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Abstract
This paper proposes an adaptive control algorithm to study the synchronization and anti-synchronization of fractional order

chaotic optical systems. The Lyapunov stability theory verifies the convergence behavior and guarantees the robust asymptotic
stability of the equilibrium point at the origin. In the sense of Lyapunov function, this paper also provides parameters adaptation
laws that confirm the convergence of uncertain parameters to some constant values. The computer simulation results endorse
the theoretical findings. The results of this study could be beneficial in the area of optics chaotic systems.
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1. Introduction

The essence of studying of the fractional order chaotic systems is to understand their structure and
behavior. These systems are deemed important as they reflect and fabricate the act of nature. One way
to get a perspective glimpse of its complex dynamics is through synchronization or anti-synchronization,
but synchronization and anti-synchronization of the fractional order chaotic systems is always almost an
impossible task. This fact is due to the system’s unpredictable behavior and sensitivity towards initial
conditions. Much assumption has to be made artificially or unnecessarily to make practical engineering
problems [3, 13, 20, 21, 25]. There is a need to synchronize and anti-synchronize the fractional order
chaotic systems for the many applications found for chaotic systems. Different effective synchronization
and anti-synchronization methodologies have been proposed to synchronize and anti-synchronize the
fractional order chaotic systems. These include adaptive control, sliding mode control, linear active con-
trol technique, projective synchronization, and nonlinear active control [2, 4–7, 10, 12, 14, 17, 18, 22, 26].
However, to our best knowledge, the aforementioned methods and many other existing synchronization
and anti-synchronization schemes of integer order can be improves to synchronize and anti-synchronize
fractional order chaotic systems using some mathematical rigorous tools. Moreover, most of the afore-
mentioned methods are stable only for the chaotic systems whose parameters are probably certain in
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prior. But in a practical engineering situation, some systems parameters are probably uncertain in prior,
this effect will broke the synchronization. Therefore, there is a great need to effectively synchronize two
fractional order chaotic systems with uncertain parameters. The prominence of the optics systems in the
world has received more and more comment in recent years as its play an important role in the use of
conventional calculus. Optics is a truly interdisciplinary topic in that specialists in many subjects study
it. Many optics systems have been studied by researchers. For example the new fractional-order optical
beams introduced by [11] using fractional calculus. In [19, 23, 24] investigate the Fourier transform and
many researchers has been already studied its applications. A new fractional variational optical flow
model, which combines the fractional derivative with the variational optical flow method, for motion
estimation was introduced by [9]. A fractional-order version of the modified hybrid optical system in-
troduced by [1]. The remaining structure of the paper is divided into seven sections. Sections 2 and 3
present and illustrate some concepts related to fractional derivative and adaptive synchronization and
anti-synchronization control strategy. In Section 4, a brief description of the fractional order chaotic opti-
cal systems is presented. In Sections 5 and 6 a novel adaptive control with update laws of parameters are
designed based on Lyapunov stability theory. The conclusion is drawn in Section 7.

2. Some concepts related to fractional derivative

The concept of an integer-order integro-differential operator can be extending by the fractional-order
integro-differential operator using a generalisable formulation, that is

aD
p
t =


dp

dtp , p > 0,
1, p = 0,
t∫
a

(dτ)−p, p < 0,

where p is the fractional order which could be a complex number, and a , t symbolize the limits of the
operation. There are many definitions of the fractional integral and derivative which have been used
in the recent literature, precisely, the following three definitions (Grünwald-Letnikov, Riemann-Liouville,
and Caputo). The current study is dealing with the Riemann-Liouvile definition ([2, 25]), which is given
by

aD
p
t f (t) =

dm

dtm
J
m−p
t f (t) , p > 0,

where m = dpe, J is the fractional Riemann-Liouville integral and

Jϕt φ (t) =
1

Γ (ϕ)

t∫
0

φ (υ)

(t− υ)1−ϕ
dυ,

with 0 < ϕ 6 1 and Γ(.) is the gamma function. For r > n > 0, p and q are integers such that
0 6 p− 1 6 r < p, and 0 6 q− 1 6 n < q. Then,

aD
r
t

(
aD

−m
t f (t)

)
= aD

r−m
t f (t) . (2.1)

For r,m > 0, there exist integers p and q such that 0 6 p− 1 6 r < p, and 0 6 q− 1 6 m < q. Then,

aD
r
t ( aD

m
t f (t)) = aD

r+m
t f (t) −

m∑
j=1

[
aD

m−j
t f (t)

]
t=a

(t− a)−r−j

Γ (1 − r− j)
. (2.2)

Suppose also that f(t) has a continuous nth derivative in [0, t](n ∈ N, t > 0) and let r,m > 0. Then, there
exists some k ∈ N with k 6 n and r, r+m ∈ [k− 1,k] such that

aD
r
t aD

m
t f (t) = aD

r+m
t f (t) .
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3. Adaptive synchronization and anti-synchronization control strategy

Consider a chaotic continuous drive system described by

Ds
tx = f(x) + F(x)α, (3.1)

where x ∈ Rn is an n-dimensional state vector of the system (3.1), α ∈ Rm is the unknown parameter
vector of the system, f(x) is a continuous vector function, and F(x) is is a matrix function. On the other
hand, the controlled response system is assumed by

Ds
ty = g(y) +G(y)β+ u, (3.2)

where y ∈ Rn is the state vector, β ∈ Rp is the unknown parameter vector of the system, f(y) is a
continuous vector function, F(y) is a matrix function, u ∈ Rp is a controller. Let e(t) = y(t) − x(t) be the
error vector. Our aim is to find a suitable control function u which can able to achieve the synchronization
such that,

lim
t→∞ ‖e‖ = lim

t→∞ ‖y(t,y0) − x(t, x0)‖ = 0.

3.1. Adaptive synchronization
Theorem 3.1. If the adaptive control function u is defined as

u = f(x) + F(x)α− g(y) −G(y)β+Ds−1
t

[
− F(x)(α− α̃) +G(y)(β− β̃) −

(
Ds−1

t e (t)
) (t)−(s−1)−1

Γ (− (s− 1))
− e

]
(3.3)

and the uncertain parameters update rule are taken as

˙̃α = −[F(x)]Te, ˙̃β = [G(y)]Te, (3.4)

where α̂ = α− α̃, β̂ = β− β̃, q ∈ [0, 1] is the order of the derivative, and α̃, β̃ are the estimated parameters of α
and β, respectively.

Proof. From (3.2) and (3.1) we get the error dynamical system as follows:

Ds
te (t) = g (y) +G(y)β− f(x) − F(x)α+ u. (3.5)

Inserting (3.3) into (3.5) yields the following:

Ds
te(t) = D

s−1
t

[
− F(x)(α− α̃) +G(y)(β− β̃) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
− e

]
.

If a Lyapunov function candidate is chosen as

V =
1
2

[
eTe+ (α− α̃)T (α− α̃) + (β− β̃)T (β− β̃)

]
, (3.6)

differentiating (3.6) using (2.2) we get

V̇ =

[
Ds−1

t

(
Ds

te(t)
)
+
(
Ds−1

t e(t)
) (t)−(s−1)−1

Γ (− (s− 1))

]
+ (α− α̃)T ˙̃α+ (β− β̃)T ˙̃β. (3.7)

From (3.4) and (3.7), we get

V̇ =

[
Ds−1

t

(
Ds−1

t

[
− F(x)(α̃−α) +G(y)(β̃−β) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
−e
])

+
(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))

]T
+ (α− α̃)T ˙̃α+ (β− β̃)T ˙̃β,

(3.8)
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since ∀s ∈ [0, 1], (1 − s) > 0 and (s− 1) < 0. Now, using (2.1) and (3.4), (3.8) reduces to

V̇ =

[
−
(
F(x)(α− α̃) +G(y)(β− β̃) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
−e
)

+
(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))

]T
e− (α− α̃)T [F(x)]Te− (β− β̃)T [G(y)]Te

=
[
− (α− α̃)TF(x)T + (β− β̃)TG(y)T − eT

]
e+ (α− α̃)T

[
F(x)

]T
e− (β− β̃)T

[
G(y)

]T
e

= −eTe 6 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system.
Therefore, response system (3.2) can synchronize the drive system (3.1) asymptotically. This completes
the proof.

3.2. Adaptive anti-synchronization

Theorem 3.2. If the nonlinear control function u is selected as

u = −f(x) − F(x)α− g(y) −G(y)β+Ds−1
t

[
F(x)(α− α̃) +G(y)(β− β̃)

−
(
Ds−1

t e (t)
) (t)−(s−1)−1

Γ (− (s− 1))
− e

] (3.9)

and the adaptive laws of the uncertain are taken as

˙̃α = [F(x)]Te, ˙̃β = [G(y)]Te, (3.10)

where α̂ = α− α̃, β̂ = β− β̃, s ∈ [0, 1] is the order of the derivative, and α̃, β̃ are the estimated parameters of α
and β, respectively.

Proof. From (3.2) and (3.1) we get the error dynamical system as follows:

Ds
te (t) = g (y) +G(y)β+ f(x) + F(x)α+ u. (3.11)

Inserting (3.9) into (3.11) yields the following:

Ds
te(t) = D

s−1
t

[
F(x)(α− α̃) +G(y)(β− β̃) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
− e

]
.

If a Lyapunov function candidate is chosen as

V =
1
2

[
eTe+ (α− α̃)T (α− α̃) + (β− β̃)T (β− β̃)

]
, (3.12)

differentiating (3.12) using (2.2) we get

V̇ =

[
Ds−1

t

(
Ds

te(t)
)
+
(
Ds−1

t e(t)
) (t)−(s−1)−1

Γ (− (s− 1))

]
+ (α− α̃)T ˙̃α+ (β− β̃)T ˙̃β). (3.13)
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From (3.10) and (3.13), we get

V̇ =

[
Ds−1

t

(
Ds−1

t

[
F(x)(α̃−α) +G(y)(β̃−β) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
−e
])

+
(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))

]T
+ (α− α̃)T ˙̃α+ (β− β̃)T ˙̃β,

(3.14)

since ∀s ∈ [0, 1], (1 − s) > 0 and (s− 1) < 0. Now, using (2.1) and (3.4), (3.14) reduces to

V̇ =

[
(F(x)(α− α̃) +G(y)(β− β̃) −

(
Ds−1

t e(t)
)(t)−(s−1)−1

Γ(−(s− 1))
−k) +

(
Ds−1

t e(t)
)

× (t)−(s−1)−1

Γ(−(s− 1))

]T
e− (α− α̃)T [F(x)]Te− (β− β̃)T

[
G(y)

]T
e

=
[
(α− α̃)TF(x)T + (β− β̃)TG(y)T − eT

]
e− (α− α̃)T [F(x)]Te− (β− β̃)T [G(y)]Te

= −eTe 6 0,

since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system.
Therefore, response system (3.2) can synchronize the drive system (3.1) asymptotically. This completes
the proof.

4. Description of the systems

The nonlinear dynamic of the fractional-order single mode laser Lorenz [8, 16] is described by:

Ds1
t x = a(y− x), Ds2

t y = (c− z)x− y, Ds3
t z = xy− bz, (4.1)

where a,b and c are positive parameters, s = (s1, s2, s3) is the fractional-order, when s = 0.99, system
(4.1) exhibits chaotic behaviors. The mathematical model of the fractional-order modified hybrid optical
system [8] is described by:

Ds1
t x = y, Ds2

t y = z, Ds3
t z = −az− y+ bx(1 − x2), (4.2)

where a and b are positive parameters, s = (s1, s2, s3) is the fractional-order, when s = 0.99, system (4.2)
exhibits chaotic behaviors.

5. Adaptive synchronization of the fractional-order hybrid optical and single mode laser Lorenz chaotic
systems

In order to achieve the adaptive synchronization with unknown parameters of the fractional-order
hybrid optical and single mode laser Lorenz chaotic system (4.1) and the fractional-order modified hybrid
optical system (4.2), system (4.1) is assumed to be the transmitter (drive) system and system (4.2) is
assumed to be the receiver (response). The drive and the response systems are expressed as:

Ds1
t x1 = a1(y1 − x1), Ds2

t y1 = (c1 − z1)x1 − y1, Ds3
t z1 = x1y1 − b1z1, (5.1)

and

Ds1
t x2 = y2 + u1, Ds2

t y = z2 + u2, Ds3
t z = −a2z2 − y+ b2x2(1 − x2

2) + u3, (5.2)
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where U = (u1,u2,u3)
T is the adaptive controller function to be determined for the purpose of adaptive

synchronizing with unknown parameters in spite of the differences in initial conditions. The error system
can be obtained by subtracting system (5.1) from system (5.2),

Ds1
t e1 = y2 − a1(y1 − x1) + u1,

Ds2
t e2 = z2 − (c1 − z1)x1 + y1 + u2,

Ds3
t e3 = −a2z2 − y+ b2x2(1 − x2

2) − x1y1 + b1z1 + u3,

(5.3)

where e1 = x2 − x1, e2 = y2 − y1 and e3 = z2 − z1. So our aim is to design an effective adaptive control
function U to achieve the adaptive synchronization between the fractional-order modified hybrid optical
system (4.1) and the fractional-order modified hybrid optical system (4.2) with fully uncertain parameters,
such that the states of response system (4.2) and the states of drive system (4.1) are globally synchronized
asymptotically, i.e., lim

t→∞ ‖ei(t)‖ = 0, i = 1, 2, 3, where ‖.‖ represents the Euclidean norm.

Theorem 5.1. If the adaptive control function U = (u1,u2,u3)
T is defined as

u1 = −y2 + a1(y1 − x1) +D
s1−1
t

[
â1(y1 − x1)

(
Ds1−1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

]
,

u2 = −z2 + (c1 − z1)x1 − y1 +D
s2−1
t

[
ĉ1x1 −

(
Ds2−1

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

]
,

u3 = a2z2 + y− b2x2(1 − x2
2) + x1y1 − b1z1 +D

s3−1
t

[
− â2z2 + b̂2x2 − b̂2x

3
2 − b̂1z1

−
(
Ds3−1

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

]
,

(5.4)

and the unknown parameters update rule are taken as

˙̂a1 = −(y1 − x1)e1, ˙̂b1 = z1e3, ˙̂c1 = −x1e2, ˙̂a2 = −z2e3, ˙̂b2 = (x2 − x
3
2)e3, (5.5)

where, â1, b̂1, ĉ1, â2, b̂2 are estimates of a1,b1, c1,a2,b2, respectively.

Proof. Insert the adaptive control function (5.4) into (5.3), we get the following new error system which
described by

Ds1
t e1 = Ds1−1

t

[
− ã1(y1 − x1) −

(
Ds1−1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

]
,

Ds2
t e2 = Ds2−1

t

[
− c̃1x1 −

(
Ds2−1

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

]
,

Ds3
t e3 = Ds3−1

t

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1 −

(
Ds3−1

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

]
,

(5.6)

where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, ã2 = a2 − â2, b̃2 = b2 − b̂2. Consider the following Lyapunov
function candidate as:

V =
1
2

(
eTe+ ã2

1 + b̃
2
1 + c̃

2
1 + ã

2
2 + b̃

2
2

)
, (5.7)
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Differentiating (5.7) with the time using (2.2) we get

V̇ =
(
eT ė+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2
˙̃b2

)
,

= e1

[
D1−s1

t

(
Ds1

t e1(t)
)
+
(
Ds1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))

]
+ e2

[
D1−s2

t

(
Ds2

t e2(t)
)

+
(
Ds2

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))

]
+ e3

[
D1−s3

t

(
Ds3

t e3(t)
)
+
(
Ds3

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2
˙̃b2,

= e1

[
D1−s1

t

(
Ds1−1

t

[
− ã1(y1 − x1) −

(
Ds1−1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

])
+
(
Ds1

t e1(t)
)

× (t)−(s1−1)−1

Γ(−(s1 − 1))

]
+ e2

[
D1−s2

t

(
Ds2−1

t

[
− c̃1x1 −

(
Ds2−1

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

])
+
(
Ds2

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))

]
+ e3

[
D1−s3

t

(
D1−s3

t

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1

− (D1−s3
t e3(t))

(t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

])
+
(
Ds3

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1

+ ã2 ˙̃a2 + b̃2
˙̃b2,

(5.8)

since ∀s ∈ [0, 1], (1 − s) > 0 and (s− 1) < 0. Now using (2.1), (5.8) reduces to

V̇ = e1

[
− ã1(y1 − x1) − e1

]
+ e2

[
− c̃1x1 − e2

]
+ e3

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1 − e3

]
+ ã1

(
(y1 − x1)e1

)
+ b̃1

(
− z1e3

)
+ c̃1

(
x1e2

)
+ ã2

(
z2e3

)
+ b̃2

(
− (x2 − x

3
2)e3

)
,

then we get the from

V̇ = −eTe 6 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system
(5.3), it follows that e1, e2, e3 ∈ L∞ and â1, b̂1, ĉ1, â2, b̂2,∈ L∞. From (5.6), we have ė1, ė2, ė3 ∈ L∞. Since
V̇ = −eTe then we obtain

t∫
0

‖e‖2dt 6

t∫
0

eTe dt =

t∫
0

−V̇dt = V(0) − V(t) 6 V(0).

Thus, ė1, ė2, ė3 ∈ L2 and by Barbalats lemma [15], we have lim
t→∞ ‖e(t)‖ = 0. Therefore, response system

(5.2) can synchronize the drive system (5.1) asymptotically. This completes the proof.

5.1. Numerical simulations
In the numerical results of the proposed adaptive synchronization method, Adams-Bashforth-Moulton

method is used to solve the systems for the fractional order si = 0.99, i = 1, 2, 3, and the uncertain
parameters are chosen as a1 = 10,b1 = 8/3, c1 = 28 and a2 = 0.5,b2 = 0.64. The initial values
of the fractional-order drive systems (4.1)-(4.2) and the estimated parameters are arbitrarily chosen in
simulations as x1(0) = −15.8,y1(0) = −17.48, z1(0) = 35.64, x2(0) = 1.5,y2(0) = 0.01, z2(0) = 0.02 and
ã1(0) = 1, b̃1(0) = 1, c̃1(0) = 1, ã2(0) = 1, b̃2(0) = 1, respectively. Adaptive synchronization of the sys-
tems (4.1)-(4.2) via adaptive control law (5.4) and (5.5) are shown in Figs. (1)-(3). Fig. (2) (a)-(c) displays
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the adaptive synchronization of the fractional order chaotic (4.1)-(4.2). Fig. (2) (a)-(b) displays the time
response of estimated values of parameters ã1, b̃1, c̃1, ã2, b̃2 of drive and response system. Fig. (2) (c)
displays the adaptive synchronization errors, e1, e2, e3 with time t. Fig. (3) (a)-(c) displays the steady-state
plane trajectories of drive and response system.
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Figure 1: The adaptive synchronization of the fractional order chaotic (4.1) and (4.2): (a): Signals x2 and x1; (b): signals y2 and
y1; (c): signals z2 and z1.
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Figure 2: (a)-(b): The time response of estimated values of parameters ã1, b̃1, c̃1, ã2, b̃2 of drive systems (4.1) and (4.2); (c):
Adaptive synchronization errors, e1, e2, e3 with time t .
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Figure 3: The steady-state plane trajectories of systems (4.1) and (4.1), (a): signals x1 and x2; (b): signals y1 and y2; (c): signals
z1 and z2;

6. Adaptive anti-synchronization of the fractional-order hybrid optical and single mode laser Lorenz
chaotic systems

In order to achieve the adaptive anti-synchronization with uncertain parameters of the fractional-
order hybrid optical and single mode laser Lorenz chaotic system (4.1) and the fractional-order modified
hybrid optical system (4.2), system (4.1) is assumed to be the transmitter (drive) system and system (4.2)
is assumed to be the receiver (response). In this case the error system can be obtained by adding system
(5.1) to system (5.2),

D
s1
t e1 = y2 + a1(y1 − x1) + u1,

D
s2
t e2 = z2 + (c1 − z1)x1 − y1 + u2,

D
s3
t e3 = −a2z2 − y+ b2x2(1 − x2

2) + x1y1 − b1z1 + u3,

(6.1)

where e1 = x2 + x1, e2 = y2 + y1 and e3 = z2 + z1. So our aim is to design an effective adaptive
control function U to achieve the adaptive anti-synchronization between the fractional-order modified
hybrid optical system (4.1) and the fractional-order modified hybrid optical system (4.2) system with
fully uncertain parameters, such that the states of response system (4.2) and the states of drive system
(4.1) are globally, anti-synchronized asymptotically i.e., lim

t→∞ ‖ei(t)‖ = 0, i = 1, 2, 3, where ‖.‖ represents

the Euclidean norm.

Theorem 6.1. If the adaptive control function U = (u1,u2,u3)
T is defined as

u1 = −y2 − a1(y1 − x1) +D
s1−1
t

[
− â1(y1 − x1) −

(
D

s1−1
t e1(t)

) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

]
,

u2 = −z2 − (c1 − z1)x1 + y1 +D
s2−1
t

[
ĉ1x1 −

(
D

s2−1
t e2(t)

) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

]
,

u3 = a2z2 + y− b2x2(1 − x2
2) − x1y1 + b1z1 +D

s3−1
t

[
− â2z2 + b̂2x2 − b̂2x

3
2 − b̂1z1

−
(
D

s3−1
t e3(t)

) (t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

]
,

(6.2)
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and the uncertain parameters update rule are taken as

˙̂a1 = (y1 − x1)e1, ˙̂b1 = −z1e3, ˙̂c1 = x1e2, ˙̂a2 = −z2e3, ˙̂b2 = (x2 − x
3
2)e3,

where, â1, b̂1, ĉ1, â2, b̂2 are estimates of a1,b1, c1,a2,b2, respectively.

Proof. Inserting the adaptive control function (6.2) into (6.1), we get the following new error system which
is described by

Ds1
t e1 = Ds1−1

t

[
ã1(y1 − x1) −

(
Ds1−1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

]
,

Ds2
t e2 = Ds2−1

t

[
c̃1x1 −

(
Ds2−1

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

]
,

Ds3
t e3 = Ds3−1

t

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1 −

(
Ds3−1

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

]
,

where ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, ã2 = a2 − â2, b̃2 = b2 − b̂2. Consider the following Lyapunov
function candidate as:

V =
1
2

(
eTe+ ã2

1 + b̃
2
1 + c̃

2
1 + ã

2
2 + b̃

2
2

)
. (6.3)

Differentiating (6.3) with the time using (2.2) we get

V̇ =
(
eT ė+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2
˙̃b2

)
,

= e1

[
D1−s1

t (Ds1
t e1(t)) + (Ds1

t e1(t))
(t)−(s1−1)−1

Γ(−(s1 − 1))

]
+ e2

[
D1−s2

t

(
Ds2

t e2(t)
)
+
(
Ds2

t e2(t)
)

× (t)−(s2−1)−1

Γ(−(s2 − 1))

]
+ e3

[
D1−s3

t

(
Ds3

t e3(t)
)
+
(
Ds3

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2
˙̃b2,

= e1

[
D1−s1

t

(
Ds1−1

t

[
ã1(y1 − x1) −

(
Ds1−1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))
− e1

])
+
(
Ds1

t e1(t)
) (t)−(s1−1)−1

Γ(−(s1 − 1))

]

+ e2

[
D1−s2

t

(
Ds2−1

t

[
c̃1x1 −

(
Ds2−1

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))
− e2

])
+
(
Ds2

t e2(t)
) (t)−(s2−1)−1

Γ(−(s2 − 1))

]

+ e3

[
D1−s3

t

(
D1−s3

t

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1 −

(
D1−s3

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))
− e3

])
+
(
Ds3

t e3(t)
) (t)−(s3−1)−1

Γ(−(s3 − 1))

]
+ ã1 ˙̃a1 + b̃1

˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2
˙̃b2,

(6.4)

since ∀s ∈ [0, 1], (1 − s) > 0 and (s− 1) < 0. Now using (2.1), (6.4) reduces to

V̇ = e1

[
ã1(y1 − x1) − e1

]
+ e2

[
c̃1x1 − e2

]
+ e3

[
− ã2z2 + b̃2x2 − b̃2x

3
2 − b̃1z1 − e3

]
+ ã1

(
− (y1 − x1)e1

)
+ b̃1

(
z1e3

)
+ c̃1

(
− x1e2

)
+ ã2

(
z2e3

)
+ b̃2

(
− (x2 − x

3
2)e3

)
,
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then we get the from

V̇ = −eTe 6 0.

Since V is positive definite and V̇ is negative definite in the neighborhood of zero solution of system
(5.3), it follows that e1, e2, e3 ∈ L∞ and â1, b̂1, ĉ1, â2, b̂2,∈ L∞. From (5.6), we have ė1, ė2, ė3 ∈ L∞. Since
V̇ = −eTe, then we obtain

t∫
0

‖e‖2dt 6

t∫
0

eTe dt =

t∫
0

−V̇dt = V(0) − V(t) 6 V(0).

Thus, ė1, ė2, ė3 ∈ L2 and by Barbalats lemma [15], we have lim
t→∞ ‖e(t)‖ = 0. Therefore, response system

(5.2) can anti-synchronize the drive system (5.1) asymptotically. This completes the proof.

6.1. Numerical simulations

In the numerical results of the proposed adaptive synchronization method, Adams-Bashforth-Moulton
method is used to solve the systems for the fractional order si = 0.99, i = 1, 2, 3, and the uncertain
parameters are chosen as a1 = 10,b1 = 8/3, c1 = 28 and a2 = 0.52,b2 = 0.64. The initial values
of the fractional-order drive systems (4.1)-(4.2) and the estimated parameters are arbitrarily chosen in
simulations as x1(0) = −15.8,y1(0) = −17.48, z1(0) = 35.64, x2(0) = 1.5,y2(0) = 0.01, z2(0) = 0.02 and
ã1(0) = 1, b̃1(0) = 1, c̃1(0) = 1, ã2(0) = 1, b̃2(0) = 1, respectively. Adaptive anti-synchronization of the
systems (4.1)-(4.2) via adaptive control law (5.4) and (5.5) are shown in Figs. (4)-(6). Fig. (4) (a)-(c) displays
the adaptive anti-synchronization of the fractional order chaotic (4.1)-(4.2). Fig. (5) (a)-(b) displays the
time response of estimated values of parameters ã1, b̃1, c̃1, ã2, b̃2 of drive and response system. Fig. (5) (c)
displays the adaptive synchronization errors, e1, e2, e3 with time t. Fig. (6) (a)-(c) displays the steady-state
plane trajectories of drive and response system.
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Figure 4: The adaptive anti-synchronization of the fractional order chaotic (4.1) and (4.2): (a): Signals x2 and x1; (b): signals y2
and y1; (c): signals z2 and z1.
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Figure 5: (a)-(b): The time response of estimated values of parameters ã1, b̃1, c̃1, ã2, b̃2 of drive systems (4.1) and (4.2); (c):
Adaptive anti-synchronization errors, e1, e2, e3 with time t .
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Figure 6: The steady-state plane trajectories of systems (4.1) and (4.1),(a): signals x1 and x2; (b): signals y1 and y2; (c): signals z1
and z2;

7. Conclusion

This paper proposes a robust adaptive control technique and studies the synchronization and anti-
synchronization of fractional order chaotic optical systems in the presence of uncertain parameters. The
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Lyapunov stability technique proves the asymptotic stability of the closed-loop system. The proposed
control scheme is fast convergence of the state trajectories to the origin. Comparative examples are pro-
vided to show the performance and efficiency of the proposed control technique. Numerical simulation
further validates the theoretical findings. The results of this study could be beneficial in the area of other
fractional order chaotic optical systems, both theoretically as well as practically.
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