J. Math. Computer Sci., 23 (2021), 289-301

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Q¥

3

yourna/ or
o
N
U109 ¥

PEicinos
Journal Homepage: www.isr-publications.com/jmcs

Some new generalized weighted dynamic inequalities of  ® Check for updates
Hardy’s type on time scales

S. H. Saker?, M. M. A. El-sheikh?, A. M. Madian®*

4Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt.
bpepartment of Mathematics, Faculty of Science, Menoufia University, Menoufia, Egypt.

Abstract

In this paper, we will prove some new generalized weighted dynamic inequalities of Hardy’s type on a time scale T. The
obtained results contain as special cases some published results when the time scale T = R and when T = IN. The results, to the
best of the authors” knowledge, are essentially new.
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1. Introduction
In 1920, Hardy [22] proved that if p > 1, and a,, > 0 for n > 1, then
1) P 0
1 o« P\’
n=1 k=1 n=1

In 1925, Hardy [23] proved the continuous version of the inequality (1.1) via calculus of variations, which
states that: If p > 1, f > 0 over interval (0, co) and fgo fP(x)dx < oo, then

(L[ " L L R
Jo <x Jo f(t)dt> dx < (p—1> Jo P (x)dx. (1.2)

The constant (p/(p—1))” in (1.1) and (1.2) is the best possible. Also in 1925 [23, Theorem B] Hardy
generalized (1.1) and proved thatif p > 1, f(n) > 0, w(n) > 0and A(n) = Y _;_; w(k), then

00 n P p
3 win (/\(111) w(k)f(k)) < (pil> 3w (). (1.3)
k n=1

n=1 =1
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For more generalizations, extensions and applications of these inequalities, we refer the reader to the
papers [8-10, 18, 26, 28, 32, 33] and the books [24, 25]. In 1928, Copson [19] generalized (1.3) and proved
thatif p > c¢ > 1, f(n) > 0 and w(n) > 0 for n > 1, then

00 P
w(n) = PC (1) P
A%n)<§:deﬁk0 \\(C_1> Z:w JAP~E ()P (n). (14)
-1 k=1
In 1976, Copson [20] established the continuous version of (1.4) and proved thatif p > 1, ¢ > 1, then
W(x)FP (x) p "Jb ~
— "dx < P—C(x)fP ‘
Jo ACCx) dx < 1 . w(x)APT¢(x)fP (x)dx, (1.5)

where N

X

Alx) = J w(t)dt, and F(x) = J w(t)f(t)dt.
0 0

In 1990, Mohapatra and Vajravelu [27] proved new extensions of Copson’s type inequality (1.5). In par-

ticular, they proved that if w (x) is positive and continuous in [0, co) and there exist positive constants A

and B such that

!

X ‘w (x)‘ <Aw(x), and xw(x) < BA(x), forall x >0, (1.6)
then 00 F( ) P 0 /1 X P
X 1
JO w(x) (/\(x)) dx < (A+B)P Jo (x Jo wr (1) (t) dt> dx (1.7)
for f (x) > 0 and p > 1. Also, in [27] they proved that if (1.6) holds and wl/P (1) f (t) /t € L1 (x, 00) for all
x > 0, then ;
o0 W (t)F(t) .\ [ (% wr (1)f(t)
L w (x) <L 7/\“) dt) dx < (B+pC)P L (L ¢ dt) dx, (1.8)

where C =1+ A +B.

In the last decades some authors have been interested in finding some discrete results on 1P (IN)-
analogues to LP(IR)-bounds in different fields in analysis and as a result this subject becomes a topic of
ongoing researches. One reason for this upsurge of interest in discrete case is also due to the fact that
discrete operators may even behave differently from their continuous counterparts (see [17, 36]). So it
is natural to look for the discrete versions of the inequalities (1.7) and (1.8) which is one of our aims.
On the other hand, the study of dynamic inequalities on time scales has received a lot of attention in
recent years and becomes a major field in pure and applied mathematics. The time scale T is an arbitrary
nonempty closed subset of the real numbers R. These results contain the classical continuous and discrete
inequalities as special cases when T = R and T = IN and can be extended to different inequalities on
different time scales suchas T =hIN, h >0, T = qIN for g > 1, etc. For more details about the dynamic
inequalities on time scales, we refer the reader to the books [2, 3, 13] and the papers [1, 6, 7, 10, 11, 35].

However a lot of results have been written for dynamic inequalities on time scales, there are few results
have been written for the weighted dynamic inequalities of Hardy’s type on time scales. So, we confine
ourselves in this paper in proving some new weighted inequalities on a time scale T, which contain the
discrete versions of inequalities of (1.7) and (1.8) as special cases. For completeness, in the following, we
present some related results of dynamic inequalities on time scales. In [29] Saker proved that if p > 1 and
A g € Crq(la, c0), R™), then

(o.¢]

[ A oo acspr [N rmArmg At

where .
A(t) :J A(s)As, and ®(t) :J g(s)As, for t € [a, 00)T.
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In [30] Saker, O'Regan and Agarwal proved that if a € [0,00)1, p > 1 and A, g € Crq(la, c0)r,RT),
then

(o.¢]

ro A(H)DP ()AL < pP J A(t)gP ()AL,

a a

where ¢
Alt) = J A(s)As, and @(t) = J ASIO(S) Ao for t ¢ [a, 00
a ¢ A°(s)
Also, the authors [30] proved that if a € [0, co)T and p > 1, then
ro A£)DP (1) At < pP JOO "M 1)gP (1At
a I PRy '
where
© A(s)gl(s)

As, for t € [a,00)T.

t
A(t) :J Al(s)As and ®(t) = L Als)

Also in [30] they proved that if a € [0,00)1, p > 1 and A(s) >0, f(s) > 0 Vs € [a, 0o, then

T oy e (p)p w(AU(t))P(P” )
Ja (AP (Yo (t)" At < — L AT A1) P (t)At,

-+

where .

t
Wit = | A)f(s)as and At = | Als)as, for t€ la, ool

a a
with A(oo) = oo. In [31] Saker, O'Regan and Agarwal proved that if a € [0,0c0)r, p > ¢ > 1 and A,
g € Cra(la, co)r,RT), then

® @) < P )p AP
|, s < (51) |, T e oas

where

t t

A(s)As, and O(t) :J A(s)g(s)As, for t € [a, 00)T.

a

At) = J

Also, the authors [31] proved that if a € [0,00), p >1,0< c <1and A, g € Crq4(la, 00), RT), then

a

® o (@m)” P\ ™ ofiypc
[Tammeat< (12) | e amgrwas

where

t 00

A(s)As and O(t) :J A(s)g(s)As, for t € [a, co)T.

t

At) = J

In [33] Saker et al. proved that if a € [0,00)r, 1 <y <pand A, q, f € Cyq ([a,00)1, RT) such that q(t) is
an increasing function on [a, co)t, furthermore, if there exists a constant K > 0 such that

a

_ PPATDOP(H)  _ p
vy—1+ Nt [q‘f(t)]z (@°(1))P = K’ for t € [a, 00)T,
then -
UL ()P p [ (AT p
L (A°(1))Y (@(t)rAat<K Ja A) vy A(t)fP(1)At,
where

2
=
I
g_ﬁ
2
>
(72}
o}
a
w»
>
(72}
)
=]
Q.
=
=
I
;ﬁ
A
=
(72}
0
»
=
(72}
B
&
=g}
Q
=
f-#'
m
g
=
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Also, the authors in [33] proved that if a € [0, c0), p > 1,0 < vy < 1 and q(t) is an increasing function on
[a, oo)T, furthermore, if there exists a constant K > 0 such that
qA(HA°(t) _ p

ey s B
1—vy AL Z K fort € [a,00)T,

then - N
J (Aﬁ((t)))y (@(t))" At < KP J (A (1))PTY A(1)fP(1)At,
where A(t) = [ A(s)q(s)As and D(t) = [T°A (s)As, fort € [a, 00)T.

Followmg this trend and to develop the study of dynamic inequalities, we will prove some new
weighted dynamic inequalities of Hardy’s type on time scales. Our results when T = R give the charac-
terizations of the inequalities (1.7) and (1.8) proved by Mohapatra and Vajravelu [27] and when T = IN
our results are essentially new. The paper is organized as follows. In Section 2, we present some prelim-
inaries concerning the theory of time scales and present the basic lemmas that will needed to prove the
main results. In Section 3, we prove the main results and derive the discrete versions of the inequalities
(1.7) and (1.8) which, to the best of the authors” knowledge are essentially new.

2. Preliminaries and basic lemmas

In this section, we recall the following concepts related to the notions of time scales. For more details of
time scale analysis, we refer the reader to the two books by Bohner and Peterson [12, 13] which summarize
and organize much of the time scale calculus. A time scale T is an arbitrary nonempty closed subset of
the real numbers R. We define the time scale interval [a, blt by [a, blt := [a, b]NT.

Definition 2.1. Let T be a time scale. For t € T, we define the forward jump operator ¢ : T — T by
o(t):=inf[se T:s > t},

while the backward jump operator p : T — T is defined by
p(t) :=sup{s € T:s >t}.

A point t € T is said to be right-dense if o(t) := t, right-scattered if o(t) > t, left-dense if p(t) =t
and is left-scattered if p(t) < t. The points that are right-scattered and left-scattered at the same time are
called isolated and the points that are simultaneously right-dense and left-dense are called dense. The
graininess p for on time scale T is defined by p(t) := o(t) —t, and for a function f : T — R the notation
fo(t) denotes f(o(t)).

A function f : T — R is said to be right-dense continuous (rd-continuous) provided f is right con-
tinuous at right dense points and there exists a finite left limit at all left-dense points. The set of all
such rd-continuous functions is denoted by C,4(T) = Cq(T,R). We assume throughout that T has the
topology that it inherits from the standard topology on the real numbers R.

In this paper, we will refer to the Cauchy (delta) integral of g is defined by f Y g(x)Ax == G(t) — G(a).

It can be shown (see [15]) that if g € C,4(T), then the Cauchy integral G(t) := ft Ax exists, tg € T,

and satisfies GA(t) = g(t), t € T. An infinite integral is defined as fa f(x)Ax = hmb_m fa f(x)Ax. In
case T =R,wehaveo(t)=p(t)=t, u(t) =0, f4 =f, and

Jj f(t)At = Ef(t) dt

andincase T=7Z,wehaveo(t)=t+1,p(t) =t—1, u(t) =1, f4 = Af, and

b b—1
J f)At=) f(t)
a t=a
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The product and quotient rules for the derivative of the product fg and the quotient f/g (where gg° # 0,
here g° = g o o) of two delta differentiable functions f and g are

(fg)® = fg2 +fAg% = fAg + g2,
(i)A _ fAg—fg?
g 997
Let f : R — R be continuously differentiable and suppose that g : T — R is delta differentiable. Then
fog:T — R is delta differentiable and the the next formula

0

1
(fog)*(t) = (J ' (g (t) +h(t) g (1)) dh) g2 (1),

holds. A special case of the chain rule is

[ (1)]% =A Jl hu®(t) + (1 —h) ut)* Tu? (t) dh. 2.1)
0

The integration by parts formula on time scale is given by

b b
J u(t)vA(t) At = u(t)v(t)]° —J u® (t)vo(t)At.

a a

Holder inequality on time scale is given by

b b % b %
J f(t)g(t)] At < (J (L) At) (J |g(t)|th> , (2.2)

wherep > 1,1/p+1/q =1and f, g € Cyq ([a, bly,R). The inequality (2.2) is reversed for 0 < p < 1 or
p < 0. Minkowiski’s inequality on time scale is given by

b % b % b P
(J (R0 f(x) + g(x)[P AX> < <J IR (x)IP AX> +<J Ih(x)1g(x)[? AX> , (2.3)

a a a

where p > 1and f, g, h € Cy4 ([a, blT,R) . We need the following lemmas to prove our results.

Lemma 2.2 ([32]). Let T be a time scale with a, x € T such that x > a. If p > 1, then

o (x) P o(x) o(t) p—1
(J h(tm) o[ (J h(zmz> At

Lemma 2.3 ([32] ). Let T be a time scale with b, x € T such that b > x. If p > 1, then

b P b b p—1
(J h(t)At) < pJ h(t) (J h(z)Az) At.
X X t

Lemma 2.4 ([34] ). Let T be a time scale with a, b € T and h, H be nonnegative and rd-continuous function

defined on [a, bl . Then
b b b o(t)
J H(t) (J h(x)At) Ax :J h(t) (J ' H(x)Ax) At.
a t a a

The results obtained in this paper have numerous applications in the study of the oscillation of various
classes of dynamic equations on time scales; see, for instance, [14, 16].
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3. Main results

In this section, we will state and prove our main results. Throughout this paper, we will assume
that the functions in the statements of the theorems are rd-continuous nonnegative functions defined
on I =[a, c0)y and the integrals considered are assumed to exist and finite and assume for the sake of
conventions that 0- co = 0 and 0/0 = 0. For any function ¢ : T — R*, we will define pby 1/p +1/p =1,
for p > 1. Also the operator @ : T — R* by

Theorem 3.1. Let p > 1 and T be a time scale with a € [0,00)y . Let d(x) be a positive and nondecreasing such
that

o(x) ‘(I)A (x)‘ < AP(x), and o(x)p°(x) < BO(x), forall x € 1. (3.1)
Then

00 o(x) P % o(x) P
J d)(x)( 1 J d)(t)f(t)At> Ax<(A+B)PJ <1J d)Mt)f(t)At) Ax,  (32)

a Do (x) Jq o(x) Jq
where A and B are positive constants and @ (co) = oo.

Proof. For simplicity, we define g(x) = fz ¢1/P(t)f(t)At. This gives

and then f(x) = g®(x)d /P (x). The left hand side of (3.2) now can be written in terms of g in the form

o0 o(x) P % o(x) . P
j ¢uJ< L J' ¢Hﬁﬁﬂh> Ax=J‘<Mx)< L J dﬂﬂqﬂw¢—vupu) Ax

a a D (x) Ja

00 1 o(x) A a p
= | o0 (Gorg | atmermar) ax

(3.3)

where p’ is the conjugate of p such that 1/p +1/p = 1; for p > 1. Also integrating the term
fﬁm g (t)dp/P (t)At by parts with u(t) = /P (t) and v2(t) = g2 (t), we obtain

1 A
<q>v’ (t)) At

A
(q)v (t)> At.

h~]

a

x)

g°(t)

o) (3.4)
J g°(t)

3~

o(x) A L/ L/ o(x) ol
J A (067 (VAL = g7 (1) J
7 ()7 —

=g7(x)($
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Applying Minkowski’s inequality (2.3), we see

. b
(J d(x) Ax>
e LAY
gGX O-X ) o0
°(x) ] A") *(J )

Applying the chain rule (2.1) (noting that ¢(x) is nondecreasing function), we see

1 A
<d> ’(t)) _

1 o(x)
5500 L bt ()AL

(3.5)

a1
7

1
( JO e () + (1—h) p(t)]» dh) o2 (1)

=

1-h)d(t)) » (3.6)

N

B|—= T~ T~ T =
S
=
5
q
=
_|_

Now by using (3.5), we have

(joocb(x)
S PR LI
< (J o) !9 ("gi’( ()"”"] Ax) 7)

el

>

X
Sl= e
o=

l
p
ng

Since ¢(x) is nondecreasin have by using (3.1), that

L
)

1\ P
> Bg?(x)(p(x)) ¥
J, o ( as | ( X7 (x) ) ax
S ) (3.8)
_ - g°(x)(d°(x)) P _ ©(g°(x)
‘L b m( ox) ) wm=wr| <c(x)) ax
Let N
w(t) = g“(t)d)(t)_% \q;A (t)] and Q(x) —J w(t)At. (3.9)

From the definition (3.9), Lemma 2.2, and Lemma 2.4, we get

00 1 o(x) L A P
|, ¢(x)<®c(x) | et (t)}&) M

0 1 o(x) g A P
<L ¢(x)<®c(x) L g’ P (1) [d (t)}At> Ax
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o0 1 (o) P
:J q)(x)( J w(t)At) Ax (3.10)

Since ®(x) < ®9(x), then

(h©o(x) + (1—h) @(x))? = (h®°(x) + (1 —h) D (x))P’

and since p > 1,
(1-p) < (1-p)
(hR®(x) + (1—h) @(x))" = (h®°(x) + (1 —h) ©(x))"’

Applying the chain rule (2.1), we get

1
(@(x) )" = (1-p) jo (RO (x) + (1 —h) @(x)) 7 dh (©(x))>
1 A

. “‘P)J dh (®(x)

o MO(x)+ (1—h) Do (x))° (1—p) p(x) (®(x))P.

Integrating the last inequality from t to co, we obtain

[ 000 (@700 T ax < s (o).
t (p—1)

Substituting into (3.10), we obtain

00 1 o(x) " 1 A P
L d(x) o) L g’ ()P [d2 (1) At p Ax

P Oo —1 1— . ©
< o [ et e ran= P et

Thus by (3.9), we have

%0 Q(o(x)\" p ™ Q(o(t)\" !
[Fo0 (%) s 2 [T (%) e

Next, writing w(t) = (w(t)d)_l/ P (t)) ¢/ P (t) and applying Holder’s inequality (2.2) with exponents p

!
and p , we have

1
7

* o QL)) P TP N ([ e [T e 212
[ (580 s ([ oo # ) ([ oo o )
We can obtain from (3.11) and (3.12) that

0 Q(o(x)\? P ([ TP NT L [Q(e)] L\
I, “)(X)( D) ) A“p—l(L {‘”(t”’ ' (”] At) (J “’“)[ (1) ] At) - O
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By combining (3.9) and (3.1), we see

a1
7

P () =g(t) [ (V)| d M) <A

_ 1
7

w(t)p ¥ (1) =g [t)d T (1) [d2 (1) b

Substituting into (3.13) and dividing by the last term, we get

o [QEENTP NT e (2] )
o ow Bt ] =) <58 (] ] =)

00 r 1P P roo o P
L b (x) %CEES)) Ax < AP (pil> J [9 (t)] At. (3.14)

Substituting (3.14) and (3.8) into (3.7), we get

. P\
(J o(x) Ax)

900", )7, 1 POV [P MTP ) =g 4 )7
<(BPL [o(x)} A") *p’(Ap <p—1> J [o(x)} A") =(B+A) (J {o(x)] A") ’

which is the desired inequality (3.2). The proof is complete. O

So

1 o(x)
5500 L b(H)F(1)AL

Remark 3.2. As a special case of Theorem 3.1 when T = IR, we have the inequality (1.7).

In the following, we consider the case when T = IN, and formulate the discrete version of (1.7).
Ifp>1,(n+1)Ad (n)| <Ad(n),and (n+1)d(n+1) < BO(n+1), then
P
(k)f (k)> -

00 P 00 n
1 = 1
- - < P
> o) <®(n+ P ¢(k)f(k)> <(A+B)" ) <n+ X
n=1 k=1
To prove the following theorem, we will assume that there exists a constant m > 1 such that ®°(t) <

k=1
mao(t).

T

Theorem 3.3. Let T be a time scale with a € [0,00)y and p > 1. Let $(x) be a positive and nondecreasing
function. Then

a

o0 (o/e] o0 o0 = p
J b(x) <J ¢(t)f(t)At>pr< (B+Cpm)PJ (J WAt) Ax, (3.15)

where C=1+ A +B.

Proof. Set A(x) = fio $1/P(t)f(t)/tAt. Hence A2(x) = —d/P(x)f(x)/x < 0, and consequently f(x) =
—x$ /P (x)A2(x). This implies that

GO, [T () A
Lm o) T L(X) o) * (AL

Integrating by parts with u(t) = td)l/P/ (t)/®@(t) and v2A(t) = A2(t), we get

1 1 A
[0 5 oI o | (td) (t)) e (At

o]

o(x) (D(t) @ X)
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1 A
tdpr (t)
D(t)

A°(t)At.

This implies that

Applying Minkowski’s inequality (2.3), we see

= e ewrw P N[
(KT <(u

(o(e

Since ¢(x) is nondecreasing, A(x) is nonincreasing so A°(x) < A(x) and by (3.1), we get
L P
* a(x) (d(o(x))?" & x) (b (O'X -
L ¢(x)( g A (x)) mes< | ( L " A% )> Ax
_ [B ,5 A% (x )]P Ax (3.17)

_gp J IA®(x)]P Ax < BP J AP Ax.

a

By using the quotient and product rules (2.1) and (3.6), we have

1 A 1
1 A v —tp A
(td)v' m) 0w () e

O (t) O(t)Do(t)

O(t)Do(t)
T oetmer ' wr
Seqy T pon 0oy

Tooco(t) |t

e () [1 L o) d)(t)]
t td(t) D) |-

Thus, we have

1 A
tpr' (t)

x (Dcr(t)

T TV o

% A = A o
tr (1) [1 o) [$2 (1] bt | _ tdr' (1) [1+G(t)|¢ (0] e |
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Since ¢(t) is nondecreasing and by the assumption (3.1), we have

1 A
tdpr (t)
O(t)

where C =1+ A + B. Since A(t) is nonincreasing, we get

1 A P 1 P
> | tor (1) - > © v (1)
L d(x) (L(X) ( o) ) A (t)At) Ax < CJ d(x) (J /\(t)At) Ax. (3.18)

td)i'(t) 1 A B ¢ (t)
S @°(t) <t+p’t t><c

a o(x) @t
Let 1
D) = d)q;(g)/\(t) and W(t) = J:otl)(z)Az. (3.19)
Then 1
WA(t) = —p(t) = —‘bqj(g) Alt) < 0.

Now, from (3.19) and since ¥(t) is nonincreasing we have ¥(o(t)) < W(t), we get

1 P
K (L(X) q’q‘;(S)A(t)At) tx = | BGONE0PAY < | " o) (¥lx) P

Applying Lemma (2.3), we get

(o.¢]

Jm PRIV Ax <p | 9) (Jw b (W(xnp—lm> Ax.

a

Integrating by parts with u?(x) = d(x), v(x) = fio P(t) (‘JL/(t)p*1 At and by using the assumption @ (x) <
ma(x), we get

00 00 00 00 00 00 A
J $(x) <J tl)(t)‘i’(t)plAt> Ax:CD(x)J P)Y(t)P! +J D(x) (—J w(t)‘{’(t)plAt> Ax

_ ro O (x)(x)(¥(x))P 1 Ax < m J O () (x) (¥(x))P 1 Ax.

Thus

[e¢] o0

CI)(X)IP(X)(‘P(X))p_lAXZPmJ O(x)b(x)d pl7/(><)<I>P (WP (x)Ax.

a

ro Bx)(¥x)PAx < pm |

a
Applying Holder inequality (2.2) with exponents p and p’, we obtain

(0.¢]

1 P % o] L/
[@(x)w(xm ; (x)} Ax) (J d»(x)(wx))mx)".

a

| °° 1) (¥())PAx < pm (J

a

From the definition (3.19) and dividing by the last term, we have

fo d(x) (W()P Ax < (pm)P JOO Alx)PAx. (3.20)

a
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Substituting (3.18) and (3.19) into (3.20), we see

A P
o0

= = ' (V) |
J d(x) L(X) o) A° ()AL | Ax < (Cpm)P Ja A(x)P Ax. (3.21)

Substituting (3.17) and (3.21) into (3.16), we see

<Eo b(x) U:x) d)g)(igt)m] P Ax> v < <BP Eo /\(x)pAX> P n ((Cpm)P J:o /\(X)pr> »

= (B+ Cpm) <Joo /\(x)pr> ’ ,

a

which is the desired inequality (3.15). The proof is complete. O

Remark 3.4. As a special case of Theorem 3.3 when T = R and m = 1, we have the inequality (1.8).

In the following we consider the case when T = N, and formulate the discrete version of (1.8).

Corollary 3.5. If p > 1, (n+1)|Ad (n)| < Ad(n), (n+1)d(n+1) < BO(n), then

> 2 Gk)fk) ) > (2 Vi)’
Z‘b(n)( Z @(k)) g(cpm‘i‘B)pZ(kZ k) ,

n=1 k=n+1 n=1 =n

where C=1+ A +B.

4. Conclusion

In the context of this article, we presented generalizations of weighted dynamic inequalities of Hardy’s
type on time scales. From these inequalities, as particular cases, we formulated some integral and new
discrete inequalities. The technique is based on the applications of well-known inequalities and tools
from time scale calculus. For future work, we can present such inequalities by using Rieman-Liouville
type fractional integrals and fractional derivatives on time scales. It will also be very interesting to present
such inequalities on quantum calculus.
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