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Abstract

Mathematical models are essential tools in the study of different infectious diseases. Researchers have developed other
in-host models to investigate HIV dynamics in the human body. In this paper, a mathematical model for the HIV infection of
CD4+ T cells is analyzed. We consider the proliferation of T cells in this study. It is found that there exist two equilibrium states
for this model: Infection-free equilibrium state and infected equilibrium state. Local stability is discussed for both infection-free
and infected equilibrium states using Routh–Hurwitz criteria. Also, we calculate the basic reproduction number (R0) for the
model with the help of next generation matrix method. The global stability of the infection-free equilibrium point is discussed
using Lyapunov’s second method. From the stability analysis, it is found that if basic reproduction number R0 6 1, infection of
HIV is cleared out, and if R0 > 1, infection of HIV persists. The conditions for global stability of the infected equilibrium point
are derived using a geometric approach. We find a parameter region where the infected equilibrium point is globally stable.
We carry out numerical simulations to verify the results. Also, the effects of the proliferation rate of uninfected CD4+ T cells
and recovery rate of infected CD4+ T cells in dynamics of the T cells and free virus are studied using numerical simulations. It
is found that small variations of these parameters can change the model’s whole dynamics, and infection can be controlled by
controlling the proliferation rate and improving the recovery rate.
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1. Introduction

According to the information updated by World Health Organization (WHO) on November 2019,
there were approximately 37.9 million people living with HIV at the end of 2018 [19]. HIV has claimed
more than 32 million lives so far and it continues to be a major global public health issue. Though
AIDS is not fully curable, but with increasing access to effective HIV prevention, diagnosis, treatment
with anti-retroviral drugs, HIV infection has become a manageable health condition which enable people
living with HIV to enjoy long and healthy lives [19]. The Human Immunodeficiency Virus (HIV) mainly
targets the immune system of the host which weakens host’s defense system against other opportunistic
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infections. Immune function is measured by CD4+T cells count, which are the most abundant in white
blood cells of the immune system. For a normal person, CD4+ T cells count is between 800 and 1200
mm−3. When this cell count reaches 200 mm−3 or below in an HIV-infected patient, then the person is
classified as having AIDS [12], which is the most advanced stage of HIV infection.

Many researchers have been working in the field of HIV for over three decades. A large number of
mathematical models have been developed to understand the dynamical behaviors of HIV and CD4+ T
cells, progression of the disease and effect of the antiretroviral treatment [1, 2, 6, 15, 10, 11, 12, 13, 14, 16,
18, 17]. In most of the models where dynamics of HIV and CD4+ T cells are discussed, three populations
are mainly considered: uninfected CD4+ T cells, infected CD4+ T cells and free virus population. In
these models, they considered that the infected CD4+ T cells start producing virus after they get infected.
With this three population, a basic mathematical model to define the dynamics of CD4+ T cells and HIV
is

dT

dt
= s− dT − kVT ,

dT∗

dt
= kVT − δT∗,

dV

dt
= pT∗ − cV ,

where T(t), T∗(t) and V(t) represents the concentrations of uninfected CD4+ T cells, infected CD4+ T
cells and free virus respectively. s is the natural production rate and d is the natural death rate of the
healthy CD4+ T cells and k is the rate at which they become infected. δ is the death rate of infected T
cells. Also, the virus population are produced from infected cells at rate p and dies at rate c.

In the above model, it is considered that CD4+ T cells are created at rate s from the source like
precursors in thymus and bone marrow. But literature of Biology indicate that T cells can be also produced
by the proliferation of the existing T cells when roused by antigen or mitogen [13]. Considering that the

proliferation of healthy CD4+ T cells follows logistic growth term rT

(
1 −

T

Tmax

)
, Perelson and Nelson

proposed a model in [13]. Srivastava and Chanda proposed a model in [18] considering that a proportion
of resting cells revert to the uninfected cells [5]. They also discussed global stability of the model. But in
the model [18], production of CD4+ T cells through proliferation was not considered.

In this paper, we adapt the model in [18] and develop a model that includes production of new CD4+

T cells through proliferation of existing CD4+ T cells. Here, we consider that proliferation follows logistic
growth [13]. The whole paper is distributed as: In Section 2, we discuss our model, basic properties and
the equilibrium points of the model. Local stability of both infection-free and infected equilibrium points
are discussed in Section 3. Local stability of the infected equilibrium point E∗ is discussed in terms of
the proliferation rate r. Section 4 contains global stability analysis of both equilibrium points. We find a
range of the parameter r for global stability of E∗. Also a condition for global stability of E∗ is derived.
Numerical simulations are done in Section 5 to verify the analytical results of the model. Also sensitivity
of certain parameters of the system are discussed. Finally, Section 6 contains the concluding remarks of
the study.

2. The HIV infection model

2.1. Description of the model
In order to construct our model, we have considered the three populations: uninfected CD4+T cell

T(t), infected CD4+T cell T∗(t) and the virus population V(t). Here, we have modified the model of
Srivastava and Chandra [18] following Rong et al. [14] and Essunger and Perelson [5] with the assumption
that uninfected CD+T cell, T(t) can also be created by proliferation of existing T(t) cells [13]. In view of
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this, our proposed model is given by following system of differential equations:

dT

dt
= s+ rT

(
1 −

T

Tmax

)
− kVT + bT∗ − dT , (2.1)

dT∗

dt
= kVT − (b+ δ) T∗, (2.2)

dV

dt
= NδT∗ − cV , (2.3)

with T(0) > 0, T∗(0) > 0 and V(0) > 0.
In this model, parameters d, δ and c represent usual death frequencies of uninfected CD4+T cells,

infected CD4+T cells and the virus population respectively. Due to the virus burden of HIV infected T
cells, assumption d 6 δ is considered. Also, s represents inflow rate of CD4+T cells from source, the
mass-action term kVT in (2.1) defines the incidence of infection of uninfected CD4+ T cells where k > 0
represents rate of infection of T cells. In this model, we have considered that healthy CD+T cells can also

be created by proliferation. Consider, this proliferation follows simplified logistic growth rT
(

1 −
T

Tmax

)
as proposed in Perelson and Nelson [13]. b is the rate at which infected cells return to uninfected class
[18, 14]. N is average number of free virus particles produced by an infected cell.

2.2. Basic properties of the model
In absence of HIV infection, dynamics of healthy CD4+T cells are administrated by the equation

[12, 13]
dT

dt
= s− dT + rT

(
1 −

T

Tmax

)
.

Thus, for stability at a level T0 is given by the equation,

s+ rT0

(
1 −

T0

Tmax

)
− dT0 = 0,

solving this equation, we have

T0 =
Tmax

2r

[
(r− d) +

√
(r− d)2 +

4sr
Tmax

]
.

We consider only one value of T0 as the other is negative. Thus, when there is no infection of HIV, healthy
T -cell concentration becomes stable at a level T0 which is given by,

T0 =
Tmax

2r

[
(r− d) +

√
(r− d)2 +

4sr
Tmax

]
.

2.2.1. Invariant region
Lemma 2.1. The feasible region φ defined by

φ = {(T(t), T∗(t),V(t)) ∈ R3
+ : T 6 T0, 0 6 T + T∗ 6

s+ rT0

d
,V 6 K},

for some K > 0, which is positively invariant with respect to system (2.1)-(2.2)-(2.3).

Proof. From the equation (2.1) of the system, we know T(t) 6 T0 if T(0) 6 T0. Adding the first two
equations of the system gives,

T
′
+ T∗

′
= s+ rT

(
1 −

T

Tmax

)
− dT − δT∗ 6 s+ rT0 − d(T + T

∗), (since d 6 δ).
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Thus,

T + T∗ 6
s+ rT0

d
+Ce−dt,

where C is any constant. This implies T + T∗ → s+ rT0

d
when t → ∞. Therefore, T + T∗ is bounded

by
s+ rT0

d
. Since T is bounded, therefore both the uninfected and infected T cell populations are always

bounded. From Equation (2.3) of the system, it is clear that V is bounded, say by K > 0. So we have a
bounded set,

φ = {(T(t), T∗(t),V(t)) ∈ R3
+ : T 6 T0, 0 6 T + T∗ 6

s+ rT0

d
,V 6 K},

which is positively invariant with respect to the system (2.1)–(2.3).

2.2.2. Positivity of the solutions
Lemma 2.2. The exact solutions (T(t), T∗(t),V(t)) of the system (2.1)–(2.3) with the initial conditions T(0) > 0,
T∗(0) > 0 and V(0) > 0 are positive for all t > 0.

Proof. With the given initial conditions, we need to prove that the solutions of the system are positive. If
not, we assume that there is a contradiction: there exists a first time t1 such that

T(t1) = 0, T
′
(t1) < 0, T∗(t) > 0, V(t) > 0, 0 < t < t1,

there exits t2 such that

T∗(t2) = 0, T∗
′
(t2) < 0, T(t) > 0, V(t) > 0, 0 < t < t2,

and there exits t3 such that

V(t3) = 0, V
′
(t3) < 0, T(t) > 0, T∗(t) > 0, 0 < t < t3.

In the first case we have from the equation (2.1) of the system,

T
′
(t1) = s+ bT

∗(t1) > 0,

which is a contradiction, we have T(t) > 0 fo all t > 0. In the second case from the equation (2.2) of the
system we have

T∗
′
(t2) = kV(t2)T(t2) > 0,

which is a contradiction, so we have T∗(t) > 0 for all t > 0. Similarly it can be shown that V(t) > 0 for all
t > 0. Thus, the solutions T(t), T∗(t),V(t) of the system are positive for all t > 0.

2.3. Equilibrium points of the model
2.3.1. The infection free equilibrium point and basic reproduction number

It is straightforward that the model always has a infection-free equilibrium point E0 = (T0, 0, 0) where

T0 =
Tmax

2r

[
(r− d) +

√
(r− d)2 +

4sr
Tmax

]
.

Now, we calculate the basic reproduction number of the model using next generation matrix method.
Biologically, basic reproduction number indicates the number of newly infected CD4+ T cells that arise
from any one infected cell when almost all cells are uninfected [2].

Let X = (T∗,V , T), then the system (2.1)–(2.3) can be written as

dX

dt
= F(X) − V(X),
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where, F(X) is the rate at which new infections appear, V(X) is the rate at which individuals transfer, and

F(X) =

kVT0
0

 and V(X) =


(b+ δ)T∗

cV −NδT∗

kVT + dT − bT∗ − s− rT +
rT 2

Tmax

 .

The Jacobian matrix of F(X) and V(X) at infection-free equilibrium E0 are respectively,

DF(E0) =

(
f2×2 0

0 0

)
and DV(E0) =


v2×2 0

0

−b kT0 d− r+
rT0

Tmax

 ,

where, f2×2 =

(
0 kT0
0 0

)
and v2×2 =

(
b+ δ 0
−Nδ c

)
. From Driessche and Watmough [4], fv−1 is the next

generation matrix of the system (2.1)–(2.3) and the basic reproduction number is given by its spectral
radius. Thus,

fv−1 =
1

c(b+ δ)

(
kNδT0 kT0(b+ δ)

0 0

)
,

and it follows that spectral radius is

ρ(fv−1) =
kNδT0

c(b+ δ)
.

Therefore, the basic reproduction number of the model (2.1)–(2.3) is

R0 =
kNδT0

c(b+ δ)
. (2.4)

2.3.2. Infected equilibrium point
Proposition 2.3. A unique infected equilibrium point E∗ = (T , T∗,V) ∈ int(φ), the interior of φ, where

T =
c(b+ δ)

Nkδ
, T∗ =

cV

Nδ
, V =

sγ2 + (r− d)γc(b+ δ) −
r

Tmax
(b+ δ)2c2

ckδγ
, γ = Nkδ,

exists when R0 > 1.

We know that, infected equilibrium exists when V > 0

=⇒ sγ2 + (r− d)γc(b+ δ) −
r

Tmax
(b+ δ)2c2 > 0

=⇒ r

Tmax
(b+ δ)2c2 − (r− d)γc(b+ δ) − sγ2 < 0

=⇒ (x−α1)(x−α2) < 0,

where

x = c(b+ δ),α1 =
γTmax

2r

[
(r− d) +

√
(r− d)2 +

4rs
Tmax

]
,

and

α2 =
γTmax

2r

[
(r− d) −

√
(r− d)2 +

4rs
Tmax

]
.
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Since x−α2 > 0 therefore x−α1 < 0, i.e.,

c(b+ δ) <
γTmax

2r

[
(r− d) +

√
(r− d)2 +

4rs
Tmax

]
,

which implies
c(b+ δ) < γT0 =⇒ R0 > 1.

3. Local stability

3.1. Local stability of infection-free equilibrium point E0

Theorem 3.1. The infection free equilibrium point E0 is locally asymptotically stable if R0 < 1, locally stable if
R0 = 1 and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (2.1)–(2.3) at E0 is

J(E0) =

−d+ r

(
1 −

T0

Tmax

)
−
rT0

Tmax
b −kT0

0 −(b+ δ) kT0
0 Nδ −c

 .

The characteristic equation of J(E0) is given by

(λ− a1)(λ
2 + a2λ+ a3) = 0, (3.1)

where a1 = −d+ r

(
1 −

T0

Tmax

)
−
rT0

Tmax
,a2 = b+ δ+ c and a3 = (b+ δ)c−NδkT0. One eigen value of J(E0)

is

−d+ r

(
1 −

T0

Tmax

)
−
rT0

Tmax
= −

s

T0
−
rT0

Tmax
< 0,

using the first equation of the system. The real parts of the other two eigen values have negative sign if
and only if

a3 = (b+ δ)c−NδKT0 > 0,

implies
NδKT0

(b+ δ)c
< 1, i.e., R0 < 1. Thus if R0 < 1, then all eigen values are negative, thus E0 is asymptoti-

cally stable. If R0 = 1, one eigenvalue is 0 and thus E0 is locally stable. If R0 > 1, one eigenvalue of J(E0)
is positive, thus E0 is unstable.

3.2. Local stability of infected equilibrium point E∗

To investigate the persistence of infection of HIV when R0 > 1, we have to inspect the local stability of
E∗. The Jacobian matrix of the model (2.1)–(2.3) at E∗ is

J(E∗) =

−a b −kT

kV −(b+ δ) kT

0 Nδ −c

 ,

where

a = −r

(
1 −

T

Tmax

)
+
rT

Tmax
+ kV + d =

rT

Tmax
+
s

T
+
bT∗

T
> 0.

The characteristic polynomial of J(E∗) is

P(λ) = λ3 +Aλ2 +Bλ+C,
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where
A = a+ b+ δ+ c,

B =

(
rT

Tmax
+
s

T

)
(b+ δ+ c) +

bcT∗

T
,

C = a(b+ δ)c− aNδkT − bkVc+ k2VTNδ

= kVcδ > 0.

Now,

AB−C = (a+ b+ δ+ c)

{(
rT

Tmax
+
s

T

)
(b+ δ+ c) +

bcT∗

T

}
− kVcδ

= (a+ b+ c)

{(
rT

Tmax
+
s

T

)
(b+ δ+ c) +

bcT∗

T

}
+ δ

(
rT

Tmax
+
s

T

)
(b+ δ) + cδ

(
2rT
Tmax

+ d− r

)
.

Here we observe that A > 0,B > 0 and C > 0. But AB − C > 0 if
2rT
Tmax

+ d − r > 0. Thus, using

Routh–Hurwitz criteria we obtain the following stability condition.

Theorem 3.2. The infected equilibrium point E∗ whenever it exists is locally asymptotically stable if

2rT
Tmax

+ d− r > 0.

4. Global stability

4.1. Global stability of infection-free equilibrium point E0

Now, we will discuss the global stability for the infection-free equilibrium E0 by Lyapunov’s second
method.

Theorem 4.1. If R0 6 1, then infection-free equilibrium point E0 is globally asymptotically stable in φ and if
R0 > 1, then E0 is unstable.

Proof. Let, we define the Lyapunov function for the system (2.1)–(2.3)

L =
Nδ

(b+ δ)
T∗ + V .

Finding derivative of L we have
dL

dt
=

Nδ

(b+ δ)

dT∗

dt
+
dV

dt
.

With the help of Equations (2.2) and (2.3) of the system,

dL

dt
= Vc

(
NδkT

c(b+ δ)
− 1
)

6 Vc

(
NδkT0

c(b+ δ)
− 1
)

= Vc(R0 − 1),

since, T 6 T0 in φ. Thus it is clear that
dL

dt
6 0 if R0 6 1. Also,

dL

dt
= 0 if and only if V = 0 or if R0 = 1 and

T = T0. If S is the set of solutions of the model where
dL

dt
= 0, i.e., S = {(T , T∗,V) ∈ φ :

dL

dt
= 0}, in this
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case the Lyapunov–Lasalle theorem [7] implies that all paths in φ move towards the leading positively
invariant subset of S, where S represents the set of population in where free virus is absent. On the

boundary of φ where V = 0 we have,
dT

dt
= s+ rT

(
1 −

T

Tmax

)
− dT . Thus, T → T0 as t → ∞. Thus, all

the solutions in φ converges to E0 when R0 6 1.
When R0 > 1, it is observed from the Jacobian matrix of the model at E0 that the characteristic equation

(3.1) has one positive eigen value. Thus, infection-free equilibrium point E0 is unstable when R0 > 1.

4.2. Global stability of the infected equilibrium point E∗

Now, we are interested to discuss the global stability of infected equilibrium point E∗ of the model
(2.1)–(2.3). Our main focus is to find the range of r for which E∗ is globally asymptotically stable. For this
purpose, we apply the approach developed by Li and Muldowney [8], which is summarized below:

Let the mapping f : x � f(x) ∈ Rn be C1 for x ∈ G where G ⊂ Rn be an open set. Consider the
solution x(t) to the differential equation

x
′
= f(x), (4.1)

is uniquely determined by its initial value x(0) = x0 and denote the solution to (4.1) by x(0, x0) = x0. A
set E is said to be absorbing set in G for the system (4.1) if x(t,E1) ⊂ E for each compact set E1 ⊂ G when
t is sufficiently large. The following assumptions are made by Li and Muldowney [8]:

(H1) There is a unique equilibrium x̄ of the system (4.1) in G.

(H2) There exists a compact absorbing set E ⊂ G.

For any n×n matrix M, the second additive compound matrix of M, denoted by M[2], is an
(
n

2

)
×
(
n

2

)
matrix. If M = (mij) is a 3× 3 matrix, then

M[2] =

m11 +m22 m23 −m13
m32 m11 +m33 m12
−m31 m21 m22 +m33

 . (4.2)

For a square matrix M, the Lozinskii measure [3] with respect to the induced norm |.| is defined as

µ(M) = lim
h→0

|I+ hM|− 1
h

.

For x ∈ G, consider Q : x� Q(x) be an
(
n

2

)
×
(
n

2

)
matrix-valued function that is C1 and Q−1(x) exists.

Define
M = QfQ

−1 +QJ[2]Q−1.

Here, we obtain the matrix Qf by replacing all entries qij of Q by their respective derivatives in the
direction of f. Also, J[2] is second additive compound matrix of the Jacobian matrix J of the system (4.1)

and let µ be a Lozinskii measure on Rl×l where l =
(
n

2

)
, then define the quantity q̄2 as follow

q̄2 = lim
t→∞ sup sup

x0∈E

1
t

∫t
0
µ(M(x(s, x0)))ds.

We have the following result established by Li and Muldowney [8].

Theorem 4.2. For the system (4.1), consider that the set G is simply connected and the assumptions (H1) and (H2)
are satisfied. Then the unique equilibrium point x̄ is globally asymptotically stable in G if there exists a function
Q(x) and a Lozinskii measure µ which satisfy the condition q̄2 < 0.
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Theorem 4.3. When R0 > 1, the infected equilibrium point E∗ is globally asymptotically stable in int(φ) if r

satisfies r <
d

1 − p
, where 0 < p < 1 such that T > pTmax. Thus, a range of r where the infected equilibrium point

E∗ is stable is d 6 r < min
{

d

1 − p
, δ
}

.

Proof. From the discussion, we have int(φ) is simply connected and if R0 > 1 then E∗ is the unique
equilibrium in int(φ). Thus our model satisfies assumption (H1). Also from Theorem 4.1, we can say
there exists an absorbing compact set E ⊂ φ for our model. Therefore, assumption (H2) is satisfied by our
model. Now set the function

Q = Q(T , T∗,V) = diag
(

1,
T∗

V
,
T∗

V

)
.

Let f denote the vector field on the model, then

QfQ
−1 = diag

(
0,
T∗
′

T∗
−
V
′

V
,
T∗
′

T∗
−
V
′

V

)
.

The Jacobian matrix J related to the general solution (T(t), T∗(t),V(t)) of the model is−a b −kT
kV −b− δ kT

0 Nδ −c

 ,

and its second compound matrix J[2] as defined in (4.2) is below−a− b− δ kT kT

Nδ −a− c b

0 kV −b− δ− c

 ,

where a = −rT

(
1 −

T

Tmax

)
+
rT

Tmax
+ kV + d. Now,

M = QfQ
−1 +QJ[2]Q−1 =


−a− b− δ kT

V

T∗
kT
V

T∗

Nδ
T∗

V

T∗
′

T∗
−
V
′

V
− a− c b

0 kV
T∗
′

T∗
−
V
′

V
− b− δ− c


=

(
M11 M12
M21 M22

)
,

where

M11 = (−a− b− δ), M12 =

(
kT
V

T∗
kT
V

T∗

)
, M21 =

(
Nδ
T∗

V
0

)
,

and

M22 =

T
∗ ′

T∗
−
V
′

V
− a− c b

kV
T∗
′

T∗
−
V
′

V
− b− δ− c

 .

Let (u, v,w) denote vectors in R3, choose a norm in R3 as |(u, v,w)| = max{|u|, |v|+ |w|} and let µ be the
corresponding Lozinskii measure. Then we have following approximation [9]

µ(M) 6 max{g1,g2}, (4.3)
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where g1 = µ1(M11) + |M12| and g2 = |M21| + µ1(M22), here |M12|, |M21| are matrix norm and µ1 is

Lozinskii measure with respect to l1 norm. Therefore, µ1(M11) = −a−b− δ, |M12| = kT
V

T∗
, |M21| = Nδ

T∗

V
and µ1(M22) can be calculated as follows:

µ1(M22) = max

{
T∗
′

T∗
−
V
′

V
− a− c+ kV ,

T∗
′

T∗
−
V
′

V
− b− δ− c+ b

}

=
T∗
′

T∗
−
V
′

V
− c+ max{−z,−δ},

where

z = a− kV = d− r

(
1 −

T

Tmax

)
+
rT

Tmax
. (4.4)

We know that, when there is no HIV infection, the population size of T cells, remain below the maximum
capacity Tmax. Thus T < Tmax for all t. Consider we have 0 < p < 1 which satisfies T > pTmax for large t.
Using this

z = a− kV = d− r

(
1 −

T

Tmax

)
+
rT

Tmax
> d− r (1 − p) . (4.5)

From the equations of the model,

T∗
′

T∗
=
kVT

T∗
− b− δ,

V
′

V
=
NδT∗

V
− c.

Substituting these in the expressions for g1 and g2, we get

g1 = −a− b− δ+
kTV

T∗
=
T∗
′

T∗
− a <

T∗
′

T∗
− z, (4.6)

g2 = Nδ
T∗

V
+
T∗
′

T∗
−
V
′

V
− c+ max{−z,−δ} =

T∗
′

T∗
− min{z, δ}. (4.7)

For sufficiently large t, using (4.3), (4.5), (4.6) and (4.7), we have

µ(M) 6
T∗
′

T∗
− ζ,

where
ζ = min{d− r(1 − p), δ} > 0.

Now, let (T(t), T∗(t),V(t)) be any solution starting in the compact absorbing set E ⊂ φ and let t̄ be
sufficiently large such that (T(t), T∗(t),V(t)) ∈ E for all t > t̄. Then along each solution (T(t), T∗(t),V(t))
such that (T(0), T∗(0),V(0)) ∈ E we have for t > t̄,

1
t

∫t
0
µ(M)ds 6

1
t

∫ t̄
0
µ(M)ds+

1
t
ln
T∗(t)

T∗(t̄)
−

(
t− t̄

t

)
ζ.

The boundedness of T∗ and definition of q̄2 implies q̄2 < 0.
Thus, if R0 > 1 then the infected equilibrium point E∗ is globally asymptotically stable if

min{d− r (1 − p) , δ} > 0,

i.e., if r <
d

1 − p
, where 0 < p < 1 such that T > pTmax and δ > 0 (which is obvious). Also in absence of

HIV infection, T-cell concentration is stabilize at T0. Therefore, naturally r > d. Thus, we have the range
of r for which the infected equilibrium point E∗ is globally stable as

d 6 r < min
{

d

1 − p
, δ
}

.
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Here, Theorem 4.3 provides complete description of the global stability of E∗ in terms of the range of
parameter r, but we can have another simpler sufficient condition for the stability of E∗. For this purpose,
we have to see the last part of the above proof. For sufficiently large t, using (4.3), (4.4), (4.6) and (4.7), we
have

µ(M) 6
T∗
′

T∗
− ζ1,

where

ζ1 = min{d− r
(

1 −
T

Tmax

)
+
rT

Tmax
, δ} > 0.

The remaining part is same as the above proof. Thus we obtain the following stability condition:

Theorem 4.4. The infected equilibrium point E∗ when exists is globally asymptotically stable if d− r+
2rT
Tmax

> 0.

5. Numerical simulations

In this section, we have carried out numerical simulations with the help of Matlab software. For this
purpose we have used the following data set which are also used in [18]. Specifically, s = 10mm−3day−1,
k = 0.000024mm−3day−1, d = 0.01day−1, b = 0.2day−1, δ = 0.16day−1, c = 3.4day−1 and N = 1000.
The parameter r is not used in [18] and also from Theorem 4.3 we have observed that the stability of E∗

is dependent on the value of r. Therefore in our simulations we vary the value of r to see the behavior of
the system at its different value. Consider Tmax = 1500. The results are demonstrated in the figure for two
different sets of initial values I1 = (1000, 0, 0.001) and I2 = (1000, 10, 10).

(a) Uninfected CD4+ T cells vs. Time in days. (b) Infected CD4+ T cells vs. Time in days.

(c) Virus vs. Time in days. (d) Stability of the infection-free equilibrium.

Figure 1: Global stability of the infection free equilibrium E0 for the initial values I1 = (1000, 0, 0.001)
(Solid lines) and I2 = (1000, 10, 10) (Dotted lines).

First we choose, s = 2.9, r = 0.001, k = 0.000024mm−3day−1, d = 0.01day−14, b = 0.2day−1,
δ = 0.16day−1, c = 3.4day−1, Tmax = 1500 and N = 1000. So from (2.4), we have basic reproduction
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number, R0 = 0.988 < 1. Thus according to the Theorem 4.1, disease dies out. Figure 1a–1c in solid lines
for the initial values I1 = (1000, 0, 0.001) and in dotted lines for the initial values I2 = (1000, 10, 10) have
confirmed this result. Also, Figure 1d shows that the infection-free equilibrium point E0(314.878, 0, 0) for
these set of parameters is asymptotically stable.

Now, we choose s = 10mm−3day−1, r = 0.001, k = 0.000024mm−3day−1, d = 0.01day−1, b =
0.2day−1, δ = 0.16day−1, c = 3.4day−1, Tmax = 1500,N = 1000, then for this set of data we have
R0 = 3.238 > 1. In this case, system goes to the infected steady state. It also satisfies the condition in
Theorem 4.4 for global stability of infected equilibrium point. Thus according to Theorem 4.4 disease
will persist. Figure 2a–2c confirms this result. Also, Figure 2d shows that the infected equilibrium point
E∗(318.75, 44.147, 2077.5) for this set of parameter is asymptotically stable.

(a) Uninfected CD4+ T cells vs. Time in days. (b) Infected CD4+ T cells vs. Time in days.

(c) Virus vs. Time in days. (d) Stability of the infected equilibrium.

Figure 2: Global stability of the infected equilibrium E∗ for the initial values I1 = (1000, 0, 0.001) (Solid
lines) and I2 = (1000, 10, 10) (Dotted lines).

We know choosing parameter values for model is difficult. In the above numerical simulation we
considered the values of parameters used in [18]. But in our model we consider that uninfected T cells
can be also produced by proliferation of existing uninfected CD4+ T cells. In [12], they have discussed
about biologically realistic choices for the parameters r,d, s and Tmax. But it is also mentioned that other
set of parameters can be used. Here we investigate the sensitivity of certain parameters of the model
(2.1)–(2.3) on HIV infection of a host.

From Figure 3, it is seen that when r increases proportion of infected CD4+ T cells and virus popula-
tion increases. This proliferation occurs due to the stimulation of antigen and mitogen. Thus, if r value
can be controlled by applying drug the infected CD4+ T cell and virus population will remain under
control. Figure 4 shows that when b increases propotion of healthy CD4+T cells increases while increase
in the infected CD4+ T cells and virus population slow down. Thus disease can be controlled by applying
drug which can increase the rate of reverting infected CD4+ T cells.
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(a) Uninfected CD4+ T cells vs.
Time in days.

(b) Infected CD4+ T cells vs. Time
in days.

(c) Virus population vs. Time in
days.

Figure 3: Variation of population for r = 0.03 (Solid lines) and r = 0.05 (Dotted lines).

(a) Uninfected CD4+ T cells vs. Time
in days.

(b) Infected CD4+ T cells vs. Time in
days.

(c) Virus population vs. Time in
days.

Figure 4: Variation of population for b = 0.2 (Solid lines) and b = 0.4 (Dotted lines).

Now, we consider, for one case r = 0.05,b = 0.2 and for the other case r = 0.85,b = 0.22, all the other
parameters are considered same as Figure 2. Basic reproduction number for these cases are R0 = 4.431
and 4.441 respectively. The simulations are shown in the Figure 5. From, Figure 5, it is clear that though
the value of basic reproduction number R0 are very much close to each other for these cases, but the
dynamics of the system are different. Here, Figure 5a demonstrate the behavior of uninfected CD4+ T
cells with time. If r = 0.05,b = 0.2, the uninfected CD4+ T cell population first increases and on around
20 days it reaches maximum level then it decreases and and on around 34 days it will be at minimum
level. After this it again increases and around 68 days again it decreases. This behavior will continue with
time until it reaches its equilibrium point. For r = 0.85,b = 0.22, the uninfected CD4+ T cell population
increases rapidly and around 7-8 days it reaches maximum level then it will be constant for some days,
around 14 days again it decreases and and around 26 days it will be at minimum level. Then it increases
with time until it reaches its equilibrium point.

From, the Figure 5a, it is also clear that in the later case the uninfected cell population reaches the
equilibrium state faster than the earlier case. Figure 5b depicts that, if r = 0.05,b = 0.2, initially there is
no change in the infected CD4+T cells for the first 15 days, then from around 16 days it increases rapidly
and around 29 days it reaches maximum level. Then it starts deceasing and around 58 days it reaches
minimum level, after that again it increases up to 80 days and then again decreases. This continues until
it reaches the equilibrium level. For r = 0.85,b = 0.22, initially there is no change in the infected CD4+T
cells for the first 12-13 days, then from around 14 days it increases rapidly and around 25 days it reaches
maximum level. After that it decreases until it reaches its equilibrium level. Also it is clear that for
infected population also, in the later case reaches the equilibrium state faster than the earlier case. At the
same time, Figure 5c shows that for r = 0.05,b = 0.2 initially there is no change in the virus population
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for first 15 days and then it increases rapidly and around 30 days reaches its maximum level. Then it
decreases and around 58 days it reaches its minimum level, after that it increases and around 80 days it
starts decreasing. This process continues until it reaches its equilibrium level. Again, for r = 0.85,b = 0.22,
there is no change in the virus population for the first 15 days, then starts increasing rapidly and around
25 days reaches maximum level. After that, it decreases until it reaches equilibrium level. For virus
population also, it reaches equilibrium level faster in the later case than the earlier case. Thus it is clear
that though basic reproduction number, R0 of both cases are almost equal but dynamics of T cells and
virus population are different.

(a) Uninfected CD4+ T cells vs. Time in days. (b) Infected CD4+ T cells vs. Time in days.

(c) Virus vs. Time in days. (d) Stability of the infected equilibrium.

Figure 5: Global stability of the infected equilibria for two different set of parameters r = 0.05,b = 0.2
(Solid lines) and r = 0.85,b = 0.22 (Dotted lines), other parameters are same and for the initial value
I1 = (1000, 0, 0.001).

6. Conclusion

In this study, on the basis of the HIV infection model in [18], we have considered a modified model by
considering that healthy CD4+T cells can also be created by proliferation. Also, we have considered that

this proliferation follows simplified logistic growth rT
(

1 −
T

Tmax

)
as anticipated in Perelson and Nelson

[13]. The basic reproduction number, R0 of our model is calculated by next generation matrix method.
From (2.4), it is clear that basic reproduction number, R0 is dependent on r. It is also found that the basic
reproduction number is also dependent on b, rate at which infected CD4+ T cells get recovered to the
healthy CD4+ T cell population.

Here, we have also dicussed local as well as global stability of the model. Theorem 4.1 indicates that
infection-free equilibrium point is globally stable if R0 6 1, otherwise it is unstable. Biologically, it implies
that if the number of newly infected CD4+ T cell raised from an infected CD4+ T cell is less than or equal
to one then the infected CD4+T cells and the virus particles are cleared out from the T cell population
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and thus the disease dies out. Thus, if basic reproduction number, R0 of an infected person is less than or
equal to one, then the person can recover automatically provided the person is infected by any amount of
viruses. If basic reproduction number, R0 of the infected person is greater than one but if any treatment
can reduce this number below one, then the person will be cured from HIV. Therefore, we can focus on a
treatment policy which can control the number of new infections of healthy CD4+ T cells to control the
HIV infection.

From [18], we find that if logistic term for proliferation is not considered then the infected equilibrium
is globally asymptotically stable if it exists i.e. when R0 > 1. But in model (2.1)–(2.3), it is observed that the
stability of the infected equilibrium depends on r as well as R0. Thus, finding a range of r where infected
equilibrium point is globally stable is important. In Theorem 4.3, we have calculated a range of r, where
infected equilibrium point, if it exists is globally stable. In the proof of Theorem 4.3, we have considered
0 < p < 1 which satisfies T > pTmax. Calculation of such biologically feasible p’s will give different ranges
of r where infected equilibrium point E∗ is globally stable. Also sensitivity of the parameters r and b in
the system are checked by varying these parameters as parameter r may also vary with age [12] and b
can vary by using drug. It is found that HIV infection can be controlled by applying drugs which can
decrease r and increase b, i.e., the rate of reverting infected CD4+ T cells to uninfected CD4+ T cells.
Numerical simulations have confirmed that these results are acceptable. Also comparing our results with
[18], we get proliferation of healthy CD4+ T cells has large impact on the dynamics of HIV and CD4+ T
cells.
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