results and illustrative examples present an extending to some new results published recently by El-Sayed
et al. in [10]. So, we do believe that this work is important. As a continuation to our work, we suggest
studying numerical solution to this model and compare the rate of convergence using some relevant
algorithms to get the most relevant one.
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