Weak prime L–fuzzy filters of semilattices

Ch. Santhi Sundar Raja, K. Ramanuja Raob,*, B. Subrahmanyama

aDepartment of Engineering Mathematics, Andhra University, Visakhapatnam, 530003, India.

bDepartment of Mathematics, Fiji National University, Lautoka, FIJI.

Abstract

The concept of weak prime L–fuzzy filter of a semilattice S is introduced and example are given. A characterization of weak prime L–fuzzy filters is established and prime filters of S are identified with weak prime L–fuzzy filters. Also, minimal weak prime L–fuzzy filters are characterized.

Keywords: Bounded semilattice, L–fuzzy filter, prime L–fuzzy filter, weak prime L–fuzzy filter, frame.

2020 MSC: 06D72, 06F15, 08A72.

1. Introduction

Zadeh, in his pioneering work [11] introduced the notion of a fuzzy subset A of a non-empty set X as a function from X into $[0, 1]$. Rosenfield [6] applied this notion to develop the theory of groups. Goguen [1] generalized and continued the work of Zadeh and realized that the unit interval $[0, 1]$ is not sufficient to take the truth values of general fuzzy statements. Therewith, several researchers took interest to the fuzzyfication of algebraic structures. In which, Kuroki [2], Liu [3], Malik and Mordersan [4], and Mukherjee and Sen [5] are engaged in fuzzifying various concepts and obtained significant results of algebras.

Further, Swamy and Swamy [10] have introduced the concept of a fuzzy prime ideal of a ring and developed the theory of fuzzy ideals by assuming truth values in a complete lattice L satisfying the infinite meet distributive law, such lattices are called frames. The concept of prime ideal is vital in the study of structure theory of distributive lattices. In [8], the authors have introduced and studied the notion of L–fuzzy filters of a semilattice S with truth values in a frame L. It is proved that S is distributive iff the lattice $\mathcal{F}(S)$ of all filters of S is distributive iff the lattice $\mathcal{F}_L(\mathcal{F}(S))$ of all L–fuzzy filters of S is distributive. In [9], the authors have introduced the concept of prime L–fuzzy filters of a bounded semilattice S, which are meet-prime elements in the lattice $\mathcal{F}_L(\mathcal{F}(S))$. Further, in [7] the authors have introduced the notion of L–fuzzy ideals of a semilattice S and obtained significant results on this.

*Corresponding author

Email addresses: santhisundarraj@yahoo.com (Ch. Santhi Sundar Raj), ramanuja.kotti@fnnu.ac.fj (K. Ramanuja Rao), bollasubrahmanyam@gmail.com (B. Subrahmanyam)

doi: 10.22436/jmcs.024.01.01

Received: 2020-10-10 Revised: 2020-11-06 Accepted: 2020-11-11
The aim of this paper is to study the L–fuzzy filters A of a bounded semilattice S for which each α-cut A_α, i.e., $A_\alpha = \{x \in S : A(x) \geq \alpha\}$ is either a prime filter of S or whole semilattice S. This paper consists of four sections. In the second section, we recall some definitions and certain results. In third section, we introduce the concept of a weak prime L–fuzzy filter (WPLF) of a bounded semilattice S and characterize these. Fourth section deals with minimal weak prime L–fuzzy filters (Minimal WPLFs).

Throughout this paper, S stands for a bounded semilattice $(S, \wedge, 0, 1)$ unless otherwise stated. And, L stands for a non-trivial frame $(L, \wedge, \vee, 0, 1)$; i.e., a complete lattice satisfying the infinite meet distributive law

$$\alpha \wedge (\bigvee_{\beta \in T} \beta) = \bigvee_{\beta \in T} (\alpha \wedge \beta),$$

for all $\alpha \in L$ and any $T \subseteq L$. Here the operations \wedge and \vee are supremum and infimum in the lattice L. An element $1 \neq c \in L$ is said to be meet-prime if, for any $a, b \in L$ and $a \wedge b \leq c$ imply $a \leq c$ or $b \leq c$.

2. Preliminaries

In this section, we collect some definitions and certain results from [8, 9], that we need in sequel.

A semilattice (meet-semilattice) is an algebra $S = (S, \wedge)$ satisfying the axioms

1. $x \wedge x = x$;
2. $x \wedge y = y \wedge x$; and
3. $x \wedge (y \wedge z) = (x \wedge y) \wedge z$, for all $x, y, z \in S$.

If we define $x \leq y$ iff $x \wedge y = x$, then \leq is a partial order on S in which $x \wedge y$ is the inf(x, y) in S. A non-empty subset F of S is said to be a final segment of S if, for any $x \in F, y \in S$ and $x \leq y$ implies $y \in F$. A filter of a semilattice S is a final segment F of S such that $x \wedge y \in F$ for all $x, y \in F$. The principal filter generated by an element a of S, i.e., the set $\{x \in S : x \geq a\}$ will be denoted by $[a]$. A proper filter P of a semilattice S is said to be prime if whenever two filters G and H are such that $\phi \neq G \cap H \subseteq P$ imply either $G \subseteq P$ or $H \subseteq P$ (or equivalently, if, for any a, b are such that $a \notin P$ and $b \notin P$ imply the existence of $x \in S$ such that $a \leq x, b \leq x$ and $x \notin P$).

Definition 2.1. Let X be any non-empty set and L a frame. Any function $A : X \to L$ is called an L–fuzzy subset of X. For any L–fuzzy subset A of X and $\alpha \in L, A_\alpha$ denotes α-cut of A, i.e.,

$$A_\alpha = \{x \in X : \alpha \leq A(x)\}.$$

Definition 2.2. For any L–fuzzy subsets A and B of X, define

$$A \leq B \iff A(x) \leq B(x), \text{ for all } x \in X.$$

Then \leq is a partial order on the set of L–fuzzy subsets of X and is called the point wise ordering.

Result 1. Let A and B be L–fuzzy subsets of X. Then

$$A \leq B \iff A_\alpha \subseteq B_\alpha, \text{ for all } \alpha \in L.$$

Definition 2.3. A proper L–fuzzy subset A of X is a non-constant L–fuzzy subset of X, i.e., $A(x) \neq 1$ for some $x \in X$.

Definition 2.4. An L–fuzzy subset A of S is said to be an L–fuzzy filter of S if,

$$A(x_0) = 1, \text{ for some } x_0 \in S,$$

and

$$A(x \wedge y) = A(x) \wedge A(y), \text{ for all } x, y \in S.$$
Result 2. The following are equivalent to each other, for any L–fuzzy subset A of S,

1. A is an L–fuzzy filter of S.
2. $A(x_0) = 1$ for some $x_0 \in S$, $A(x \land y) \geq A(x) \land A(y)$ and $x \leq y \Rightarrow A(y) \geq A(x)$.
3. A_α is a filter of S, for all $\alpha \in L$.

Result 3. Let A be a fuzzy filter of S and X a non-empty subset of S, and $x, y \in S$. We have

1. $x \in [X] \Rightarrow A(x) \geq \bigwedge_{i=1}^{m} A(a_i)$ for some $a_1, a_2, \ldots, a_m \in X$, where

\[[X] = \{ a \in S : \bigwedge_{i=1}^{n} x_i \leq a \text{ for some } x_i \in X \} \]

2. $x \in [y] \Rightarrow A(x) \geq A(y)$.
3. If S is bounded then $A(0) < 1$ and $A(1) = 1$.

Result 4. Let (S, \land) be a bounded semilattice and $\mathcal{F}_L(\mathcal{F}(S))$ denote the lattice all L–fuzzy filters of S. Then the following are equivalent to each other:

1. $\mathcal{F}_L(\mathcal{F}(S))$ is a distributive.
2. $\mathcal{F}(S)$ is a distributive, where $\mathcal{F}(S)$ denotes the lattice of filters of S.
3. S is distributive.

Definition 2.5. A proper L–fuzzy filter A of a bounded semilattice S is said to be prime L–fuzzy filter of S if, for any L–fuzzy filters B and C of S,

\[B \land C \leq A \Rightarrow B \leq A \text{ or } C \leq A, \]

where $(B \land C)(x) = B(x) \land C(x)$.

Result 5. Let A be an L–fuzzy filter of S. Then A is prime L–fuzzy filter of S if and only if, the following are satisfied.

1. $|\text{Im}(A)| = 2$, i.e., A is two-valued.
2. For any $x \in S$, either $A(x) = 1$ or $A(x)$ is meet-prime element in L.
3. A_1 is a prime filter of S.

Result 6. Let A be an L–fuzzy filter of S. Then A is a prime L–fuzzy filter of S if there exists a prime filter P of S and a meet-prime element α in L such that $A = A_\alpha^P$, where

\[A_\alpha^P(x) = \begin{cases} 1 & \text{if } x \in P, \\ \alpha & \text{if } x \notin P. \end{cases} \]

3. Weak prime L–Fuzzy filters (WPLF)

Let us recall that an L–fuzzy subset A of S is an L–fuzzy filter of S iff A_α is a filter of S for each $\alpha \in L$.

Definition 3.1. A proper L–fuzzy filter A of S is called a weak prime L–fuzzy filter (WPLF), if for each $\alpha \in L$, A_α is a prime filter of S or $A_\alpha = S$.
Example 3.2. Consider the semilattice S whose Hasse-diagram is as depicted in Figure 1 and $L = [0, 1]$, the closed interval of real numbers which is a frame in which, for any $x, y \in L$,

$$x \lor y = \max\{x, y\}, \ x \land y = \min\{x, y\}.$$

![Figure 1: Hasse-diagram of Semilattice S.]

Clearly $\{a\}, \{b\}$ and $\{a, b, c\}$ are all prime filters of S. Now, define $A : S \to L$ as follows:

$$A = \{(0, 0), (c, 0.5), (b, 0.5), (a, 1)\}.$$

Then A is a WPLF; since, the α-cuts of A are

- $A_0 = S$
- $A_1 = \{a\}$
- $A_{0.5} = \{a, b, c\}$
- $A_\alpha = \{a\}$, for any $\alpha \in (0.5, 1)$,

and

$A_\alpha = \{a, b, c\}$, for any $\alpha \in (0, 0.5)$.

Theorem 3.3. Let A be a proper L-fuzzy filter of S. If A is a WPLF of S, then $\text{Im}(A)$ is a chain.

Proof. Let a and $b \in S$ and put $\alpha = A(a) \lor A(b)$. Then,

$$x \in [a] \cap [b] \Rightarrow a \leq x \text{ and } b \leq x$$

$$\Rightarrow A(a) \leq A(x) \text{ and } A(b) \leq A(x)$$

$$\Rightarrow \alpha = A(a) \lor A(b) \leq A(x)$$

$$\Rightarrow x \in A_\alpha.$$

Therefore $[a] \cap [b] \subseteq A_\alpha$. Since A_α is prime, $[a] \subseteq A_\alpha$ or $[b] \subseteq A_\alpha$.

$$[a] \subseteq A_\alpha \Rightarrow a \in A_\alpha \Rightarrow \alpha = A(a) \lor A(b) \leq A(a)$$

$$\Rightarrow A(b) \leq A(a).$$

Similarly, $[b] \subseteq A_\alpha \Rightarrow A(a) \leq A(b)$. Thus $\text{Im}(A)$ is a chain in L. \qed

The converse of above theorem is not true. For, consider the following example.

Example 3.4. Consider two lattices S and L whose Hasse-diagrams are given in Figure 2 and Figure 3 respectively, where $S = \{0, c, a, b, 1\}$ and $L = \{0, s, 1\}$.

Clearly for any L-fuzzy filter A of S, $\text{Im}(A)$ is a chain. Define $A : S \rightarrow L$ as

$$A = \{(0,0), (c,s), (a,s), (b,s), (1,1)\}.$$

Then the α-cuts of A are $A_0 = S$, $A_s = \{c,a,b,1\}$ and $A_1 = \{1\}$, which are filters of S. Therefore A is an L–fuzzy filter of S. However A is not WPLF because A_1 is not prime since $[a] \cap [b] = \{1\}$.

The following gives a characterization of WPLFs.

Theorem 3.5. For any L–fuzzy filter A of S, the following are equivalent:

1. A is a WPLF of S.
2. For any a and $b \in S$,
 $$\bigwedge \{A(x) : x \in [a] \cap [b]\} = A(a) \sqcap A(b).$$
3. For any a and $b \in S$,
 $$\bigwedge \{A(x) : x \in [a] \cap [b]\} = A(a) \sqcup A(b),$$

and

$$\text{Im}(A)$$ is a chain in L.

Proof. First note that for any a and $b \in S$,

$$A(a) \text{ and } A(b) \leq \bigwedge \{A(x) : x \in [a] \cap [b]\}.$$

(1) \Rightarrow (2): Let a and $b \in S$ and put $\alpha = \bigwedge \{A(x) : x \in [a] \cap [b]\}$. Then $\alpha \leq A(x)$ for all $x \in [a] \cap [b]$, so that $[a] \cap [b] \subseteq \alpha$. By (1) A_α is a prime filter of S and hence $[a] \subseteq A_\alpha$ or $[b] \subseteq A_\alpha$. So that $a \in A_\alpha$ or $b \in A_\alpha$, i.e., $\alpha \leq A(a)$ or $\alpha \leq A(b)$. This implies $\alpha = A(a)$ or $A(b)$.

(2) \Rightarrow (3): Let a and $b \in S$. Then, by (2),

$$\bigwedge \{A(x) : x \in [a] \cap [b]\} = A(a) \text{ or } A(b),$$

and hence $A(b) \leq A(a) \text{ or } A(a) \leq A(b)$. Therefore $\text{Im}(A)$ is a chain in L. Also, by (2) and since $A(a)$, $A(b)$ are lower bounds of $\{A(x) : x \in [a] \cap [b]\}$, it follows that

$$\bigwedge \{A(x) : x \in [a] \cap [b]\} = \max \{A(a), A(b)\} = A(a) \sqcup A(b).$$
(3) \(\Rightarrow\) (1): Let \(\alpha \in L\). Such that \(A_\alpha \neq S\). Let \(G\) and \(H\) be two filters of \(S\) such that \(G \not\subseteq A_\alpha\) and \(H \not\subseteq A_\alpha\). Then, \(\alpha \not\subseteq A(a)\) and \(\alpha \not\subseteq A(b)\) for some \(a, b \in S\). By (3), \(A(a) \subseteq A(b)\) or \(A(b) \subseteq A(a)\). Hence,
\[
\alpha \not\subseteq \max(A(a), A(b)) = A(a) \lor A(b).
\]
Also, by (3),
\[
\alpha \not\subseteq \bigwedge \{A(x) : x \in [a] \cap [b]\}.
\]
Hence \(\alpha \not\subseteq A(x)\) for some \(x \in [a] \cap [b]\). This implies \(G \cap H \not\subseteq A_\alpha\). Hence \(A_\alpha\) is a prime filter of \(S\). Thus \(A\) is a WPLF of \(S\).

Now, we slightly generalize an \(\alpha\)-level \(L\)-fuzzy filter \(A^F_\alpha\) corresponding to a filter \(F\) (see Result 6).

Definition 3.6. For any filter \(F\) of \(S\) and \(\alpha, \beta \in L\), define an \(L\)-fuzzy subset \(A^F_{\alpha, \beta}\) of \(S\) as follows:
\[
A^F_{\alpha, \beta}(x) = \begin{cases}
1 & \text{if } x = 1, \\
\alpha & \text{if } 1 \not\in F, \\
\beta & \text{if } x \not\in F.
\end{cases}
\]
Note that \(A^F_{1,1} = A^F_1\) and \(A^F_{1,0} = \chi_r\), the characteristic function corresponding to \(F\).

The following is straightforward verification.

Lemma 3.7. Let \(F\) be a proper filter of \(S\) and \(\alpha, \beta \in L\). Then
\[
A^F_{\alpha, \beta}\text{ is an } L\text{-fuzzy filter of } S \iff \beta \leq \alpha,
\]
and, in the case,
\[
A^F_{\alpha, \beta}\text{ is proper } \iff \beta < 1.
\]

Theorem 3.8. For any proper filter \(P\) of \(S\), the following are equivalent:

1. \(P\) is a prime filter of \(S\).
2. \(A^P_{1,\beta}\) is a WPLF of \(S\) for each \(\beta < 1\).
3. \(\chi_r\) is a WPLF of \(S\).

Proof. (1) \(\Rightarrow\) (2): Suppose \(P\) is prime and let \(\beta < 1\) in \(L\). Put \(\Lambda = A^P_{1,\beta}\). Then,
\[
\Lambda(x) = \begin{cases}
1 & \text{if } x \in P, \\
\beta & \text{if } x \not\in P.
\end{cases}
\]
Let \(a\) and \(b\) \(\in S\). Then,
\[
a \in P \text{ or } b \in P \Rightarrow \Lambda(a) = 1 \text{ or } \Lambda(b) = 1 \text{ and } [a] \cap [b] \subseteq P
\Rightarrow \Lambda(a) = 1 \text{ or } \Lambda(b) = 1 \text{ and } \Lambda(x) = 1 \text{ for all } x \in [a] \cap [b]
\Rightarrow \bigwedge \{\Lambda(x) : x \in [a] \cap [b]\} = 1 = \Lambda(a) \text{ or } \Lambda(b).
\]
\[
a \not\in P \text{ and } b \not\in P \Rightarrow \Lambda(a) = \beta = \Lambda(b) \text{ and } [a] \cap [b] \not\subseteq P
\Rightarrow \Lambda(a) = \beta = \Lambda(b) \text{ and } x \not\in P \text{ for some } x \in [a] \cap [b]
\Rightarrow \bigwedge \{\Lambda(x) : x \in [a] \cap [b]\} = \beta = \Lambda(a) = \Lambda(b).
\]
Therefore
\[\bigwedge \{ A(x) : x \in [a] \cap [b] \} = A(a) \text{ or } A(b). \]

Thus A is WPLF.

(2) \implies (3): It is clear by the fact that \(\chi_p = A_{1,0}^P \).

(3) \implies (1): Suppose \(\chi_p \) is WPLF. Let \(a \) and \(b \) be \s
such that \(a \not\in P \) and \(b \not\in P \). Then \(\chi_p(a) = 0 = \chi_p(b) \).
By supposition and hence by Theorem 3.5,
\[\bigwedge \{ \chi_p(x) : x \in [a] \cap [b] \} = \chi_p(a) \text{ or } \chi_p(b). \]

So that
\[\bigwedge \{ \chi_p(x) : x \in [a] \cap [b] \} = 0. \]

Hence \(\chi_p(x) = 0 \) for some \(x \in [a] \cap [b] \). (for, \(\chi_p(x) = 1 \) for all \(x \in [a] \cap [b] \) \(\implies \chi_p(a) = 1 \) or \(\chi_p(b) = 1 \); a contradiction). Therefore \(x \not\in P \). So that \([a] \cap [b] \not\subseteq P \). Thus P is prime.

Lemma 3.9. For any bounded semilattice \(S \), the following are equivalent:

1. \([a] \) is a meet-prime element in the lattice \(\mathcal{F}(S) \) of all filters of \(S \).

2. For any \(1 \neq a \) and \(1 \neq b \) in \(S \), there exists \(1 \neq c \in S \) such that \(c \geq a \) and \(b \), i.e., \(c \in [a] \cap [b] \).

Theorem 3.10. Let \(P \) be a proper filter of \(S \) and suppose that \([1] \) is a meet-prime element in the lattice \(\mathcal{F}(S) \) of filters of \(S \). Then \(P \) is prime iff \(A_{\alpha,\beta}^P \) is WPLF for all \(1 \neq \beta \leq \alpha \) in \(L \).

Proof. Suppose \(P \) is prime and \(1 \neq \beta \leq \alpha \in L \). Put \(A = A_{\alpha,\beta}^P \). Then \(A \) is a proper \(L \)-fuzzy filter of \(S \) (by Lemma 3.7). Let \(a \) and \(b \) be \s
Then \(A(a) \) and \(A(b) \leq A(x) \) for all \(x \in [a] \cap [b] \). Let \(\gamma \in L \) such that \(\gamma \leq A(x) \) for all \(x \in [a] \cap [b] \). Now,
\[a = 1 \text{ or } b = 1 \implies A(a) = 1 \text{ or } A(b) \text{ and hence } V \subseteq A(a) = 1 \text{ or } A(b) \]
\[\implies \bigwedge \{ A(x) : x \in [a] \cap [b] \} = A(a) \text{ or } A(b) \]
\[a \not\in P \text{ and } b \not\in P \implies A(a) = \beta = A(b) \text{ and } [a] \cap [b] \not\subseteq P \]
\[\implies A(a) = \beta = A(b) \text{ and } A(x) = \beta \text{ for some } x \in [a] \cap [b] \]
\[\implies \gamma \leq A(x) = \beta = A(a) = A(b) \]
\[\implies \bigwedge \{ A(x) : x \in [a] \cap [b] \} = A(a) = A(b), \]

and
\[1 \neq a \in P, 1 \neq b \in P \implies A(a) = \alpha = A(b) \text{ and there exists } 1 \neq c \in S \text{ such that } c \in [a] \cap [b] \subseteq P \]
\[\implies \gamma \leq A(c) = \alpha = A(a) = A(b) \]
\[\implies \bigwedge \{ A(x) : x \in [a] \cap [b] \} = A(a) = A(b). \]

Thus, by Theorem 3.5, \(A \) is WPLF.

Finally in this section we discuss an inter-relationship between \(L \)-fuzzy filters (refer Result 6) and WPLFs.

Theorem 3.11. Every prime \(L \)-fuzzy filter of \(S \) is WPLF.

Proof. Let \(B \) be a Prime \(L \)-fuzzy filter of \(S \). Then, \(B = A_{\alpha}^P \) for some \(\alpha \) in \(L \) and \(B \) is a meet-prime element in \(L \). Since \(P \) is prime and \(\alpha < 1 \), we have \(A_{\alpha}^P \) is a WPLF of \(S \) (by Theorem 3.8). Thus \(B \) is WPLF.
The converse of the above theorem is true. For, consider the example given in the following.

Example 3.12. Let S be the 5-element lattice $\{0, b, c, a, 1\}$ represented by the Hasse-diagram given below Figure 4 and L be the 3-element chain $\{0, s, 1\}$ with $0 < s < 1$.

![Figure 4: Hasse-diagram of 5-element lattice S.](image)

Define $A : S \rightarrow L$ by $A = \{(0,0), (b,s), (c,0), (a,s), (1,1)\}$. Then A is a proper L–fuzzy filter of S. Here the α-cuts of A are $A_0 = S$, $A_s = \{b, a, 1\}$ and $A_1 = \{1\}$, which are prime filters of S. Hence A is WPLF. But A is not Prime L–fuzzy filter since A is not two-valued.

4. Minimal WPLF

By a minimal prime filter M of S, we mean that there is no prime filter Q of S such that $Q \subset M$ and analogously, a minimal WPLF is a minimal element in the set of all WPLFs under the point-wise partial ordering.

Theorem 4.1. Let A be a WPLF of S. If A is a minimal WPLF of S, then A_1, i.e., 1-cut of A is a minimal prime filter of S.

Proof. Suppose that A is a minimal WPLF of S. Then $A_1 = \{x \in S : A(x) = 1\}$ is a prime filter of S. To prove A_1 is minimal, let Q be a prime ideal of S such that $Q \subset A_1$. Then, choose $x \in A_1$ such that $x \notin Q$. Since Q is prime and hence by Theorem 3.8, χ_Q is a WPLF of S and $\chi_Q(x) < A(x)$. Therefore $\chi_Q \not\leq A$. This shows that A is not minimal; a contradiction. Thus A_1 is a minimal prime filter of S.

Converse of above theorem is not true. For example, in Example 3.2, A is an WPLF and $A_1 = \{a\}$ which is a minimal prime filter of S. But A is not minimal. If we define $B : S \rightarrow L$ by $B = \{(0,0), (c,0.25), (b,0.25), (a,1)\}$, then B is a WPLF of S and $B \not\leq A$.

Theorem 4.2. Let A be a WPLF of S and (1) is a meet-prime element in the lattice $\mathcal{F}(S)$ filters of S. Then, A is a minimal WPLF of S iff, A_α is a minimal prime filter of S, for each $\alpha \in L$.

Proof. Assume that A is a minimal WPLF of S. If A_β is not a minimal prime filter of S for some $0 < \beta < 1$. Then, there exists a prime filter P of S such that $P \subset A_\beta$. Now, define $B : S \rightarrow L$ by

$$B(x) = \begin{cases} 1 & \text{if } x = 1, \\ \beta & \text{if } 1 \neq x \in P, \\ 0 & \text{if } x \notin P. \end{cases}$$

Clearly $B = A^P_{\beta,0}$. By Theorem 3.5, B is a WPLF of S. As $P \subset A_\beta$, choose $y \in A_\beta$ such that $y \notin P$. Then,$

$$\beta \leq A(y), \quad \text{and} \quad B(y) < A(y).$$
Also $B(x) \leq A(x)$ for all $x \neq y \in S$. Therefore $B \not\subseteq A$; a contradiction to our assumption. Thus A_α is a minimal prime filter of S for all $\alpha \in L$.

Conversely, assume that A_α is a minimal prime filter of S for all $\alpha \in L$. If B is a WPLF of S such that $B \leq A$. Then, $B_\alpha \subseteq A_\alpha$ for all $\alpha \in L$. By assumption, $A_\alpha = B_\alpha$ for all $\alpha \in L$. Hence $B = A$. Thus A is a minimal WPLF of S. \square

Acknowledgment

The authors thank the editor and anonymous reviewers for their careful reading and useful comments that have resulted in a significant improvement of the manuscript.

References