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Abstract

In this paper we intend to discuss the stability of

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

M1(pi)

m∑
j=1

g(qj) +

m∑
j=1

M2(qj)

n∑
i=1

h(pi),

where f : I → R, g : I → R, h : I → R are unknown mappings; M1 : I → R, M2 : I → R are fixed multiplicative mappings both
different from identity mapping; (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm ; n > 3, m > 3 are fixed integers.
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1. Introduction

Let N denote the set of natural numbers; R denote the set of real numbers; I denote the closed unit
interval [0, 1], i.e., I = [0, 1] = {x ∈ R : 0 6 x 6 1}. For n ∈ N; let Γn = {(p1, . . . ,pn); pi > 0, i =

1, . . . ,n;
n∑
i=1

pi = 1} denote the set of all n-component discrete probability distributions.

A mapping a : I→ R is said to be additive on I or on the unit triangle ∆ = {(x,y) : 0 6 x 6 1, 0 6 y 6
1, 0 6 x+ y 6 1} if it satisfies a(x+ y) = a(x) + a(y) for all (x,y) ∈ ∆. Similarly, a mapping A : R→ R is
said to be additive on R if it satisfies A(x+ y) = A(x) +A(y) for all x ∈ R, y ∈ R. An interesting relation
between these fore mentioned additive mappings was given by Daróczy and Losonczi [4]. They proved
that there exists a unique additive extension of the additive mapping a : I→ R to the set of real numbers.

A mapping ` : I→ R is said to be logarithmic on I if it satisfies `(0) = 0 and `(xy) = `(x) + `(y) for all
x ∈ ]0, 1], y ∈ ]0, 1].
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A mapping m : I → R is said to be multiplicative on I if it satisfies m(0) = 0, m(1) = 1 and
m(xy) = m(x)m(y) for all x ∈ ]0, 1[, y ∈ ]0, 1[.

Over the years, the exploration of an approximate solution which is in close proximity of the exact
solution of an arbitrary functional equation has gained a lot of momentum. This problem was initially
raised in reference to group homomorphisms by Ulam (see [24]) during his comprehensive presentation
at the University of Wisconsin in 1940. In the following year Hyers [7] answered this problem for linear
mappings f : E→ E ′ on Banach spaces E and E ′. He considered a perturbation of the given transformation
by considering the inequality ‖f(x+ y)−f(x)−f(y)‖ < δ for all x ∈ E, y ∈ E. Then using this inequality
he provided an affirmative answer to Ulam’s problem. With this seminal idea proposed by Hyers [7], the
stability problem entered the corpus of functional equations and laid the foundation for a new domain of
research referred as “Hyers-Ulam stability problem” in the literature.

It needs to be highlighted that Hyers’ methodology, also known as the direct method is widely used
for discussing the stability of functional equations. Following Hyers’ approach, numerous research pa-
pers in reference to the stability problem of functional equations have appeared. Some of their results and
methods can be found in the book of Hyers, Isac and Rassias [9]. In brief, these papers reflected upon:
generalizations; new methods; significance and applications. Notwithstanding all these endeavours, re-
searchers missed discussing the stability problem for sum form functional equations. In this direction,
Maksa [15] presented an affirmative answer to Ulam’s open problem by developing an interesting result
similar to that of Hyers’. This was a significant breakthrough that opened a new area of research known
as “Stability problem for sum form functional equations”.

Recently few significant contributions that have appeared in this field are as follows. Dutta and Kumar
[5] deployed Gǎvruta’s perspective to establish the stability of a functional equation; Najati and Sahoo [16]
investigated the stability for functional equations by following Hyers’ approach; Narasimann [17] briefly
reflected upon generalizations of Hyers’ result, followed by establishing the stability of a generalized
k-additive functional equation. Further it is worth mentioning that stability problem for the sum form
functional equations is a new area of research which is comparatively less explored. There are many
sum form functional equations for which the stability problem needs to be addressed providing ample
opportunities to the researches. Intrigued by one of these, the objective of this paper is to discuss the
stability of functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

M1(pi)

m∑
j=1

g(qj) +

m∑
j=1

M2(qj)

n∑
i=1

h(pi), (A)

where f : I → R, g : I → R, h : I → R are unknown mappings; M1 : I → R, M2 : I → R are fixed
multiplicative mappings both different from identity mapping; (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm ;
n > 3, m > 3 be fixed integers. We would now like to reflect upon the significance of functional equation
(A) which motivated us to study it.

If M1(p) = p and M2(q) = q for all p ∈ I, q ∈ I, then (A) reduces to the functional equation

n∑
i=1

m∑
j=1

f(piqj) =

m∑
j=1

g(qj) +

n∑
i=1

h(pi), (1.1)

where f : I→ R, g : I→ R, h : I→ R are unknown mappings; (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm; n > 3,
m > 3 be fixed integers. Nath and Singh [18] have obtained the general solutions of (1.1). Indeed it plays
a significant role in characterizing the Shannon [20] entropies Hn : Γn → R, n ∈N defined as

Hn(p1, . . . ,pn) = −

n∑
i=1

pi log2 pi ((p1, . . . ,pn) ∈ Γn; 0 log2 0 := 0). (1.2)

The relation of these entropies (1.2) with the general solutions of (1.1) is clearly established by the first
author of this paper in [18].
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Further if g = f, h = f; M1(p) = pα, M2(q) = qβ for fixed positive real powers α 6= 1 and β 6= 1
satisfying the conventions

0α := 0, 0β := 0, 1α := 1, 1β := 1, (1.3)

then (A) reduces to the functional equation given by Behara and Nath [2] that is
n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

pαi

m∑
j=1

f(qj) +

m∑
j=1

q
β
j

n∑
i=1

f(pi), (1.4)

where f : I → R is an unknown mapping; (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm; n > 3, m > 3 be fixed
integers. Behara and Nath were first who came across this functional equation and found its continuous
solutions which plays a key role in characterizing the entropies of type (α,β). For n ∈N, (p1, . . . ,pn) ∈ Γn,
an entropy of type (α,β) is defined as

H
(α,β)
n (p1, . . . ,pn) =


(21−α − 21−β)−1

(
n∑
i=1

pαi −
n∑
i=1

p
β
i

)
, if α 6= β,

−2β−1
n∑
i=1

p
β
i log2 pi, if α = β,

where H(α,β)
n : Γn → R; α and β are fixed positive real powers satisfying (1.3) and 0β log2 0 := 0.

Losonczi and Maksa [13] were first who obtained the general solutions of (1.4) without assuming any
conditions on the mapping f : I → R for α 6= 1, β 6= 1 and n > 3, m > 2 being fixed integers. Then,
Kocsis and Maksa [11] discussed its stability. Further, Kocsis [12] also considered a generalization of (1.4)
by studying

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

M1(pi)

m∑
j=1

f(qj) +

m∑
j=1

M2(qj)

n∑
i=1

f(pi), (1.5)

where f : I→ R is an unknown mapping; M1 : I→ R, M2 : I→ R are fixed multiplicative mappings both
different from identity mapping; (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm ; n > 3, m > 3 be fixed integers.
In this paper [12], he obtained its general solutions and also discussed its stability. A more inspiring and
novel generalization of (1.4) was observed by Singh and Dass [21].

We observe that functional equations (1.4) and (1.5) were addressed a number of times and studied
comprehensively resulting in emergence of new aspects but no one discussed its Pexiderized form, i.e.,
(A), which seems to have missed the attention. Further as (A) is arising from (1.4) and (1.5), it is useful in
the characterization of entropies of type (α,β), so it seems interesting to study (A).

Singh and Grover [22] have obtained the general solutions of (A) when the multiplicative mappings
M1 : I → R and M2 : I → R are power mappings. Indeed they have added more stimulating aspects to
the functional equation by first demonstrating its relation with the expected value of a random variable
and then connecting its general solutions not only with entropies of type (α,β) but also with diversity
index. In what follows, we shed some light on the phenomenon of diversity index.

An index of diversity is a nonnegative real valued mapping with probability distribution as its domain
which indicates the differences within a sample space. As a matter of fact, there is spectrum of definitions
on index of diversity and its applications. We would prefer references [6, 10, 19, 23] for the readers to
be familiar with the concept of diversity index and its various fields of research. Thus, it can easily
be concluded that (A) is related to entropies of type (α,β) and diversity index which is a quantitative
measure that has evolved with a multidisciplinary approach over the years. This evokes our interest to
discuss functional equation (A) in detail. We notice that the general solutions are obtained but stability is
yet to be established. So, in this paper we discuss the stability of (A).

The rest of the paper is structured as follows. In Section 2, we mention few preliminary results which
will be used in the upcoming sections. In Section 3, we discuss the stability of the functional equation (A)
for n > 3, m > 3 being fixed integers.
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2. Preliminary results

In this section, we state some known previous results which will be used in the upcoming section.

Result 2.1 ([14]). Suppose a mapping φ : I → R satisfies the functional equation
n∑
i=1

φ(pi) = c1 for all

(p1, . . . ,pn) ∈ Γn, n > 3 a fixed integer and c1 a real constant. Then there exists an additive mapping a : R→ R

such that φ(p) = a(p) − 1
na(1) +

c1
n for all p ∈ I.

Result 2.2 ([15]). Let 0 6 ε ∈ R, n > 3 be fixed integer and ψ : I→ R be a mapping which satisfy the functional

inequality
∣∣∣∣ n∑
i=1

ψ(pi)

∣∣∣∣ 6 ε for all (p1, . . . ,pn) ∈ Γn. Then there exist an additive mapping A1 : R → R and a

mapping B1 : R→ R such that |B1(p)| 6 18ε for all p ∈ R, B1(0) = 0 and ψ(p) −ψ(0) = A1(p) + B1(p) for all
p ∈ I.

Result 2.3 ([12]). Let A2 : R → R be an additive mapping, M : I → R a multiplicative mapping, B2 : R → R a
bounded mapping and c2 ∈ R. If A2(p) =M(p) + c2 for all p ∈ I, then A2(p) = dp, p ∈ R for some d ∈ R and
M(p) = 0 or M(p) = p, p ∈ I. Also if A2(p) = M(p) + B2(p) for all p ∈ I, then A2(p) = dp, p ∈ R for some
d ∈ R and M(p) = 0 or M(p) = pα, p ∈ I for some 0 6 α ∈ R.

Result 2.4 ([12]). Let M1,M2 : I → R be fixed multiplicative mappings, M1 6= M2, A3 : R → R be an additive
mapping and c3 ∈ R. If M1(p) −M2(p) = A3(p) + c3 holds for all p ∈ I, then M1 and M2 are zero or identity
mappings on I.

Result 2.5 ([25]). If f is a solution to the functional equation

f(p+ q) = f(p) + f(q),

which is bounded over an interval [a,b], then it is of the form f(p) = c4p for some real number c4.

Result 2.6 ([3, 11]). Suppose that β, ε ′ ∈ [0,+∞[; G : I→ R and

|G(pq) − pβG(q) − qβG(p)| 6 ε ′, (p,q ∈ I).

Then there exists a logarithmic mapping ` : I → R and a mapping B3 : R → R such that |B3(p)| 6 4eε ′ (e, a
natural base of the logarithmic mapping) and G(p) = pβ`(p) +B3(p) for all p ∈ I.

Result 2.7 ([22]). Let n > 3, m > 3 be fixed integers; M1 : I→ R, M2 : I→ R be fixed multiplicative mappings
different from identity mapping and f : I → R, g : I → R, h : I → R be real valued mappings satisfying the
functional equation (A) for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm. Then for all p ∈ I, any general solution
(f,g,h) of functional equation (A) is of the form (for M1 =M2)

(i) f(p) =M2(p)`(p) + [g(1) + (m− 1)g(0) + h(1) + (n− 1)h(0)]M2(p)

+a1(p) + f(0), a1(1) = −nmf(0),
(ii) g(p) =M2(p)`(p) + [g(1) + (m− 1)g(0)]M2(p) + a2(p) + g(0),

a2(1) = −mg(0),
(iii) h(p) =M2(p)`(p) + [h(1) + (n− 1)h(0)]M2(p) + a3(p) + h(0),

a3(1) = −nh(0),


(α1)

and (for M1 6=M2)

(i) f(p) = d(M1(p) −M2(p)) + [g(1) + (m− 1)g(0)+ h(1) + (n− 1)h(0)]
×M2(p) + a4(p) + f(0), a4(1) = −nmf(0),

(ii) g(p) = d(M1(p) −M2(p)) + [g(1) + (m− 1)g(0)]M2(p)

+a5(p) + g(0), a5(1) = −mg(0),
(iii) h(p) = {d− [g(1) + (m− 1)g(0)]}(M1(p) −M2(p))

+[h(1) + (n− 1)h(0)]M2(p) + a6(p) + h(0), a6(1) = −nh(0),


(α2)
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where ai : R → R (i = 1, 2, 3, 4, 5, 6) are additive mappings; ` : I → R is a logarithmic mapping and d is an
arbitrary real constant.

3. The stability of the functional equation (A)

In this section we discuss the stability of functional equation (A). For this we refer to survey paper of
Hyers and Rassias [8] and Hyers, Isac and Rassias [9]. Indeed in the sense of [9] we consider a perturbation
of (A) given by the functional inequality∣∣∣∣∣∣

n∑
i=1

m∑
j=1

f(piqj) −

n∑
i=1

M1(pi)

m∑
j=1

g(qj) −

m∑
j=1

M2(qj)

n∑
i=1

h(pi)

∣∣∣∣∣∣ 6 ε (B)

for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm; n > 3, m > 3 be fixed integers and ε be a positive real number.
Our aim is to find the solutions of inequality (B) and observe: What is the difference between the solutions

(given by Result 2.7) of equation (A) and inequality (B)? If the difference between their solutions is only a
bounded mapping, we would say that functional equation (A) is stable. Following this we establish the
stability of (A) and prove the main result of this section.

Theorem 3.1. Let n > 3, m > 3 be fixed integers; ε be a positive real number and M1 : I → R, M2 : I → R

be fixed multiplicative mappings different from identity mapping. Suppose f : I → R, g : I → R, h : I → R

be mappings which satisfy the functional inequality (B) for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm. Then, (for
M1 =M2)

(i) f(p) − f(0) =M2(p)`(p) + [g(1) + (m− 1)g(0) + h(1) + (n− 1)h(0)]M2(p) + a1(p) + b1(p),
(ii) g(p) − g(0) =M2(p)`(p) + [g(1) + (m− 1)g(0)]M2(p) + a2(p) + b2(p),

(iii) h(p) − h(0) =M2(p)`(p) + [h(1) + (n− 1)h(0)]M2(p) + a3(p) + b3(p),

 (β1)

and (for M1 6=M2)

(i) f(p) − f(0) = d(M1(p) −M2(p)) + [g(1) + (m− 1)g(0) + h(1)
+(n− 1)h(0)]M2(p) + a4(p) + b4(p),

(ii) g(p) − g(0) = d(M1(p) −M2(p)) + [g(1) + (m− 1)g(0)]M2(p) + a5(p) + b5(p),
(iii) h(p) − h(0) = {d− [g(1) + (m− 1)g(0)]}(M1(p) −M2(p))

+[h(1) + (n− 1)h(0)]M2(p) + a6(p) + b6(p),

 (β2)

where ai : R → R (i = 1, 2, 3, 4, 5, 6) are additive mappings; bj : R → R (j = 1, 2, 3, 4, 5, 6) are bounded
mappings; ` : I→ R is a logarithmic mapping and d is an arbitrary real constant.

Proof. Let us put p1 = 1, p2 = · · · = pn = 0 in (B). We obtain∣∣∣∣∣∣
m∑
j=1

{
f(qj) + (n− 1) f(0) − g(qj) − [h(1) + (n− 1)h(0)]M2(qj)

}∣∣∣∣∣∣ 6 ε
for all (q1, . . . ,qm) ∈ Γm. By Result 2.2, there exists an additive mapping A1 : R → R and a mapping
B∗1 : R→ R such that |B∗1(q)| 6 18ε, B∗1(0) = 0 and

f(q) − g(q) − [h(1) + (n− 1)h(0)]M2(q) − f(0) + g(0) = A1(q) +B
∗
1(q).

From this, one can easily obtain the expression

f(q) = g(q) +A1(q) +B1(q) + [h(1) + (n− 1)h(0)]M2(q), (3.1)
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where B1 : R → R is a bounded mapping defined as B1(x) = B∗1(x) + f(0) − g(0). Using (3.1), inequality
(B) can be written as∣∣∣∣∣∣

n∑
i=1

m∑
j=1

g(piqj) +A1(1) +
n∑
i=1

m∑
j=1

B1(piqj) −

n∑
i=1

M1(pi)

m∑
j=1

g(qj)

−

{
n∑
i=1

h(pi) − [h(1) + (n− 1)h(0)]
n∑
i=1

M2(pi)

}
m∑
j=1

M2(qj)

∣∣∣∣∣∣ 6 ε
(3.2)

for all (p1, . . . ,pn) ∈ Γn, (q1, . . . ,qm) ∈ Γm. Now substituting q1 = 1,q2 = · · · = qm = 0 in (3.2), we have∣∣∣∣ n∑
i=1

{
g(pi) + (m− 1)g(0) +A1(1)pi +B1(pi) + (m− 1)B1(0)

− [g(1) + (m− 1)g(0)]M1(pi) − h(pi) + [h(1) + (n− 1)h(0)]M2(pi)

}∣∣∣∣ 6 ε
for all (p1, . . . ,pn) ∈ Γn. By Result 2.2, there exists an additive mapping A2 : R → R and a mapping
B∗2 : R→ R such that |B∗2(p)| 6 18ε, B∗2(0) = 0 and

g(p) +A1(1)p+B1(p) − [g(1) + (m− 1)g(0)]M1(p) − h(p)

+ [h(1) + (n− 1)h(0)]M2(p) − g(0) −B1(0) + h(0) = A2(p) +B
∗
2(p).

From this, we can easily obtain the expression

h(p) = g(p) −A2(p) −B2(p) +A1(1)p+B1(p) − [g(1) + (m− 1)g(0)]M1(p)

+ [h(1) + (n− 1)h(0)]M2(p),
(3.3)

where B2 : R → R is a bounded mapping defined as B2(x) = B∗2(x) + g(0) + B1(0) − h(0). Substituting
(3.3) in inequality (3.2), we get∣∣∣∣∣∣

n∑
i=1

m∑
j=1

G(piqj) +

n∑
i=1

m∑
j=1

B1(piqj) +A1(1) −
n∑
i=1

M1(pi)

m∑
j=1

G(qj) −

m∑
j=1

M2(qj)

×
[ n∑
i=1

G(pi) −

n∑
i=1

B2(pi) +

n∑
i=1

B1(pi) −A2(1) +A1(1)
]∣∣∣∣∣ 6 ε,

(3.4)

where G : I→ R is a mapping defined as

G(x) = g(x) − [g(1) + (m− 1)g(0)]M2(x) (3.5)

for all x ∈ I. By Result 2.2, there exists a mapping A3 : Γn ×R→ R, additive in the second variable and a
mapping B3 : Γn ×R→ R, bounded in the second variable by 18ε with B3(p1, . . . ,pn; 0) = 0, such that

n∑
i=1

G(piq) +

n∑
i=1

B1(piq) +A1(1)q− (G(q) −G(0))
n∑
i=1

M1(pi) −M2(q)

[ n∑
i=1

G(pi)

−

n∑
i=1

B2(pi) +

n∑
i=1

B1(pi) −A2(1) +A1(1)
]
−nG(0) −nB1(0)

= A3(p1, . . . ,pn;q) +B3(p1, . . . ,pn;q)

(3.6)
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for all q ∈ I, (p1, . . . ,pn) ∈ Γn. Let x ∈ I, (s1, . . . , sn) ∈ Γn and write q = stx, t = 1, . . . ,n consecutively in

(3.6); summing up the resulting n equations so obtained and then substituting the expression
n∑
t=1

G(stx)

calculated from (3.6), it follows that
n∑
i=1

n∑
t=1

G(pistx) +

n∑
i=1

n∑
t=1

B1(pistx) +A1(1)x−n2G(0)−n2B1(0) − (G(x) −G(0))
n∑
i=1

M1(pi)

n∑
t=1

M1(st)

= A3(p1, . . . ,pn; x) +
n∑
t=1

B3(p1, . . . ,pn; stx)

+M2(x)

{
n∑
i=1

M1(pi)

[
n∑
t=1

G(st) −

n∑
t=1

B2(st) +

n∑
t=1

B1(st)−A2(1) +A1(1)

]

+

n∑
t=1

M2(st)

[
n∑
i=1

G(pi) −

n∑
i=1

B2(pi) +

n∑
i=1

B1(pi) −A2(1) +A1(1)

]}

+

n∑
i=1

M1(pi)

[
A3(s1, . . . , sn; x) +B3(s1, . . . , sn; x) −

n∑
t=1

B1(stx) −A1(1)x+nB1(0)
]

for all x ∈ I, (p1, . . . ,pn) ∈ Γn, (s1, . . . , sn) ∈ Γn. Clearly the left hand side of the above equation is
commutative in pi and st, i = 1, . . . ,n; t = 1, . . . ,n (see p. 59. Acźel [1]). Thus the commutativity of pi
and st, i = 1, . . . ,n; t = 1, . . . ,n on the right hand side gives

A3(p1, . . . ,pn; x)

[
1 −

n∑
t=1

M1(st)

]
−A3(s1, . . . , sn; x)

[
1 −

n∑
i=1

M1(pi)

]

=

n∑
i=1

B3(s1, . . . , sn;pix) −
n∑
t=1

B3(p1, . . . ,pn; stx)

+

n∑
t=1

M1(st)

[
B3(p1, . . . ,pn; x)−

n∑
i=1

B1(pix) −A1(1)x+nB1(0)

]

−

n∑
i=1

M1(pi)

[
B3(s1, . . . , sn; x) −

n∑
t=1

B1(stx) −A1(1)x+nB1(0)

]

+M2(x)

{[
n∑
t=1

M1(st) −

n∑
t=1

M2(st)

][
n∑
i=1

G(pi) −

n∑
i=1

B2(pi) +

n∑
i=1

B1(pi)

−A2(1) +A1(1)
]
−

[
n∑
i=1

M1(pi) −

n∑
i=1

M2(pi)

][
n∑
t=1

G(st) −

n∑
t=1

B2(st)

+

n∑
t=1

B1(st) −A2(1) +A1(1)

]}
.

(3.7)

Here, we observe that the proof depends on the mappings M1 and M2. So, we divide our discussion into
two cases.

Case 1. M1 =M2. In this case, equation (3.7) gives

A3(p1, . . . ,pn; x)

[
1 −

n∑
t=1

M2(st)

]
−A3(s1, . . . , sn; x)

[
1 −

n∑
i=1

M2(pi)

]

=

n∑
i=1

B3(s1, . . . , sn;pix) −
n∑
t=1

B3(p1, . . . ,pn; stx) (3.8)
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+

n∑
t=1

M2(st)

[
B3(p1, . . . ,pn; x) −

n∑
i=1

B1(pix) −A1(1)x+nB1(0)

]

−

n∑
i=1

M2(pi)

[
B3(s1, . . . , sn; x) −

n∑
t=1

B1(stx) −A1(1)x+nB1(0)

]
.

For fixed (p1, . . . ,pn) ∈ Γn and (s1, . . . , sn) ∈ Γn, the right hand side of (3.8) is bounded on I whereas its
left hand side is additive in x ∈ I, consequently by Result 2.5, it follows that

[ A3(p1, . . . ,pn; x) − xA3(p1, . . . ,pn; 1)]

[
1 −

n∑
t=1

M2(st)

]

= [ A3(s1, . . . , sn; x) − xA3(s1, . . . , sn; 1)]

[
1 −

n∑
i=1

M2(pi)

]
.

(3.9)

Since the multiplicative mapping M2 : I → R is different from identity mapping, it follows from Results

2.1 and 2.3, that
[

1 −
n∑
t=1

M2(st)

]
does not vanish identically on Γn. Thus there exists a probability

distribution (s∗1 , . . . , s∗n) ∈ Γn so that 1 −
n∑
t=1

M2(s
∗
t) 6= 0. Using this in (3.9), we get

A3(p1, . . . ,pn; x) = a0(x)

[
1 −

n∑
i=1

M2(pi)

]
+ xA3(p1, . . . ,pn; 1), (3.10)

where a0 : R→ R is a mapping defined as

a0(x) = [ A3(s
∗
1 , . . . , s∗n; x) − xA3(s

∗
1 , . . . , s∗n; 1)]

[
1 −

n∑
t=1

M2 (s
∗
t)

]−1

.

Clearly the mapping a0 : R→ R is additive with a0(1) = 0. On substituting the value of ‘A3(p1, . . . ,pn; 1)’
calculated from (3.6) (for q = 1) in (3.10), it follows that

A3(p1, . . . ,pn; x) = a0(x)

[
1 −

n∑
i=1

M2(pi)

]
+ x

[
mG(0)

n∑
i=1

M2(pi) +

n∑
i=1

B2(pi)

+A2(1) −nG(0) −nB1(0) −B3(p1, . . . ,pn; 1)
]

.

(3.11)

From (3.11) and (3.8), we obtain{
B3(s1, . . . , sn; x) −

n∑
t=1

B1(stx) +nB1(0) + x
[ n∑
t=1

B2(st) +A2(1) −A1(1)

+ (m−n)G(0) −nB1(0) −B3(s1, . . . , sn; 1)
]} n∑

i=1

M2(pi)

=

{
B3(p1, . . . ,pn; x) −

n∑
i=1

B1(pix) +nB1(0) + x
[ n∑
i=1

B2(pi) +A2(1) −A1(1) + (m−n)G(0)

−nB1(0) −B3(p1, . . . ,pn; 1)
]} n∑

t=1

M2(st) +

n∑
i=1

B3(s1, . . . , sn;pix) −
n∑
t=1

B3(p1,. . . ,pn; stx)

+ x

[
B3(p1, . . . ,pn; 1) −B3(s1, . . . , sn; 1) −

n∑
i=1

B2(pi) +

n∑
t=1

B2(st)

]

(3.12)

for all x ∈ I, (p1, . . . ,pn) ∈ Γn and (s1, . . . , sn) ∈ Γn. Now, we divide our discussion into two cases.
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Case 1.1. Coefficient of
n∑
i=1

M2(pi) vanishes identically. In this case, functional equation (3.12) yields

B3(s1, . . . , sn; x)=
n∑
t=1

B1(stx) −nB1(0) − x
[ n∑
t=1

B2(st) +A2(1) −A1(1)

+ (m−n)G(0) −nB1(0) −B3(s1, . . . , sn; 1)
]

.

(3.13)

With the aid of (3.11) and (3.13), functional equation (3.6) reduces to

n∑
i=1

G(piq) −G(q)

n∑
i=1

M2(pi) −M2(q)

n∑
i=1

G(pi) +M2(q)

[ n∑
i=1

B2(pi)

−

n∑
i=1

B1(pi) +A2(1) −A1(1) + (m−n)g(0)
]
= 0,

(3.14)

where G : I→ R is defined as

G(x) = G(x) −G(0) − a0(x) +mG(0)x (3.15)

for all x ∈ I. Clearly G(0) = 0 and G(1) = 0. Applying Result 2.1 on (3.14), there exists a mapping
E : R× I→ R, additive in the first variable such that

G(pq) −M2(p)G(q) −M2(q)G(p) +M2(q)
[
B∗2(p) −B

∗
1(p) + [ A2(1)

−A1(1) + (m−n)g(0)]p
]
= E(p;q)

(3.16)

with E(1;q) = −nM2(q)[g(0)−h(0)] (follows by using the expressions B1(x) = B
∗
1(x) + f(0) − g(0),B

∗
1(0) =

0 and B2(x) = B
∗
2(x) + f(0) − h(0),B

∗
2(0) = 0). Also for q = 1, (3.16) gives

B∗2(p) −B
∗
1(p) + [ A2(1) −A1(1) + (m−n)g(0)]p = E(p; 1). (3.17)

The left hand side of (3.17) is bounded on I, while the right hand side is additive in first variable ‘p’. Thus
by Result 2.5, it follows that E(p; 1) = pE(1; 1). Consequently we get, B∗2(p) − B

∗
1(p) = p(B∗2(1) − B

∗
1(1)).

Thus (3.16) can be written in the form

G(pq) −M2(p)G(q) −M2(q)G(p) = E(p;q) − pM2(q)[B
∗
2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]. (3.18)

Also, it can be easily verified from (3.18) that

E (r;pq) − rM2(pq)[B
∗
2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]

+M2(r){E (p;q) − pM2(q)[B
∗
2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]}

= E (rp;q) − rpM2(q)[B
∗
2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]

+M2(q){E (r;p) − rM2(p)[B
∗
2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]}

(3.19)

for all p ∈ I, q ∈ I, r ∈ I. Now, we assert that the right hand side of (3.18), i.e., E(p;q) − pM2(q)[B
∗
2(1) −

B∗1(1) +A2(1) −A1(1) + (m− n)g(0)] vanishes identically on I× I. To the contrary suppose that it does
not vanish and there exists some p∗ ∈ I, q∗ ∈ I such that E(p∗;q∗) − p∗M2(q

∗)[B∗2(1) − B
∗
1(1) +A2(1) −

A1(1) + (m−n)g(0)] 6= 0. Then from (3.19), it follows that

M2(r) =
{
E (p∗;q∗) − p∗M2(q

∗)[B∗2(1) −B
∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]}−1

×
{
E (rp∗;q∗) − rp∗M2(q

∗)[B∗2(1) −B
∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]
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+M2(q
∗){E (r;p∗) − rM2(p

∗)[B∗2(1) −B
∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]}

− E (r;p∗q∗) + rM2(p
∗q∗)[B∗2(1) −B

∗
1(1) +A2(1) −A1(1) + (m−n)g(0)]

}
for all r ∈ I. The additivity on the right hand side implies that mapping M2 : I → R is additive. Using

this additivity we obtain 1 6=
n∑
t=1

M2(st) = 1, a contradiction and so our assertion follows. Consequently

(3.18) reduces to G(pq) −M2(p)G(q) −M2(q)G(p) = 0 whose general solution is G(p) = M2(p)`(p) for
all p ∈ I; ` : I → R being a logarithmic mapping. Thus, we obtain (β1) (ii) from (3.5) and (3.15) by
defining an additive mapping a2 : R → R as a2(x) = a0(x) −mg(0)x and bounded mapping b2 : R → R

as b2(x)=0. Further from (β1) (ii), (3.1) and (3.3) (with M1 =M2); (β1) (i) and (β1) (iii) follows by defining
additive mappings a1 : R → R as a1(x) = a2(x) +A1(x); a3 : R → R as a3(x) = a2(x) −A2(x) +A1(1)x
and bounded mappings b1 : R → R as b1(x) = b2(x) + B

∗
1(x) where |b1(x)| 6 18ε with b1(0) = 0 and

b3 : R→ R as b3(x) = b2(x) −B
∗
2(x) +B

∗
1(x) where |b3(x)| 6 36ε with b3(0) = 0.

Case 1.2. Coefficient of
n∑
i=1

M2(pi) does not vanish identically. In this case, the boundedness of the

mappings B3, B2 and B1 in functional equation (3.12) yields
∣∣∣∣ n∑
i=1

M2(pi)

∣∣∣∣ 6 ε for all (p1, . . . ,pn) ∈ Γn

and some positive real number ε. Then by Result 2.2 followed by Result 2.3, we get M2(p) = p
β for some

positive real number β 6= 1 satisfying (1.3). On substituting M1(p) =M2(p) = p
β in functional inequality

(B) and proceeding similarly the functional equations (3.6) and (3.11) with a0(1) = 0, gives

n∑
i=1

G(piq) − q
β
n∑
i=1

G(pi) −G(q)

n∑
i=1

p
β
i = B3(p1, . . . ,pn;q) −

n∑
i=1

B1(piq)

+nB1(0) + qβ
[
−

n∑
i=1

B2(pi) +

n∑
i=1

B1(pi) −A2(1) +A1(1) − (m−n)g(0)
]

+ q

[ n∑
i=1

B2(pi) +A2(1) −A1(1) + (m−n)g(0) −nB1(0) −B3(p1, . . . ,pn; 1)
]

,

(3.20)

where G : I → R is a mapping defined as in (3.15). Further we observe that the right hand side of
functional equation (3.20) is bounded by 36ε(3 + 2n) (follows from (3.3) and the expressions B1(x) =
B∗1(x)+ f(0)−g(0),B

∗
1(0) = 0 with |B∗1(x)| 6 18ε; B2(x) = B

∗
2(x)+ f(0)−h(0),B

∗
2(0) = 0 with |B∗2(x)| 6 18ε).

By Result 2.2, there exists a mapping A4 : R × I → R, additive in the first variable and a mapping
B4 : R× I→ R, bounded in the first variable by 648ε(3 + 2n) with B4(0;q) = 0 satisfying

G(pq) − qβ G(p) − pβ G(q) = A4(p;q) +B4(p;q) (3.21)

for all p ∈ I, q ∈ I. Define a mapping E : I× I→ R as

E(p;q) = G(pq) − qβ G(p) − pβ G(q) (3.22)

for all p ∈ I, q ∈ I. It can easily be verified from (3.22) that

rβ E(p;q) + E(r;pq) = qβ E(r;p) + E(rp;q) (3.23)

for all p ∈ I, q ∈ I and r ∈ I. From (3.21), (3.22), and (3.23), it follows that

A4(r;pq) − qβ A4(r;p) −A4(rp;q)

= qβ B4(r;p) +B4(rp;q) − rβ A4(p;q) − rβ B4(p;q) −B4(r;pq).
(3.24)
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The left hand side is additive in r ∈ I, while its right hand side is bounded on I. Consequently by Result
2.5, we find that left hand side is linear, i.e.,

A4(r;pq) − qβ A4(r;p) −A4(rp;q) = r[ A4(1;pq) − qβ A4(1;p) −A4(p;q)]. (3.25)

Now, on replacing r by 1 in (3.24) and using 1β := 1, we get

A4(1;pq) − qβ A4(1;p) = qβ B4(1;p) −B4(1;pq) (3.26)

for all p ∈ I, q ∈ I. From (3.24), (3.25), and (3.26), we obtain

(rβ − r)A4(p;q) = rB4(1;pq) − rqβ B4(1;p) −B4(r;pq)

− rβ B4(p;q) +B4(rp;q) + qβ B4(r;p)
(3.27)

for all p ∈ I, q ∈ I and r ∈ I. In view of our assumption that 0 < β ∈ R with β 6= 1, (3.27) yield
that additive mapping A4(p;q) is bounded in the first variable on I. Thus by Result 2.5, we conclude that
mapping A4(p;q) must be linear which implies A4(p;q) = pA4(1;q) for all p ∈ I, q ∈ I. However equation
(3.26) with p = 1 implies that mapping q→ A4(1;q) is bounded by 648ε(3+ 2n) on I. Consequently (3.21)
gives

|G(pq) − qβ G(p) − pβ G(q)| 6 1296ε(3 + 2n)

for all p ∈ I, q ∈ I. By Result 2.6, there exists a logarithmic mapping ` : I → R and a bounded mapping
b2 : R → R satisfying |b2(p)| 6 4e{1296ε(3 + 2n)} such that G(p) = pβ`(p) + b2(p). Hence from (3.5)
and (3.15) we obtain (β1) (ii) (with M2(p) = pβ) again by defining an additive mapping a2 : R → R as
a2(x) = a0(x) −mg(0)x. Moreover from (β1) (ii), (3.1) and (3.3) (with M1 = M2); (β1) (i) and (β1) (iii)
(with M2(p) = pβ) follows by defining the additive mappings as in the previous case and the bounded
mappings as b1 : R → R as b1(x) = b2(x) + B

∗
1(x) where |b1(x)| 6 4e{1296ε(3 + 2n)}+ 18ε; b3 : R → R as

b3(x) = b2(x) −B
∗
2(x) +B

∗
1(x), where |b3(x)| 6 4e{1296ε(3 + 2n)}+ 36ε.

Case 2. M1 6= M2. In this case, there will be no loss of generality in assuming n > m. Letting pm+1 =
· · · = pn = 0 in (3.4). We get∣∣∣∣∣∣

m∑
i=1

m∑
j=1

G(piqj) −

m∑
i=1

M1(pi)

m∑
j=1

G(qj) −

m∑
j=1

M2(qj)

m∑
i=1

G(pi) +

m∑
j=1

M2(qj)

×

[
m∑
i=1

B2(pi) −

m∑
i=1

B1(pi) +A2(1) −A1(1) + (m−n)
[
G(0) −B2(0) +B1(0)

]]

+

m∑
i=1

m∑
j=1

B1(piqj) +A1(1) +m(n−m)
[
G(0) +B1(0)

]∣∣∣∣∣∣ 6 ε
(3.28)

for all (p1, . . . ,pm) ∈ Γm, (q1, . . . ,qm) ∈ Γm. Now on interchanging pi and qj, i = 1, . . . ,m; j = 1, . . . ,m in
the functional inequality (3.28), we have∣∣∣∣∣∣

m∑
i=1

m∑
j=1

G(piqj) −

m∑
j=1

M1(qj)

m∑
i=1

G(pi)−

m∑
i=1

M2(pi)

m∑
j=1

G(qj) +

m∑
i=1

M2(pi)

×

 m∑
j=1

B2(qj) −

m∑
j=1

B1(qj) +A2(1) −A1(1) + (m−n)
[
G(0) −B2(0) +B1(0)

]
+

m∑
i=1

m∑
j=1

B1(piqj) +A1(1) +m(n−m)
[
G(0) +B1(0)

]∣∣∣∣∣∣ 6 ε.
(3.29)
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Applying triangle inequality to functional inequalities (3.28) and (3.29), we obtain∣∣∣∣∣∣
 m∑
j=1

M1(qj) −

m∑
j=1

M2(qj)

 m∑
i=1

G(pi) −

[
m∑
i=1

M1(pi) −

m∑
i=1

M2(pi)

]
m∑
j=1

G(qj)

+

m∑
i=1

M2(pi)

 m∑
j=1

B1(qj) −

m∑
j=1

B2(qj)

−

m∑
j=1

M2(qj)

[
m∑
i=1

B1(pi) −

m∑
i=1

B2(pi)

]

+

[
−A2(1) +A1(1) − (m−n)

[
G(0)−B2(0) +B1(0)

] ] m∑
i=1

M2(pi) −

m∑
j=1

M2(qj)

∣∣∣∣∣∣ 6 2ε.

(3.30)

Since M1 6= M2, therefore we have

[
m∑
j=1
M1(qj) −

m∑
j=1
M2(qj)

]
does not vanish identically on Γm (follows

from Results 2.1 and 2.4). Consequently there exists a probability distribution (q∗1 , . . . ,q∗m) ∈ Γm such that[
m∑
j=1
M1(q

∗
j ) −

m∑
j=1
M2(q

∗
j )

]
6= 0. Then (3.30) gives

∣∣∣∣∣
m∑
i=1

G(pi) − c1

m∑
i=1

M1(pi) + c2

m∑
i=1

M2(pi) − c3

[
m∑
i=1

B1(pi) −

m∑
i=1

B2(pi)

]
− c4

∣∣∣∣∣ 6 2εc,

where 0 6= c =

[
m∑
j=1
M1(q

∗
j ) −

m∑
j=1
M2(q

∗
j )

]−1

∈ R; c1, c2, c3, c4 are arbitrary real constants and (p1, . . . ,pm)

∈ Γm.
By Result 2.2, there exists an additive mapping A5 : R → R and a mapping B5 : R → R such that

|B5(p)| 6 36εc, B5(0) = 0, and

G(p) −G(0) = c1M1(p) − c2M2(p) + c3
[
B1(p) −B2(p) −B1(0) +B2(0)

]
+ c4p+A5(p) +B5(p).

Then again on using the expressions B1(x) = B∗1(x) + f(0) − g(0),B
∗
1(0) = 0 with |B∗1(x)| 6 18ε; B2(x) =

B∗2(x) + f(0) − h(0),B
∗
2(0) = 0 with |B∗2(x)| 6 18ε and taking d := c1, d̄ := d − c2, the solution (β2)

(ii) holds from (3.5) by defining an additive mapping a5 : R → R as a5(x) = A5(x) + c4x; a bounded
mapping b5 : R → R as b5(x) = B5(x) + c3[B

∗
1(x) − B

∗
2(x)] + d̄M2(x) where b5(0) = 0 and |b5(x)| 6

36ε(c+ c3) + |d̄M2(x)| 6 36ε(c+ c3) + |d̄| (follows from Result 2.3). Further from (3.1) and (3.3), (β2) (i)
and (β2) (iii) hold by defining the additive mappings a4 : R → R as a4(x) = a5(x) +A1(x); a6 : R → R

as a6(x) = a5(x) −A2(x) +A1(1)x and bounded mappings b4 : R → R as b4(x) = b5(x) + B
∗
1(x) where

b4(0) = 0 and |b4(x)| 6 18ε(2c+ 2c3 + 1)+ |d̄|; b6 : R→ R as b6(x) = b5(x)−B
∗
2(x)+B

∗
1(x) where b6(0) = 0

and |b6(x)| 6 36ε(c+ c3 + 1) + |d̄|. This completes the proof of Theorem.
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