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Abstract
The co-prime order graph Θ(G) of a given finite group is a simple undirected graph whose vertex set is the group G itself,

and any two vertexes x,y in Θ(G) are adjacent if and only if gcd(o(x),o(y)) = 1 or prime. In this paper, we derive a precise
formula to count the vertex’s degree in the co-prime order graph of a finite Abelian group or dihedral group.We also investigate
the Laplacian spectrum of the co-prime order graph Θ(G) when G is a finite Abelian p-group, Zp

t ×Zq
s or a dihedral group

Dpn .
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1. Introduction

The investigation of graphs related to various algebraic structures is an important research direction,
where many active mathematicians have been working recently. It is common to generate graphs from
groups. In [5], the author studied intersection graphs defined on a finite Abelian group. The cayley
digraph is also an important class of directed graphs defined on finite groups and readers may refer to
[3]. In [7], authors introduced the directed power graph of a group as a directed graph whose vertex set
is the group, and there is an arc from vertex u to the other vertex v whenever v is a power of u. From
motivated by this concept, definition of the power graph G(G) of a semi-group G as a graph with G as
its vertex set, and there is an edge between two distinct vertices if one is a power of the other in [4]. In
survey paper [1] which includes many good results on power graphs. Concept of minimum degree and
edge-connectivity of power graph of finite cyclic group studied in [9, 10]. Ma et al. [8] firstly introduced
co-prime graph of a group as a simple graph whose vertex set is the group, and any distinct two vertexes
x,y in G are adjacent if and only if gcd(o(x),o(y)) = 1. Banerjee [2] introduced the co-prime order graph
of a group as a simple graph whose vertex set is the group, and there is an arc from vertex u to the other
vertex v whenever gcd(o(u),o(v)) = 1 or prime. The degree of a vertex of a graph associated with a finite
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group is also used to study the structural properties of the graph [11]. In Section 3 of the present paper,
we obtain the degree of a vertex in the co-prime order graph of a finite Abelian group or dihedral group
Dn. In Section 4 of the present paper, we obtain the laplacian spectrum of the co-prime order graph Θ(G)
when G is finite Abelian p-group, Zp

t ×Zq
s or dihedral group Dpn .

2. Preliminaries and notation

Let Γ be a finite simple graph. Its Laplacian matrix is the matrix L(Γ) = D(Γ)−A(Γ), where D(Γ) is the
diagonal matrix of vertex degrees of Γ and A(Γ) is the adjacency matrix of Γ . The Laplacian polynomial
of Γ is the characteristic polynomial of L(Γ).

Let G be a group. Let e denote the identity element of G and |G| denote the order of G used throughout
the paper. The cyclic group of order n is usually denoted by Zn. Let g be an arbitrary element of G. We
denote the order of g by |g|. Let H and K be two normal subgroups of G.

3. Results for degree

Theorem 3.1. Let G = G1 ×G2 × · · · ×Gr be a finite Abelian group where Gi ≈ Zpii1 ×Zpii2 × · · · ×Z
pi
ini

where pi are distinct prime when 1 6 i 6 r, then we get following results for degree of various vertices in co-prime
order graph of group G:

(i) deg(x) =
∏r
k=1 pk

∑nk
j=1 kj − 1, when o(x) = 1 or pi where i = 1, 2, · · · , r;

(ii) deg(x) = (−k− l+ 1 +
∑j=k
j=1 |Gαj |+

∑j=l
j=1 (pβj)

nβj )
|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

, when

o(x) = (

i=k∏
i=1

pαi)(

i=l∏
i=1

pβi
γi),

where 2 6 k + l 6 r or l > 1 and pα1 ,pα2 , · · · ,pαk ,pβ1 ,pβ2 , · · · ,pβl are distinct primes from set
{p1,p2, · · · ,pr} and γ1,γ2, · · · ,γl > 2.

Proof. Let x be an arbitrary element group G of order
∏r
i=1 pi

αi , then there exists unique xpi ∈ Gi of
order piαi such that x =

∏r
i=1 xpi . We also know that group Gi has exactly pini − 1 elements of order pi.

We consider the following cases as follows:
Case 1: Let o(x) = 1 or pi.
We know that gcd(o(x),o(y)) = 1 or pi for every y ∈ G, so vertex x is connected all the vertices, hence
deg(x) =

∏r
k=1 pk

∑nk
j=1 kj − 1.

Case 2: Let o(x) = (
∏i=k
i=1 pαi)(

∏i=l
i=1 pβi

γi) where 2 6 k+ l 6 r or l > 1 and pα1 , pα2 ,· · · , pαk ,pβ1 ,pβ2 ,· · · ,
pβl are distinct primes from set {p1,p2, · · · ,pr} and γ1,γ2, · · · ,γl > 2. We have

((

i=k∏
i=1

pαi)(

i=l∏
i=1

pβi
γi),

|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1Gβi)

) = 1,

then

((

i=k∏
i=1

pαi)(

i=l∏
i=1

pβi
γi),

|Gαj ||G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1Gβi)

) = pαj ,

where 1 6 j 6 k and

((

i=k∏
i=1

pαi)(

i=l∏
i=1

pβi
γi),

pβs |G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

) = pβs ,



A. Sehgal, Manjeet, D. Singh, J. Math. Computer Sci., 23 (2021), 196–202 198

where 1 6 s 6 l.
So, vertex x is adjacent to every vertex whose order divides

|Gαj ||G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

,

or
pβs |G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1Gβi)

),

for every 1 6 j 6 k and 1 6 s 6 l. So, vertex x is adjacent to

j=k∑
j=1

(
|Gαj ||G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

−
|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

)

+

j=l∑
j=1

(pβj)
nβj |G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

) −
|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

) +
|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

= (−k− l+ 1 +

j=k∑
j=1

|Gαj |+

j=l∑
j=1

(pβj)
nβj )

|G|

(
∏i=k
i=1 |Gαi |)(

∏i=l
i=1 |Gβi |)

.

Hence we get desired result.

Corollary 3.2. If o(x) is a prime, then deg(x) = n− 1 in any co-prime order graph of order n.

Proof. By definition of co-prime order graph vertex x is connected with every other vertex of graph other
than itself, hence deg(x) = n− 1.

Corollary 3.3. Let Dn = {firj|o(f) = 2, o(r) = n, rf = fr−1} be a finite non-Abelian group with 2n, then we
get following results for degree of various vertices in co-prime order graph of group Dn:

(i) If o(x) 6= 2, then difference of degree’s of x in co-prime prime order graph of group Dn and group 〈r〉 is n.

(ii) If o(x) = 2, then deg(x) = 2n− 1.

Proof. Take x be arbitrary element of Dn.
Case 1: If o(x) 6= 2, then x is connected with following vertices:

(i) All vertices of the type frj where j = 1, 2, · · · ,n. These vertices are n vertices.

(ii) Vertices of the type rj if (o(x), n
(n,j)) = 1 or prime where j = 1, 2, · · · ,n. Number of these vertices

are same as degree of any vertex of order equal to o(x) in co-prime order graph of group Zn.

Hence, we get difference of degree’s of x in co-prime prime order graph of group Dn and group 〈r〉 is n.
Case 2: If o(x) = 2, then by use of corollary 1 we get deg(x) = 2n− 1.

4. Laplacian spectrum

Theorem 4.1. Let

L =

(
A C

CT B

)
,

where

A =


p+ q− 1 −1 −1 . . . −1

−1 p+ q− 1 −1 . . . −1
−1 −1 p+ q− 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . p+ q− 1


p×p

.
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C is a p× q matrix whose all entries are -1 and B = pIq×q, then Laplacian spectrum of L where p and q > 1 is 0
with multiplicity 1,p+ q with multiplicity p and p with multiplicity q− 1.

Proof. We now proceed to find the spectrum of L for every prime p. The characteristic polynomial of L is
given by

Λ = det(xI− L) = det
(
xI−A −C
−CT xI−B

)
.

Apply the row operation R1 →
∑p+q
i=1 Ri and take x common from 1st row, we get

Λ = det(xI− L) = x det
(

D F

−CT xI−B

)
,

where

D =


1 1 . . . 1
1 x− p− q+ 1 . . . 1

. . . . . . . . . . . .
1 1 . . . x− p− q+ 1


p×p

, F =


1 1 . . . 1
1 1 . . . 1

. . . . . . . . . . . .
1 1 . . . 1


p×q

.

Now we apply row operations Ri → Ri − R1, ∀ i = 2, 3, · · · ,p+ q, we get

Λ = det(xI− L) = x det
(
G H

I J

)
,

where

G =


1 1 . . . 1
0 x− p− q . . . 0

. . . . . . . . . . . .
0 0 . . . p− q


p×p

, F =


1 1 . . . 1
0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


p×q

,

I =


0 0 . . . 0
0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


q×p

, J =


x− p− 1 −1 . . . −1

−1 x− p− 1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . x− p− 1


q×q

.

Now we rewrite
Λ = det(xI− L) = x(x− p− q)p−1 det(J).

Apply the row operation R1 →
∑q
i=1 Ri to det(J) and take x− p− q common from 1st row, we get

Λ = det(xI− L) = x(x− p− q)p det(K),

where

K =


1 1 . . . 1
−1 x− p− 1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . x− p− 1


q×q

.

Now we apply row operations Ri → Ri + R1, ∀ i = 2, 3, · · · ,q, we get

Λ = det(xI− L) = x(x− p− q)p det(K1),

where

K1 =


1 1 . . . 1
0 x− p . . . 0

. . . . . . . . . . . .
0 0 . . . x− p


q×q

.
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Finally, we get Λ = det(xI− L) = x(x− p− q)p(x− p)q−1. Hence the eigenvalues of L are 0 with multi-
plicity 1, p+ q with multiplicity p and p with multiplicity q− 1.

Theorem 4.2. Laplacian spectrum of group Ztp where p is prime and t > 1 are 0 with multiplicity 1 and pt with
multiplicity pt − 1.

Proof. We now proceed to find the Laplacian spectrum of group and denoted by L. The rows and columns
of the matrix L have been indexed in the following ways:

We start with the zero element [0] of Ztp. We then list the remaining elements of Ztp. Using the above
indexing the matrix of L takes the following form:

L =


pt − 1 −1 −1 . . . −1
−1 pt − 1 −1 . . . −1
−1 −1 pt − 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . pt − 1


pt×pt

.

We now proceed to find the spectrum of L for every prime p. The characteristic polynomial of L is given
by Λ(x) = det(xI− L).

Apply the row operation R1 →
∑pt

i=1 Ri and take x common from 1st row, we get

Λ(x) = x det


1 1 1 . . . 1
1 x− pt + 1 1 . . . 1
1 1 x− pt + 1 . . . 1

. . . . . . . . . . . . . . .
1 1 1 . . . x− pt + 1


pt×pt

.

Now we apply row operations Ri → Ri − R1, ∀ i = 2, 3, · · · ,pt, we get

Λ(x) = x det


1 1 1 . . . 1
0 x− pt 0 . . . 0
0 0 x− pt . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . x− pt


pt×pt

.

Thus, we have Λ(x) = x(x− pt)p
t−1. Hence the eigenvalues of L are 0 with multiplicity 1 and pt with

multiplicity pt − 1.

Theorem 4.3. Laplacian spectrum of group Zpα1 ×Zpα2 × · · · ×Zpαn where n > 1 are 0 with multiplicity 1,
pα1+α2+···+αn with multiplicity pn and pn with multiplicity pα1+α2+···+αn − pn − 1 where p is a prime and
max (α1,α2, · · · ,αn) > 2.

Proof. We now proceed to find the Laplacian spectrum of group Zpα1 ×Zpα2 × · · · ×Zpαn and denoted
by L.

The rows and columns of the matrix L have been indexed in the following ways: We start with the
zero element [0] of Zpα1 ×Zpα2 × · · · ×Zpαn . We then list the all pn − 1 elements of order p from group
Zpα1 ×Zpα2 × · · · ×Zpαn . We then list the remaining elements of Zpα1 ×Zpα2 × · · · ×Zpαn . Using the
above indexing the matrix of L takes the following form:

L =

(
A C

CT B

)
,
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where

A =


pα1+α2+...+αn − 1 −1 −1 . . . −1

−1 pα1+α2+...+αn − 1 −1 . . . −1
−1 −1 pα1+α2+...+αn − 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . pα1+α2+...+αn − 1


pn×pn

.

C is a pn × pα1+α2+···+αn − pn matrix whose all entries are -1 and B = pIpα1+α2+···+αn−pn . By using
Theorem 4.1, we get Laplacian Spectrum of L as follows:

0 with multiplicity 1, pα1+α2+···+αn with multiplicity pn and pn with multiplicity pα1+α2+···+αn −
pn − 1.

Theorem 4.4. Laplacian spectrum of group Zp
t ×Zq

s are 0 with multiplicity 1, ptqs with multiplicity pt +
qs − 1 and pt + qs − 1 with multiplicity ptqs − pt − qs where p and q are distinct primes and s, t > 1.

Proof. We now proceed to find the Laplacian spectrum of group Zp
t ×Zq

s and denoted by L. The rows
and columns of the matrix L have been indexed in the following ways: We start with the zero element [0]
of Zp

t ×Zq
s. We then list the all pt − 1 elements of order p and qs − 1 elements of order q from group

Zp
t ×Zq

s. We then list the remaining elements of Zp
t ×Zq

s. Using the above indexing the matrix of L
takes the following form:

L =

(
A C

CT B

)
,

where

A =


ptqs − 1 −1 −1 . . . −1

−1 ptqs − 1 −1 . . . −1
−1 −1 ptqs − 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . ptqs − 1


pt+qs−1×pt+qs−1

.

C is a pt+qs− 1× ptqs− pt−qs+ 1 matrix whose all entries are -1 and B = (pt+qs− 1)Iptqs−pt−qs+1.
By using Theorem 4.1, we get Laplacian spectrum of L as follows:

0 with multiplicity 1, ptqs with multiplicity pt + qs − 1 and pt + qs − 1 with multiplicity ptqs − pt −
qs

Theorem 4.5. Laplacian spectrum of group Dpn are 0 with multiplicity 1, 2pn with multiplicity p + pn and
p+ pn with multiplicity pn − p− 1 with condition that if p is a odd prime, then n > 1 and if p is even prime than
n > 2.

Proof. We now proceed to find the Laplacian spectrum of group Dpn and denoted by L. The rows and
columns of the matrix L have been indexed in the following ways: We start with the zero element [0] of
Dpn . We then list the all p− 1 elements of order p and pn elements of order 2 from group Dpn . We then
list the remaining elements of Dpn . Using the above indexing the matrix of L takes the following form:

L =

(
A C

CT B

)
,

where

A =


2pn − 1 −1 −1 . . . −1

−1 2pn − 1 −1 . . . −1
−1 −1 2pn − 1 . . . −1
. . . . . . . . . . . . . . .
−1 −1 −1 . . . 2pn − 1


p+pn×p+pn

.
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C is a p+ pn × pn − p matrix whose all entries are -1 and B = (p+ pn)Ipn−p. By using Theorem 4.1, we
get Laplacian spectrum of L as follows:

0 with multiplicity 1, 2pn with multiplicity p+ pn and p+ pn with multiplicity pn − p− 1.
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