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Abstract
In this paper, we formulate a virus infection model with n classes of target uninfected cells, n classes of latent infected

cells, n classes of active infected cells, virus particles, and B cells. Three types of time delays and the impairment of B cells
are involved. The Well-posedness of the model is demonstrated. Basic reproduction number of infection R0 > 0 is established,
which determines the existence of equilibria as follows; when R0 is greater than unity, and then the model has two equilibria.
Otherwise, the model has only a single equilibrium. The global stability of equilibria is proven using Lyapunov’s direct method
and applying LaSalle’s invariance principle. To support our theoretical results, we have performed some numerical simulations
in case of n = 2 where the model can describe the HIV dynamics with two types of target cells, CD4+ T cells and macrophages.
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1. Introduction

In the last decades, an abundant various mathematical models of human viral infections have been
proposed, modified and analyzed [5, 11, 13, 18, 19, 35, 39, 42, 46, 48, 49, 51]. These models can help
researchers to (i) discover the interaction between virus particles and different types of human body cells;
(ii) predict the future clinical status of patient; (iii) design an efficient drug dose; and (iv) improve a
new treatment. The basic virus dynamics model was introduced in [38] which described the interaction
between uninfected target cells (U(t)), infected cells (A(t)) and virus particles (V(t)) over time t. Since a
part of the infected cells are passing through the latent stage (which is a stage that infected cells cannot
produce any virions until they become active later), the basic model have been expanded to consider this
stage of infection by taking into account the dynamics of latent infected cells (L(t)) in several works (see,
e.g., [21, 28, 40]).

Once a virus enters a body, the innate immunity reacts against the attack and the adaptive immunity
activates. The adaptive immunity is an important defense line against viruses because it has a specific
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response to any invader and has a memory cells to remember this invader for a quick response in the
next time [43]. One of the adaptive immune system army is B cells which generate antibodies to capture
the viruses to erase them from the body by other immune cells [39]. However, B cells could confront
some factors that impair their functions such as malnutrition, aging, cytotoxic drugs, irradiation, trauma,
tumors, some diseases, e.g., diabetes and immunosuppression by microbes, e.g., malaria, measles virus
and HIV [1, 6, 9, 36]. The impairment of immune response could lead to fatal complications to patient
[43].

During the viral infection process, the time delays are inseparable to several phases of infection such
as delays during cell division, delays of virus production and delays in activation of some medications
from a prodrug to an active form and so on. Therefore, varied kinds of time lags have been inserted into
virus dynamics models to depict the interactions between virus particles and body cells in more realistic
way [7, 10, 17, 23–26, 32, 37, 50].

Some viruses target more than one type of cells to take advantage of them to replicate themselves, e.g.,
HIV-1 invades CD4+ T cells and macrophages [41]. HTLV-1 preferentially infects CD4+ T cells, CD8+

T cells, dendritic cells, and monocytes [30]. Chikungunya virus targets macrophages, fibroblasts and
endothelial cells [4]. Thus, the basic virus infection model with multi-target cells has been introduced by
Elaiw in [12] and then it has been extended to include the latent stage of infection in the following form:

U̇i(t) = ρi − γiUi(t) −ωiUi(t)V(t),
L̇i(t) = ωiUi(t)V(t) − (ζi + νi)Li(t),
Ȧi(t) = νiLi(t) −βiAi(t),

V̇(t) =

n∑
i=1

κiAi(t) − ξV(t),

(1.1)

where i = 1, 2, . . . ,n. These symbols Ui(t), Li(t) and Ai(t) denote the populations of uninfected cells,
latent infected cells and active infected cells of class i, respectively. ρi and γi represent the birth and
death rate constants of the uninfected cells of class i, respectively. The infection rate is given by ωiUiV ,
where ωi is rate constant of the virus-target incidence. The latent infected cells of class i are transmitted
to active infected cells of class i at rate νiLi and die at rate ζiLi. The active infected cells of class i and
free virus particles die at rates βiAi and ξV , respectively. An active infected cells of class i produce an
average number κi of virus particles.

In [14], the authors have improved model (1.1) and involved the dynamics of B cell immunity as:

U̇i(t) = ρi − γiUi(t) −ωiUi(t)V(t),

L̇i(t) = (1 − χi)ωiUi(t)V(t) − (ζi + νi)Li(t),

Ȧi(t) = χiωiUi(t)V(t) + νiLi(t) −βiAi(t),

V̇(t) =

n∑
i=1

κiAi(t) − ξV(t) − ρV(t)B(t),

Ḃ(t) = α+ δV(t)B(t) − µB(t).

The virus particles are attacked by antibodies at rate ρVB. The antibodies are produced at constant rate
α, proliferated at rate δVB and died at rate µB. A fraction (1− χi) of infected target cells is assumed to be
latent infected cells and the remaining χi becomes active infected cells, where 0 < χi < 1. Mathematicians
have modified multi-target cells models and discussed them in several works (see, e.g., [44, 45, 47]).

We motivated and inspired by the previous works to introduce our virus dynamics model including:
(i) multi-target cells, (ii) latent stage of infection, (iii) multiple time delays, (iv) B-cell impairment.

2. The proposed model

For the sake of understanding the effect of B cell functions impairment on interaction between n

classes of uninfected target cells Ui(t), n classes of latent infected cells Li(t), n classes of active infected
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cells Ai(t), virus particles V(t) and B cells B(t), where i = 1, 2, . . . ,n, we propose a mathematical model
consisting of (3n+2)-differential equations as:

U̇i = ρi − γiUi −ωiUiV ,
L̇i = (1 − χi)e

−τiηiωiUi(t− τi)V(t− τi) − (ζi + νi)Li,

Ȧi = χie
−λiθiωiUi(t− λi)V(t− λi) + νiLi −βiAi,

V̇ =

n∑
i=1

κie−πiιiAi(t− πi) − ξV − ρVB,

Ḃ = εV − µB− ϑVB,

(2.1)

where we use Ui = Ui(t), Li = Li(t), Ai = Ai(t), V = V(t) and B = B(t) for simplicity. The B cells decay
at the rate ϑVB due to impairment factors. The time from virus enters a target cell of category i to become
latent infected is given by τi, while λi is the time between virus enters a target cell of category i and the
production of new virus particles from active infected cell of class i. The probability of latent and active
infected cells surviving to the age of τi and λi are represented by e−τiηi and e−λiθi , respectively, where
ηi and θi are constants. The parameter πi represents the time necessary for immature virus to become
mature. The factor e−πiιi represents the probability of immature virus surviving to the age of πi. All the
parameters of the model are positive.

3. Preliminaries

The initial conditions for model (2.1) take the form:
Ui(z) = ϕi(z), Li(z) = ϕi+n(z), Ai(z) = ϕi+2n(z), i = 1, 2, . . . ,n,
V(z) = ϕ3n+1(z), B(z) = ϕ3n+2(z),
ϕk(z) > 0, z ∈ [−T , 0], k = 1, 2, . . . , 3n+ 2,

(3.1)

where T = max{τ1, . . . , τn, λ1, . . . , λn,π1, . . . ,πn}, ϕk(z) ∈ C([−T , 0], R+) and C is the Banach space of
continuous functions mapping the interval [−T , 0] into R+ with norm ‖ϕk‖ = sup

−T6z60
|ϕk(z)| for ϕk ∈ C.

Now, by the standard theory of functional differential equations [31], we ensure that model (2.1) has a
unique solution satisfying the initial conditions (3.1).

3.1. Non-negativity and boundedness of solution
In the following, we establish the non-negativity and boundedness of solutions of model (2.1).

Proposition 3.1. For i = 1, 2, . . . ,n, let (Ui,Li,Ai,V ,B) be any solution of model (2.1) satisfying the initial
conditions (3.1), then Ui,Li,Ai,V and B are all non-negative and ultimately bounded for t > 0.

Proof. From the first equation of model (2.1), we get U̇i |Ui=0= ρi > 0, therefore Ui > 0 for all t > 0.
Further, for all t ∈ [0, T ], we have

Li(t) =ϕi+n(0)e−(ζi+νi)t + (1 − χi)e
−τiηiωi

∫t
0
e−(ζi+νi)(t−x)Ui(x− τi)V(x− τi)dx > 0,

Ai(t) =ϕi+2n(0)e−βit +
∫t

0
e−βi(t−x)

(
χie

−λiθiωiUi(x− λi)V(x− λi) + νiLi(x)
)
dx > 0,

V(t) =ϕ3n+1(0)e−
∫t

0(ξ+ρB(y))dy +

n∑
i=1

κie−πiιi
∫t

0
e−
∫t
x(ξ+ρB(y))dyAi(x− πi)dx > 0,

B(t) =ϕ3n+2(0)e−
∫t

0(µ+ϑV(y))dy + ε

∫t
0
e−
∫t
x(µ+ϑV(y))dyV(x)dx > 0.

By a recursive argument, we have Li > 0, Ai > 0, V > 0 and B > 0 for all t > 0. Thus, we ensure
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the solutions of model (2.1) are non-negative. In order to show the boundedness of solutions, we have
U̇i 6 ρi − γiUi from the first equation of model (2.1) which implies that limt→∞ supUi(t) 6 ρi/γi and
then Ui is ultimately bounded. Now, let us consider

Fi(t) = (1 − χi)e
−τiηiUi(t− τi) + χie

−λiθiUi(t− λi) + Li +Ai, i = 1, 2, . . . ,n,

then a time derivative of Fi is given by:

Ḟi =(1 − χi)e
−τiηiρi − (1 − χi)e

−τiηiγiUi(t− τi) − (1 − χi)e
−τiηiωiUi(t− τi)V(t− τi)

+ χie
−λiθiρi − χie

−λiθiγiUi(t− λi) − χie
−λiθiωiUi(t− λi)V(t− λi)

+ (1 − χi)e
−τiηiωiUi(t− τi)V(t− τi) − (ζi + νi)Li + χie

−λiθiωiUi(t− λi)V(t− λi) + νiLi −βiAi

=(1 − χi)e
−τiηiρi − (1 − χi)e

−τiηiγiUi(t− τi) + χie
−λiθiρi − χie

−λiθiγiUi(t− λi) − ζiLi −βiAi

6ρi − σi
[
(1 − χi)e

−τiηiUi(t− τi) + χie
−λiθiUi(t− λi) + Li +Ai

]
=ρi − σiFi(t),

where σi = min{γi, ζi,βi}. It follows that

lim
t→∞ sup Fi(t) 6 ci, lim

t→∞ supLi(t) 6 ci, lim
t→∞ supAi(t) 6 ci,

where ci = ρi/σi. Now, let H(t) = V +
ξ

2ε
B, then we obtain

Ḣ =

n∑
i=1

κie−πiιiAi(t− πi) − ξV − ρVB+
ξ

2
V −

ξµ

2ε
B−

ξϑ

2ε
VB

=

n∑
i=1

κie−πiιiAi(t− πi) −
ξ

2
V −

ξµ

2ε
B−

(
ρ+

ξϑ

2ε

)
VB

6
n∑
i=1

κie−πiιici −
ξ

2
V −

ξµ

2ε
B

6
n∑
i=1

κie−πiιici − `
(
V +

ξ

2ε
B

)

=

n∑
i=1

κie−πiιici − `H,

where ` = min
{
ξ

2
,µ
}

. In a similar way, we have limt→∞ supV(t) 6 c and limt→∞ supB(t) 6 c̃, where c

=
∑n
i=1 κie−πiιici

` and c̃ = 2εc
ξ . Thus, the solutions of model (2.1) are ultimately bounded.

The previous proof reveals that Ω limit sets of model (2.1) are contained in the following bounded
feasible region Γ

Γ = {(Ui,Li,Ai,V ,B) ∈ R3n+2
+ : ‖Ui‖ 6

ρi
γi

, ‖Li‖ 6 ci, ‖Ai‖ 6 ci, ‖V‖ 6 c, ‖B‖ 6 c̃},

which implies that the solutions of model (2.1) point towards the regionΩ. For this reason, Ω is positively
invariant for model (2.1).

3.2. Equilibria
The basic reproduction number of infection for model (2.1) is

R0 =

n∑
i=1

R0i =

n∑
i=1

ρi(ψi +φi)

ξγi
,

where ψi =
κiωiνi(1 − χi)e

−πiιi−τiηi

βi (ζi + νi)
and φi =

κiωiχie−πiιi−λiθi
βi

.
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Lemma 3.2. Consider model (2.1), then

(i) the model has a unique equilibrium E0 if R0 6 1;
(ii) the model has two equilibria E0 and E∗ if R0 > 1.

Proof. At any equilibrium, we have

ρi − γiUi −ωiUiV = 0,
(1 − χi)e

−τiηiωiUiV − (ζi + νi)Li = 0,

χie
−λiθiωiUiV + νiLi −βiAi = 0,
n∑
i=1

κie−πiιiAi − ξV − ρVB = 0, (3.2)

εV − µB− ϑVB = 0. (3.3)

We obtain Ui, Li, Ai and B as functions of V as follow:

Ui =
ρi

γi +ωiV
,

Li =
e−τiηiωiρi(1 − χi)V

(ζi + νi)(γi +ωiV)
,

Ai =
ωiρi

(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
V

βi (ζi + νi) (γi +ωiV)
, (3.4)

B =
εV

µ+ ϑV
. (3.5)

Substituting Eqs. (3.4) and (3.5) into Eq. (3.2), then we get

n∑
i=1

κiωiρie−πiιi
(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
V

βi (ζi + νi) (γi +ωiV)
− ξV −

ρεV2

µ+ ϑV
= 0. (3.6)

Clearly, V = 0 is a solution of Eq. (3.6), therefore we have the infection-free equilibrium E0 =
(
U0
i, 0, 0, 0, 0

)
,

where U0
i =

ρi
γi

. The other possibility of Eq. (3.6) is

n∑
i=1

κiωiρie−πiιi
(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
βi (ζi + νi) (γi +ωiV)

− ξ−
ρεV

µ+ ϑV
= 0.

Let us define a function Y(V) as:

Y(V) =

n∑
i=1

κiωiρie−πiιi
(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
βi (ζi + νi) (γi +ωiV)

− ξ−
ρεV

µ+ ϑV
.

It is seen that Y(V) is monotonic decreasing since

Y′(V) = −

(
n∑
i=1

κiω2
iρie

−πiιi
(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
βi (ζi + νi) (γi +ωiV)

2 +
ερµ

(µ+ ϑV)2

)
.

On the other hand, limV→∞ Y(V) = −
ξϑ+ ρε

ϑ
. Further,

Y(0) =
n∑
i=1

κiωiρie−πiιi
(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
βiγi (ζi + νi)

− ξ = ξ (R0 − 1) .
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It implies that Y(V) has a unique positive solution V∗ if R0 > 1. Thus, we have the endemic-infection
equilibrium E∗ =

(
U∗i ,L

∗
i ,A
∗
i ,V
∗,B∗

)
, where

U∗i =
ρi

γi +ωiV∗
, L∗i =

e−τiηiωiρi(1 − χi)V
∗

(ζi + νi)(γi +ωiV∗)
,

A∗i =
ωiρi

(
νi(1 − χi)e

−τiηi + χie
−λiθi(ζi + νi)

)
V∗

βi (ζi + νi) (γi +ωiV∗)
, B∗ =

εV∗

µ+ ϑV∗
.

Therefore, we have proved the existence of endemic-infection equilibrium E∗ under the condition R0 >

1.

4. Global stability of equilibria

In the following, we demonstrate the global stability of equilibria according to the value of R0. To state
the global stability results, we need to define a function G(q) = q− 1 − ln(q), where q > 0.

Theorem 4.1. If R0 < 1, then the equilibrium E0 is globally asymptotically stable (G.A.S).

Proof. Construct a candidate Lyapunov functional as:

M0 =

n∑
i=1

ψi +φi
ωi

U0
iG

(
Ui

U0
i

)
+

n∑
i=1

νiκie−πiιi
βi(ζi + νi)

Li +

n∑
i=1

κie−πiιi
βi

Ai + V

+
ξ(1 − R0)

ε
B+

n∑
i=1

ψi

∫t
t−τi

Ui(x)V(x)dx+

n∑
i=1

φi

∫t
t−λi

Ui(x)V(x)dx+

n∑
i=1

κie−πiιi
∫t
t−πi

Ai(x)dx.

It’s obvious that M0 > 0 for all (Ui,Li,Ai,V ,B) > 0 and M0 = 0 at E0. Now, the time derivative of M0
along the solutions of model (2.1) is given by:

dM0

dt
=

n∑
i=1

ψi +φi
ωi

(
1 −

U0
i

Ui

)
(ρi − γiUi −ωiUiV)

+

n∑
i=1

νiκie−πiιi
βi(ζi + νi)

(
(1 − χi)e

−τiηiωiUi(t− τi)V(t− τi) − (ζi + νi)Li
)

+

n∑
i=1

κie−πiιi
βi

(
χie

−λiθiωiUi(t− λi)V(t− λi) + νiLi −βiAi
)

+

n∑
i=1

κie−πiιiAi(t− πi) − ξV − ρVB+
ξ(1 − R0)

ε
(εV − µB− ϑVB)

+

n∑
i=1

ψi (UiV −Ui(t− τi)V(t− τi)) +

n∑
i=1

φi (UiV −Ui(t− λi)V(t− λi))

+

n∑
i=1

κie−πiιi (Ai −Ai(t− πi))

=−

n∑
i=1

γi (ψi +φi) (Ui −U
0
i)

2

ωiUi
−
ξµ(1 − R0)

ε
B−

(
ρ+

ϑξ(1 − R0)

ε

)
VB.

Thus
dM0

dt
6 0 as long as R0 < 1. Moreover,

dM0

dt
= 0 when Ui(t) = U0

i and B(t) = 0. Let ∆ =

{(Ui,Li,Ai,V ,B) :
dM0

dt
= 0} and ∆̄ be the largest invariant subset of ∆. Thus, the trajectories of model
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(2.1) tend to ∆̄ where every components of ∆̄ satisfy Ui(t) = U0
i and B(t) = 0. Then, the last equation of

model (2.1) yields
Ḃ(t) = 0 = εV(t) =⇒ V(t) = 0.

From the 4th equation of model (2.1), we obtain

V̇(t) = 0 =

n∑
i=1

κie−πiιiAi(t− πi) =⇒ Ai(t) = 0.

Similarly, from the 3th equation of model (2.1), we get Li(t) = 0. Immediately, we can see that ∆̄ contains
a single point E0. Thus, according to LaSalle’s invariance principle (L.I.P) [34], E0 is G.A.S if R0 < 1.

Theorem 4.2. If R0 > 1, then the equilibrium E∗ is G.A.S.

Proof. Construct a candidate Lyapunov functional as:

M1 =

n∑
i=1

ψi +φi
ωi

U∗iG

(
Ui
U∗i

)
+

n∑
i=1

νiκie−πiιi
βi(ζi + νi)

L∗iG

(
Li
L∗i

)

+

n∑
i=1

κie−πiιi
βi

A∗iG

(
Ai
A∗i

)
+ V∗G

(
V

V∗

)
+

ρ

2(ε− ϑB∗)
(B−B∗)2

+

n∑
i=1

ψiU
∗
iV
∗
∫t
t−τi

G

(
Ui(x)V(x)

U∗iV
∗

)
dx+

n∑
i=1

φiU
∗
iV
∗
∫t
t−λi

G

(
Ui(x)V(x)

U∗iV
∗

)
dx

+

n∑
i=1

κie−πiιiA∗i
∫t
t−πi

G

(
Ai(x)

A∗i

)
dx.

It is obvious from Eq. (3.3) that ε− ϑB∗ = µB∗

V∗ > 0. Thus M1 > 0 for all (Ui,Li,Ai,V ,B) > 0 and M1 = 0
at E∗. Now, the time derivative of M1 is:

dM1

dt
=
ψi +φi
ωi

(
1 −

U∗i
Ui

)
(ρi − γiUi −ωiUiV)

+

n∑
i=1

νiκie−πiιi
βi(ζi + νi)

(
1 −

L∗i
Li

)(
(1 − χi)e

−τiηiωiUi(t− τi)V(t− τi) − (ζi + νi)Li
)

+

n∑
i=1

κie−πiιi
βi

(
1 −

A∗i
Ai

)(
χie

−λiθiωiUi(t− λi)V(t− λi) + νiLi −βiAi
)

+

(
1 −

V∗

V

)( n∑
i=1

κie−πiιiAi(t− πi) − ξV − ρVB

)
+

ρ

ε− ϑB∗
(B−B∗) (εV − µB− ϑVB)

+

n∑
i=1

ψiU
∗
iV
∗
[
UiV

U∗iV
∗ −

Ui(t− τi)V(t− τi)

U∗iV
∗ + ln

(
Ui(t− τi)V(t− τi)

UiV

)]

+

n∑
i=1

φiU
∗
iV
∗
[
UiV

U∗iV
∗ −

Ui(t− λi)V(t− λi)

U∗iV
∗ + ln

(
Ui(t− λi)V(t− λi)

UiV

)]

+

n∑
i=1

κie−πiιiA∗i
[
Ai
A∗i

−
Ai(t− πi)

A∗i
+ ln

(
Ai(t− πi)

Ai

)]

=

n∑
i=1

ψi +φi
ωi

(
1 −

U∗i
Ui

)
(ρi − γiUi) +

n∑
i=1

ψi +φi
ωi

ωiU
∗
iV
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−

n∑
i=1

ψiUi(t− τi)V(t− τi)
L∗i
Li

+

n∑
i=1

νiκie−πiιi
βi

L∗i

−

n∑
i=1

φiUi(t− λi)V(t− λi)
A∗i
Ai

−

n∑
i=1

κie−πiιi
βi

νiLi
A∗i
Ai

+

n∑
i=1

κie−πiιiA∗i −
V∗

V

n∑
i=1

κie−πiιiAi(t− πi) − ξ(V − V∗) − ρ(V − V∗)B

+
ρ

ε− ϑB∗
(B−B∗) (εV − µB− ϑVB) +

n∑
i=1

ψiU
∗
iV
∗ ln

(
Ui(t− τi)V(t− τi)

UiV

)

+

n∑
i=1

φiU
∗
iV
∗ ln

(
Ui(t− λi)V(t− λi)

UiV

)
+

n∑
i=1

κie−πiιiA∗i ln
(
Ai(t− πi)

Ai

)
.

Utilizing the endemic-infection equilibrium conditions

ρi = γiU
∗
i +ωiU

∗
iV
∗, L∗i =

(1 − χi)e
−τiηiωiU

∗
iV
∗

(ζi + νi)
,

A∗i =
χie

−λiθiωiU
∗
iV
∗

βi
+
νi(1 − χi)e

−τiηiωiU
∗
iV
∗

βi(ζi + νi)
, εV∗ = µB∗ + ϑV∗B∗,

into the last equation of
dM1

dt
, we get

dM1

dt
=

n∑
i=1

ψi +φi
ωi

(
1 −

U∗i
Ui

)
(γiU

∗
i − γiUi)

+

n∑
i=1

ψiU
∗
iV
∗
[

3 −
U∗i
Ui

+
V

V∗
−
Ui(t− τi)V(t− τi)L

∗
i

U∗iV
∗Li

−
A∗iLi
AiL

∗
i

−
V∗Ai(t− πi)

VA∗i
+ ln

(
Ui(t− τi)V(t− τi)

UiV

)
+ ln

(
Ai(t− πi)

Ai

)]
+

n∑
i=1

φiU
∗
iV
∗
[

2 −
U∗i
Ui

+
V

V∗
−
Ui(t− λi)V(t− λi)A

∗
i

U∗iV
∗Ai

−
V∗Ai(t− πi)

VA∗i
+ ln

(
Ui(t− λi)V(t− λi)

UiV

)
+ ln

(
Ai(t− πi)

Ai

)]
− ξ(V − V∗) − ρ(V − V∗)B+ ρ(V − V∗)B∗ − ρ(V − V∗)B∗

+
ρ(B−B∗)

ε− ϑB∗
(εV − µB− ϑVB− εV∗ + µB∗ + ϑV∗B∗ + ϑVB∗ − ϑVB∗)

=−

n∑
i=1

γi(ψi +φi)(Ui −U
∗
i )

2

ωiUi
+

n∑
i=1

ψiU
∗
iV
∗
[

3 −
U∗i
Ui

+
V

V∗
−
Ui(t− τi)V(t− τi)L

∗
i

U∗iV
∗Li

−
A∗iLi
AiL

∗
i

−
V∗Ai(t− πi)

VA∗i
+ ln

(
Ui(t− τi)V(t− τi)

UiV

)
+ ln

(
Ai(t− πi)

Ai

)]
+

n∑
i=1

φiU
∗
iV
∗
[

2 −
U∗i
Ui

+
V

V∗
−
Ui(t− λi)V(t− λi)A

∗
i

U∗iV
∗Ai

−
V∗Ai(t− πi)

VA∗i
+ ln

(
Ui(t− λi)V(t− λi)

UiV

)
+ ln

(
Ai(t− πi)

Ai

)]
− (ξ+ ρB∗)(V − V∗) − ρ(V − V∗)(B−B∗) +

ρ(ε− ϑB∗)

(ε− ϑB∗)
(B−B∗)(V − V∗) −

ρ(µ+ ϑV)

(ε− ϑB∗)
(B−B∗)2.
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Note that

−(ξ+ ρB∗)(V − V∗) =

n∑
i=1

(ψi +φi)U
∗
iV
∗
(

1 −
V

V∗

)
.

In addition, we have

ln
(
Ui(t− τi)V(t− τi)

UiV

)
= ln

(
U∗i
Ui

)
+ ln

(
Ui(t− τi)V(t− τi)L

∗
i

U∗iV
∗Li

)
+ ln

(
A∗iLi
AiL

∗
i

)
+ ln

(
AiV

∗

A∗iV

)
,

ln
(
Ui(t− λi)V(t− λi)

UiV

)
= ln

(
U∗i
Ui

)
+ ln

(
Ui(t− λi)V(t− λi)A

∗
i

U∗iV
∗Ai

)
+ ln

(
AiV

∗

A∗iV

)
,

ln
(
Ai(t− πi)

Ai

)
= ln

(
V∗Ai(t− πi)

VA∗i

)
+ ln

(
A∗iV

AiV∗

)
.

Simplifying the
dM1

dt
equation, we obtain

dM1

dt
=−

n∑
i=1

γi(ψi +φi)(Ui −U
∗
i )

2

ωiUi
−
ρ(µ+ ϑV)

ε− ϑB∗
(B−B∗)2

−

n∑
i=1

ψiU
∗
iV
∗
[
G

(
U∗i
Ui

)
+G

(
Ui(t− τi)V(t− τi)L

∗
i

U∗iV
∗Li

)
+G

(
A∗iLi
AiL

∗
i

)
+G

(
V∗Ai(t− πi)

VA∗i

)]

−

n∑
i=1

φiU
∗
iV
∗
[
G

(
U∗i
Ui

)
+G

(
Ui(t− λi)V(t− λi)A

∗
i

U∗iV
∗Ai

)
+G

(
V∗Ai(t− πi)

VA∗i

)]
.

Therefore,
dM1

dt
6 0 for all Ui,Li,Ai,V ,B > 0. In addition,

dM1

dt
= 0 if Ui = U∗i , Li = L∗i , Ai = A∗i ,

V = V∗ and B = B∗. In the same way as the proof of Theorem 4.1 we get that the largest invariance subset
contains a single point E∗. Applying L.I.P, we obtain that E∗ is G.A.S if R0 > 0.

5. Example and numerical simulations

In the following, we carry out a special case of model (2.1) and perform some numerical simulations
to illustrate the theoretical results and to investigate the effect of some parameters. It was reported in
[41] that HIV infects two types of immune system cells: CD4+ T cells and macrophages, i.e., n = 2. Let
us introduce an HIV infection model under the effect of highly active anti-retroviral therapy (HAART)
consisting of a combination of reverse transcriptase inhibitor (RTI) and protease inhibitor (PI):

U̇1 = ρ1 − γ1U1 − (1 − εr1)ω1U1V ,
U̇2 = ρ2 − γ2U2 − (1 − εr2)ω2U2V ,
L̇1 = (1 − εr1)(1 − χ1)e

−τ1η1ω1U1(t− τ1)V(t− τ1) − (ζ1 + ν1)L1,
L̇2 = (1 − εr2)(1 − χ2)e

−τ2η2ω2U2(t− τ2)V(t− τ2) − (ζ2 + ν2)L2,

Ȧ1 = (1 − εr1)χ1e
−λ1θ1ω1U1(t− λ1)V(t− λ1) + ν1L1 −β1A1,

Ȧ2 = (1 − εr2)χ2e
−λ2θ2ω2U2(t− λ2)V(t− λ2) + ν2L2 −β2A2,

V̇ = (1 − εp1)κ1e
−π1ι1A1(t− π1) + (1 − εp2)κ2e

−π2ι2A2(t− π2) − ξV − ρVB,
Ḃ = εV − µB− ϑVB,

(5.1)

where εri ∈ [0, 1] is the efficacy of the RTI drugs, while εpi ∈ [0, 1] is the efficacy of the PI drugs.
Consequently, the parameter R0 of model (5.1) is given by:

R0 =

2∑
i=1

κiωiρi (1 − εpi) (1 − εri)
(
χi (ζi + νi) e

−λiθi + νi (1 − χi) e
−τiηi

)
e−πiιi

ξβiγi (ζi + νi)
. (5.2)
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We perform some numerical simulation for model (5.1) using the values of parameters given in Table 1.
All the computations will be carried out by MATLAB. We have chosen the values of parameters of the
model to perform the numerical simulations.

5.1. Stability of equilibria
In this case, we want to show that the theoretical results of Theorems 1-2 are consistent with the

numerical simulations. Thus, we consider three different initial conditions as follows:

IC1: Ui(s) = 300, Li(s) = 10, Ai(s) = 30, V(s) = 8, B(s) = 25;
IC2: Ui(s) = 400, Li(s) = 7, Ai(s) = 20, V(s) = 5, B(s) = 20;
IC3: Ui(s) = 600, Li(s) = 3, Ai(s) = 10, V(s) = 3, B(s) = 15,

where s ∈ [−T̃ , 0] and T̃ = max{τ1, τ2, λ1, λ2,π1,π2}.
We figure out the following:

(i) when ωi = 5× 10−5, then R0 = 0.609164 < 1 which means that by Theorem 4.1 the trajectories of
solution tend to the infection-free equilibrium E0 (see Figure 1). From the biological viewpoint, the HIV
is cleared from patient’s body;
(ii) whenωi = 5×10−4, then R0 = 6.09164 > 1. According to Theorem 4.2, the trajectories of solution head
for the chronic-infection equilibrium E∗ = (486.7, 469.5, 4.885, 3.679, 16.07, 9.638, 30.16, 19.36) (see Figure 1).
In this case the HIV is deep-seated in patient’s plasma.

As we can see from Figure 1, the outcomes are agreed with the theoretical results. The values of
parameters we take in this case are listed in Table 1 with the following values of the rest of parameters:
τ1 = 0.05, τ2 = 0.01, λ1 = 0.2, λ2 = 0.08, π1 = 0.05, π2 = 0.02, εr1 = 0.3, εr2 = 0.25, εp1 = 0.15, εp2 = 0.17,
and ϑ = 0.01.

5.2. The effect of B cells impairment parameter
Since the main contribution of our model is to incorporate the impaired B cells, so we want to study

its impact on the virus dynamics. We consider different values of ϑ to see what will happen to other
components. Figure 2 indicates that there is a positive correlation between the value of impairment
parameter and the amount of HIV particles. In other words, the HIV particles are increased as ϑ is
increased which leads to more infection of uninfected cells and then increasing of concentrations of all
types of infected cells. When the uninfected cells’ concentrations are too low, then the patient is said
to have acquired immunodeficiency syndrome (AIDS). Therefore, the impaired B cells will help HIV
particles to reach AIDS stage more rapidly. The data we take in this case are listed in Table 1 with the
following values of the rest of parameters: τ1 = 0.05, τ2 = 0.01, λ1 = 0.2, λ2 = 0.08, π1 = 0.05, π2 = 0.02,
εr1 = 0.3, εr2 = 0.25, εp1 = 0.15, εp2 = 0.17 and ωi = 0.001; i = 1, 2.

5.3. The effect of HAART
Let ε = εri = εpi , i = 1, 2 to examine what is the value of ε that makes R0 = 1 for model (5.1). In this

case, we use the values of parameters listed in Table 1 with the following values of the rest of parameters
τ1 = 0.05, τ2 = 0.01, λ1 = 0.2, λ2 = 0.08, π1 = 0.05, π2 = 0.02, ϑ = 0.01, and ωi = 0.001; i = 1, 2 into Eq.
(5.2) then we get εcritical = 0.777664, i.e., we have two situations:

(i) if 0 < ε < 0.777664, then R0 > 1 and HIV particles are persistent;
(ii) if 0.777664 < ε 6 1, then R0 < 1 and the patient is healed.

Moreover, the behaviours of the variables with different values of efficiencies of drugs are presented in
Figure 3. We employ the following data:

group (1): εr1 = 0.04, εr1 = 0.03, εp1 = 0.05, and εp2 = 0.07.

group (2): εr1 = 0.3, εr1 = 0.1, εp1 = 0.5, and εp2 = 0.6.
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group (3): εr1 = 0.4, εr1 = 0.5, εp1 = 0.7, and εp2 = 0.6.

group (4): εr1 = 0.8, εr1 = 0.8, εp1 = 0.8, and εp2 = 0.8.

From the figure, we can see that the increasing of the efficacy of drugs will increase the concentration
of the uninfected cells and decrease the concentrations of latent infected cells, active infected cells, HIV
particles and B cells.

5.4. The effect of time delays parameters

Figure 4 depicts the effect of time delays on the virus dynamics. We consider these values of time
delays:

set (1): τ1 = 0.5, τ2 = 0.2, λ1 = 0.9, λ2 = 0.7, π1 = 0.5, and π2 = 0.4.

set (2): τ1 = 0.7, τ2 = 0.4, λ1 = 1, λ2 = 0.9, π1 = 0.8, and π2 = 0.6.

set (3): τ1 = 0.9, τ2 = 0.6, λ1 = 1.2, λ2 = 1.1, π1 = 1.1, and π2 = 0.8.

set (4): τ1 = 1.4, τ2 = 1.4, λ1 = 1.4, λ2 = 1.4, π1 = 1.4, and π2 = 1.4.

It is observed that the effect of time delays on the dynamical behavior of the HIV is similar as the
effect of HAART. So it may help to develop a new class of treatment to enlarge the delay period and then
suppress the HIV replication. In addition, we let S = τi = λi = πi; i = 1, 2 and solve Eq. (5.2) using
the values of parameter given in Table 1 with the following values of the rest of parameters εr1 = 0.3,
εr2 = 0.25, εp1 = 0.15, εp2 = 0.17, ϑ = 0.01 and ωi = 0.001; i = 1, 2 to find the critical value of time delays
that make R0 = 1. We obtain Scritical = 1.32035. When 0 < S < 1.32035, the trajectories tend to E∗ while, if
S > 1.32035, the trajectories tend towards E0 and the body is cleared from HIV particles.

6. Conclusion and discussion

The intention of this paper was to incorporate the effect of impairment of B cell functions into the virus
infection model with multi-target cells. We have introduced a virus dynamics model taking into account
multi-target cells, latent stage of infection, three different types of time delays and impairment of B cell
response. We have found out that the model is biologically acceptable in the sense that all solutions are
nonnegative and bounded. We have demonstrated the basic reproduction number R0 which determined
the existence and global stability of equilibria. We have proved that the infection-free equilibrium E0

always exists, while an endemic-infection equilibrium E∗ exists only if R0 > 1. We have constructed
proper Lyapunov functionals and then applied LaSalle’s invariance principle to show that if R0 < 1, then
E0 is G.A.S, on the other hand, if R0 > 1, the other equilibrium E∗ is G.A.S. The basic reproduction number
R0 of model (2.1) is given as R0 =

∑n
i=1 R0i > R01, where R01 is the basic reproduction number of HIV

model with one class of target cells. Therefore, neglecting multi-target cells will lead to under-estimated
basic reproduction number.

We have set n = 2 in model (2.1) to generate an HIV model with two types of target cells, CD4+ T cells
and macrophages. We have combined HAART into the proposed model and showed that the theoretical
results are convenient with the visual results. The effects of impairment of B cells functions, time delays
and HAART treatment on the virus dynamics were addressed. We conclude that

• the time delays play the same influence of HAART treatment in stabilizing the system around the
infection-free equilibrium;

• when the B cells lose their functions during the viral infection, the amount of antibodies produced by
the B cells decreases and then the amount of HIV particles increases. Therefore, HAART treatment
is needed to improve the health of the infected patient.
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For comparison purposes, we consider the model (5.1) by neglecting the immune impairment, i.e.,
ϑ = 0 as:

U̇1 = ρ1 − γ1U1 − (1 − εr1)ω1U1V ,

U̇2 = ρ2 − γ2U2 − (1 − εr2)ω2U2V ,

L̇1 = (1 − εr1)(1 − χ1)e
−τ1η1ω1U1(t− τ1)V(t− τ1) − (ζ1 + ν1)L1,

L̇2 = (1 − εr2)(1 − χ2)e
−τ2η2ω2U2(t− τ2)V(t− τ2) − (ζ2 + ν2)L2,

Ȧ1 = (1 − εr1)χ1e
−λ1θ1ω1U1(t− λ1)V(t− λ1) + ν1L1 −β1A1,

Ȧ2 = (1 − εr2)χ2e
−λ2θ2ω2U2(t− λ2)V(t− λ2) + ν2L2 −β2A2,

V̇ = (1 − εp1)κ1e
−π1ι1A1(t− π1) + (1 − εp2)κ2e

−π2ι2A2(t− π2) − ξV − ρVB,

Ḃ = εV − µB.

(6.1)

Let the endemic-infection equilibrium thought as a function of ε = εri = εpi , i = 1, 2 be given as:
E∗(ε) = (U∗1(ε),U

∗
2(ε),L

∗
1(ε),L

∗
2(ε),A

∗
1(ε),A

∗
2(ε),V

∗(ε),B∗(ε)). Then the objective is to design treatment
with efficacy ε to keep the concentration of the HIV particles below a given level, i.e.,

0 6 V∗(ε) 6 V̄ , for all ε∗ 6 ε 6 ε∗∗. (6.2)

Let us use the value of parameters in Table 1 and the values of parameters given in Case 5.3, V̄ = 0.2 and
ϑ is varied. We calculate ε∗ and ε∗∗ for two models.

(I) Model (6.1) (i.e., ignoring the impairment of B cells): we find that the inequality (6.2) is satisfied
when 0.782704 6 ε 6 0.816749.

(II) Model (5.1) (i.e., incorporating the impairment of B cells): we take ϑ = 0.4 and find that the inequal-
ity (6.2) is satisfied when 0.81237 6 ε 6 0.816749.

Therefore, if we apply drug with efficacy ε such that 0.782704 6 ε 6 0.81237, this guarantees that
V∗(ε) 6 0.2 for model (6.1), but V∗(ε) > 0.2 for model (5.1). Therefore, a more accurate drug efficacy
required to reduce the concentration of the virus particle to a lower value is calculated by using our
model. This shows the importance of considering the effect of immune impairment in the virus dynamics
models.

Table 1: Values of fixed parameters.

Parameter Value Parameter Value
ρi 10 ηi 1
γi 0.01 θi 1
χ1 0.3 ιi 1
χ2 0.44 ν1 0.4
ζ1 0.3 ν2 0.2
ζ2 0.6 β1 0.2
κ1 5 β2 0.3
κ2 3 ξ 1
ρ 0.1 ε 0.2
µ 0.01

We noticed that our proposed virus dynamics model is developed with one mode of infection namely
virus-to-cell infection. Therefore our model can be extended to incorporate cell-to-cell transmission mode
where the infected cells could directly infect the adjacent uninfected target cells [8, 22, 27]. We mentioned
that our virus infection model assumed that the incidence rate is given by bilinear form. However, when
the concentration of virus in plasma is high, the bilinear form cannot characterize the virus dynamics
accurately [20, 33]. Our proposed model can be generalized to combine another types of incidence rates
such as saturated, Holling type-II, Beddington-DeAngelis, Crowley-Martin and general incidence rate. In
addition, the effect of diffusion [2, 3, 15, 16] as well as stochastic interactions [29] were neglected in our
proposed model. However, it is more practical to improve our model to include these natural phenomena.
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Figure 1: Solution trajectories when R0 < 1 and R0 > 1 with different initial conditions.
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Figure 2: Solution trajectories for different values of ϑ.
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Figure 3: Solution trajectories for different values of the efficacy of PI and RTI drugs.
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Figure 4: Solution trajectories for different values of time delays.
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