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Abstract

The concept of graph coloring has become a very active field of research that enhances many practical applications and
theoretical challenges. Various methods have been applied in carrying out this study. Let G be a finite group. In this paper,
we introduce a new graph of groups, which is a commuting order product prime graph of finite groups as a graph having the
elements of G as its vertices and two vertices are adjacent if and only if they commute and the product of their order is a prime
power. This is an extension of the study for order product prime graph of finite groups. The graph’s general presentations
on dihedral groups, generalized quaternion groups, quasi-dihedral groups, and cyclic groups have been obtained in this paper.
Moreover, the commuting order product prime graph on these groups has been classified as connected, complete, regular, or
planar. These results are used in studying various and recently introduced chromatic numbers of graphs.
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1. Introduction

The concept of defining graphs of groups is very important in algebra, because it creates a bridge
to move from group theory to graph theory by defining graphs of groups and investigate the geometric
properties of the groups. This study has been established in [8] by Cayley, when he defined the graph
that explains the abstract structure of groups generated by set of generators. As a result, many graphs
of groups came into existence, for instance, non-commuting graph was defined by Newmann in [18]
which is the complement of commuting graph. Later in [7], Bertram used the combinatorial properties
of the commuting graph to prove three fundamental and non-trivial theorems on finite groups. Recently,
Rajkumar and Devi in [19], introduced intersection graph of cyclic subgroups of finite groups and classify
finite groups whose intersection graphs of cyclic subgroups is one of totally disconnected, complete, star,
path, cycle. Beside these graphs, power graph is another graph of groups that was introduced in [14]
as a tool to studying the combinatorial properties of groups with infinite sequence. The strong metric
dimension of this graph on finite groups was characterized in [15]. In addition, Chattopadhyay et al. in
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[10] determined the exact value for the connectivity of the power graph on finite cyclic groups. Bello et
al. define order product prime graph of finite groups in [6], as a graph having the elements of a group as
its vertices and any two vertices are adjacent if and only if the product of their order is a prime power.
This graph started attracting the attention of researchers, for instance in [5], the topological indices of the
graph are explored.

On the other hand, the concept of graph coloring originates from coloring the countries of a map such
that each face have literal color. The concept have been growing and extend to many practical situations
and theoretical challenges making it to become very active field of research. For instance, in compiler
optimization, the register allocation uses graph coloring techniques for assigning large number of target
program into a small number of CPU registers. Many coloring methods exist and much recently, some
new coloring methods are introduced which include dominator coloring and locator coloring. The concept
of dominator coloring was introduced by Gera et al. in [12]. A graph has a dominator coloring if it has a
proper coloring in which each vertex of the graph dominates every vertex of the same color class and the
dominator chromatic number χd(Γ) is the minimum number of color class in a dominator coloring of the
graph Γ [12]. Motivated by [12], Arumugam et al. [1] extend this study by obtaining several results on
graph coloring and relates to dominator chromatic number and vertex chromatic number or domination
number. For more on dominator chromatic number, see [16, 17, 21].

The concept of locating coloring was established by Chatrand et al. in [9]. They consider the connected
graph and establish some bounds for the locating chromatic number of the connected graph. This graph
coloring also attracted the attention of researchers, for instance, Behtoei and Omoomi [4] investigated
the locating chromatic number of grids, the Cartesian product of paths, complete graphs and cartesian
product of two complete graphs. Recently, Furuya and Matsumoto [11] obtained the sharp upper bounds
of the locating chromatic number of trees by using the number of leaves. For more researches on the
locating chromatic number, see [2, 3, 13].

In this paper, we extend the work of Bello et al. in [6], by introducing commuting order product
prime graph of finite groups, as a graph having the elements of a group as its vertices, and two vertices
x,y are adjacent if and only if O(x)O(y) = ps, s > 0 and xy = yx. We then investigate the general
presentations of the graph on cyclic groups, dihedral groups, generalized quaternion groups and quasi-
dihedral groups. Moreover, we classified groups whose commuting order product prime graph is one
of connected, complete, regular or planar. Furthermore, motivated by [9, 12], we used the commuting
order product prime graph in studying various and recently introduced chromatic numbers, which cover
various classes of graphs with significant that have not been covered so far.

2. Notations and preliminaries

In this section, we give some basic concepts, notations and preliminaries useful to this paper.
All groups considered in this paper are finite and the investigation covered all finite groups and more

specifically on cyclic groups Zn =< g > 3 g ∈ Zn, dihedral groups Dn = {a,b|an = b2 = (ab)2 = e},
generalized quaternion groups Q4n =

〈
a,b|a2n = e,b2 = an,bab−1 = a−1

〉
and quasi-dihedral groups

QD2n =
〈
a,b|a2n−1=b2=1,bab−1=a2n−2−1〉

. We denoted the identity of a group G by e, the order of an
element a, by O(a), the centralizer of an element a ∈ G by CG(a) = {y ∈ G|ay = ya}, the number of
elements in a given sets A by |A|.

On the other hand, we consider simple undirected graphs without loop or multiple edges. The sets of
vertices and edges of a graph Γ are denoted by V(Γ) and E(Γ), respectively. We denote the adjacency of
vertices v1 , v2 by v1 ∼ v2, number of vertices of the graph Γ by |V(Γ)|, the degree of the vertex v by deg(v),
the distance between the vertices v1 and v2 by d(v1, v2) which is defined as the number of edges in the
shortest path connecting them. A graph Γ is regular if all the vertices of the graph have the same degree,
that is if for all vertices v1, v2, . . . , vn of Γ , deg(v1) = deg(v2) = · · · = deg(vn) and a graph Γ is r-regular
if deg(vi) = r, i ∈ N. A graph Γ is connected if there is a path between every pair of its vertices, and
a graph is complete if there is an edge between every pair of its vertices. A graph is planar if it can be
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drawn in a plane without edge crossing, the neighborhood of a vertex x ∈ V
(
Γ
)

with radius 1 is denoted
by S1(x) = {a ∈ Γ : d(a, x) 6 1}. Throughout this paper p denotes prime number, and s ∈N.

The results in Corollary 2.1 and Theorem 2.2, give the description for the order of elements of cyclic
groups.

Corollary 2.1 ([20]). In a finite cyclic group, the order of an element divides the order of the group.

Theorem 2.2 ([20]). If d is a positive divisor of n, the number of elements of order d in a cyclic group of order d is
φ(d).

Theorem 2.3 ([6]). Let G be a cyclic group, Zn, then

Γopp(G) =

{
Kpα , if n = pα,
K1 +

⋃d
i=1 K(p

αi
i −1)

⋃
K
n+d−(1+

∑d
i=1 p

αi
i )

, if n =
∏d
i=1 p

αi
i ,

where d is the number of prime divisors of n and α ∈N.

3. Results and discussion

In this section, we give the formal definition of the commuting order product prime graph in which
an example that visualized the definition follows.

Definition 3.1 (Commuting order product prime graph). Let G be a finite group, the commuting order
product prime graph of G, is a graph Γ copp(G), whose vertices are the elements of G and two vertices u, v
are adjacent if and only if O(u)O(v) = ps and uv = vu, where s ∈N and p a prime number.

Example 3.2. Let G = QD8 , then CG(a) = CG(a
3) = {e,a,a2,a3}, CG(a2) = CG(e) = G and CG(b) =

{e,b,a2b}, CG(ab) = {e,ab,a3b}. The commuting order product prime graph of G is given in Figure 1.

Figure 1: Commuting order product prime graph of QD4 .

Some results on the vertex degrees of the commuting order product prime graph on some groups are
given here, which will be used in investigating other properties of the graph.

Proposition 3.3. Let G be a finite cyclic p-group, then degG(a) = |G|− 1, ∀ a ∈ G.

Proof. G is abelian as a p-group and as a result of that, for each a ∈ G, O(a) is a prime power, so
degG(a) = |CG(a)|− 1 = |G|− 1.
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Proposition 3.4. Let G be a finite cyclic group of composite order, then

1. deg(a) =
∑
φ(ps), where O(a) = pk, 1 6 k 6 s;

2. deg(a) = 0, if O(a) =
∏
psii ;

3. deg(e) =
∑
φ(psii ).

Proof. Let Ai = {a ∈ G|O(a) = pki }, B = {b ∈ G|O(b) =
∏
pki }. By Theorem 2.2, |Ai| =

∑
φ(pkii ).

1. Let a ∈ G 3 O(a) = pk, then by Corollary 2.1, pk
/
|G|. Now, pick arbitrary a1 ∈ A1, a2 ∈ A2,

then a1 � a2. Thus, Ai are distinct cliques of sizes φ(pkii ), for each i, but a1 ∼ e ∼ a2. Therefore
deg(a) =

∑
φ(pki).

2. If O(a) is composite then a is isolated vertex by definition and so deg(a) = 0.

3. Observe that G can be partitioned into G = {e}∪Ai ∪B. By definition, B contains isolated vertices. Pick
arbitrary, ai ∈ Ai, then ai ∼ e for all i. Therefore, deg(e) = |{e∪Ai}|− 1 = |Ai| =

∑
φ(psii ).

The general presentation of the commuting order product prime graph on cyclic group is given in
Theorem 3.5.

Theorem 3.5. Let G be a cyclic group, Zn. Then Γ copp(G) ∼= Γopp(G).

Proof. Let v1, v2 ∈ V
(
Γ copp(G)

)
, then v1 ∼ v2 if O(v1)O(v2) = ps, s ∈ N and if v1v2 = v2v1. The second

condition is trivial since G is abelian and the first condition is the condition for the vertex adjacency of
Γopp(G). Hence Γ copp(G) ∼= Γopp(G).

The vertex degrees of the elements of dihedral groups, quasi-dihedral groups and generalized quater-
nion groups are given in Proposition 3.6.

Proposition 3.6. Let G be one of the groups, Dn, QD2n or Q4n, then

(i) Z(G) =
〈
a

|G|
4
〉
;

(ii)
〈
a
〉
∼= Zn,;

(iii) CG(aib) =

{
{e,a

|G|
4 ,aib,ai+

|G|
4 b}, if Z(G) 6= e,

{e,aib}, if Z(G) = e,
;

(iv) deg(aib) =

{
3, if Z(G) 6= e,
1, if Z(G) = e;

(v) deg(ai) =

{ ∑φ(psi), if O(a) = ps,
|G|

2 − 1, if G is p-group,
0, if O(a) =

∏
psii ;

(vi) deg
(
Z(G)

)
=

|G|
2 +
∑
φ(2si) 3 2si = O(a);

(vii) deg(e) = |G|
2 +
∑
φ(psii ) 3 p

si
i = O(a).

Proof. The proofs of (i) and (ii) are straightforward, so we ignore them. To prove (iii), we consider when
n is even or odd. Suppose n is even then from (i) above, Z(G) =

〈
a{

|G|
4 }
〉

and so CG(aib) =
〈
{aib,a

|G|
4 }
〉
={

e,a{
|G|

4 },aib,a{i+
|G|

4 }b}. But if n is odd then Z(G) is trivial, so in this case CG(aib) =
〈
aib

〉
= {e,aib}.

Thus, deg(aib) = 1. To prove of (iv), the order of each element in CG(aib) is 2 and so satisfied the first
condition to be clique, so we next check the commutativity status among them. Now from (iii) of this
proposition, |(CG(aib))| is 4 if Z(G) is non-trivial and 2 otherwise. Therefore, deg(aib) = |CG(a

ib)|− 1,
so, the, deg(aib) = 3 if Z(G) 6= e and 1 if Z(G) is trivial. To prove (v), if O(a) = ps, then by Theorem
2.2, there exist φ(ps) elements of such order. But such prime can exist with distinct powers, whereas for
all distinct powers, a particular prime form single clique, hence degG(a) =

∑
φ(psi). We move to the

situation when G is a p-group. If G is p-group, then |G| must be even prime power. Let R be the set of
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rotations of G, then ai ∈ R and R ∼= Z |G|
2

. Thus, R is abelian and since G is p-group, then R is a clique

of size |R|− 1 =
|G|

2 − 1. The case when O(a) =
∏
psii is proved in Proposition 3.4. For the prove of (vi),

since O
(
Z(G)

)
= 2, then all aib ∼ Z(G) ∼ a, where O(a) = 2si . Therefore deg(Z(G)) =

|G|
2 +

∑
φ(2si).

Finally, to prove (vii), for all a ∈ G 3 O(a) = psii , then a ∼ e ∼ aib, therefore deg(e) = |G|
2 +
∑
φ(psii ).

Before we give the general presentation for the commuting order product prime graph of the dihedral
groups, generalized quaternion groups and quasi-dihedral groups, Lemma 3.7 is needed as the supporting
result that helps in determining the nature and the number of commuting elements in the group.

Lemma 3.7. Let G be a dihedral group, Dn, n even, then (aib,a
|G|

4 +ib), i = 0, 1, 2, . . . , |G|
4 − 1 commute, where

a and b are the rotations and the reflections of G.

Proof. It follows from (iii) of Proposition 3.6 that if Z(G) is nontrivial, then aib belong to the center of
(a

|G|
4 +ib) and so they therefore commute for all i.

The general presentation of the commuting order product prime graph on dihedral groups is given in
Theorems 3.8 and 3.9, respectively.

Theorem 3.8. Let G be a dihedral group, Dn, n = ps, s ∈N, for some prime p, then

Γ copp(G) =

{
2K1 + (Kn−2 ∪ n2 K2), if p = 2,
K1 + (Kn−1 ∪Kn), if p 6= 2.

Proof. Observe that {R ∪ e} / G. If p = 2, then Z(G) ⊂ R and therefore
(
R − Z(G)

)
is a clique of size

n− 2. Since Z(G) is non-trivial, then by Lemma 3.7, n2 pairs of the elements of F commute. Observe that
r � f ∀ r ∈ R, f ∈ F, where r 6= Z(G), but r ∼ {e,Z(G)} ∼ f. Therefore Γ copp(G) = 2K1 + (Kn−2 ∪ n2 K2). If
p 6= 2, then R is a clique of size n− 1. Now all the elements of F are isolated vertices of the graph since
Z(G) is trivial. Pick r ∈ R and f ∈ F, then r � f, but r ∼ e ∼ f. Therefore, Γ copp(G) = K1 + (Kn−1 ∪Kn).

Theorem 3.9. Let G be a dihedral group, Dn, n =
∏d
i=1 p

si
i , s ∈N, for some prime p, then

Γ copp(G) =

{
K1 +

[
K1 + (K

p
s1
1 −2 ∪

n
2 K2)∪di=2 Kpsii −1

]
∪K

n+d−(1+
∑d
i=1 p

si
i )

, if p1 = 2,

K1 + (∪di=1Kpsii −1 ∪Kn)∪Kn+d−(1+
∑d
i=1 p

si
i )

, if n is odd.

Proof. Since n =
∏d
i=1 p

si
i , then each element of order psii belongs to R, therefore each element of order

ps
′

where s
′

is the greatest power of the prime pi, generates a cyclic subgroup of size (ps
′
− 1). But

{R ∪ e} / G, so these cyclic subgroups are cliques in the graph, that is there is total number of d such
cliques Ci. Let I be the set of isolated vertices of the graph then I ⊂ R and

|I| = |R|−

( d∑
i=1

(psii − 1)
)

= (n− 1) − ps1
1 − ps2

2 − · · ·− psii + d = n+ d−

(
1 +

d∑
i=1

psii

)
.

If p1 = 2, then n is even and Z(G) is non-trivial. By Lemma 3.7, there exist n2 commuting pairs in F, let F
′
be

the set of these commuting pairs. Pick x1, x2 ∈ Ci, f ∈ F
′ 3 O(x1) = 2s1 , O(xi) = psi , O(f) = 2, 2 6 i 6 d

and x1 6= Z(G) . Then {x1, xi, f} is an independent set since x1 � xi � f, but x1 ∼ {e,Z(G)} ∼ f and xi ∼ e.
Therefore,

Γ copp(G) = K1 +
[
K1 + (K2s1−2 ∪

n

2
K2)∪di=2 Kpsii

]
∪KI

= K1 +
[
K1 + (K

p
s1
1 −2 ∪

n

2
K2)∪di=2 Kpsii

]
∪K

n+d−(1+
∑d
i=1 p

si
i )

.

If n is odd, then pi 6= 2, ∀ i ∈N and therefore Z(G) is trivial, so set F is an independent set in the graph.
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Let f ∈ F, xi ∈ Ci, then xi � f, but xi ∼ e ∼ f. Therefore

Γ copp(G) = K1 + (∪di=1Kpsii
∪Kn)∪KI = K1 + (∪di=1Kpsii

∪Kn)∪Kn+d−(1+
∑d
i=1 p

si
i )

.

The characterization of the commuting order product prime graph on dihedral groups in terms of its
connectivity, completeness, regularity and planarity for all degrees is given in Proposition 3.10.

Proposition 3.10. Let G be a dihedral group, Dn. Then Γ copp(G) is connected if n = ps, not complete, not regular
and planar if psii < 5, where p is a prime p number.

Proof. If n = ps, then R and F are cliques, even though F is not clique if p 6= 2, but r ∼ e ∼ f, ∀ r ∈ R, f ∈ F,
hence each vertex of the graph is reachable through e. Therefore Γ copp(G) is connected.

On the other hand, if n =
∏d
i=1 p

si
i , then there exist h ∈ G 3 h

∏d
i=1 p

si
i = e, such elements are isolated

vertices which are not reachable from others, hence the graph is not connected in this case.
Now we can see that for r ∈ R, f ∈ F, r � f by the vertex adjacency of Γ copp(G), therefore Γ copp(G)

is not complete. It has been seen from the above that for r 6= Z(G), r � f but r ∼ e ∼ f, hence deg(e) >
deg(r) > deg(f), showing that the graph is also not regular since the degree of the vertices varies.

By Theorems 3.8 and 3.9, the maximum complete component of the graph is psii , therefore Γ copp(G) is
planar if psii < 5.

Some chromatic numbers of the commuting order product prime graph on dihedral groups are given
here. The investigation begin with the vertex chromatic number, which is given in Proposition 3.11.

Proposition 3.11. Let G be a dihedral group, Dn. Then

χ
(
Γ copp(G)

)
=

{
n, if n = ps,
|max(psii )|, otherwise.

Proof. Let M be set of the maximum complete subgraph of Γ copp(G), then we need at least |M| distinct
colors for proper vertex coloring. Let Ni and Nj be any two disjoint components of Γ copp(G), and pick
arbitrary n1 ∈ Ni, n2 ∈ Nj, then n1 � n2. Meaning that n1 and n2 can be assigned with same color. Thus,
the minimum color needed to color V

(
Γ copp(G)

)
properly is |M|. By Theorem 3.9, |M| = n if n = ps and

otherwise |max(psii )|. Therefore, χ
(
(Γ copp(G)

)
= n if n = ps and χ

(
(Γ copp(G)

)
= |max(psii )| otherwise.

The dominated chromatic number of the commuting order product prime graph on dihedral groups
is given in Proposition 3.12.

Proposition 3.12. Let G be a dihedral group, Dn. Then

χdom
(
Γ copp(G)

)
=

{
n, if n = ps,
ω
(
Γ copp(G)

)
+ |I|, otherwise,

where I is the set of the isolated vertices.

Proof. If n = ps, then by Proposition 3.11, V
(
Γ copp(G)

)
requires n distinct colors for proper coloring, we

need n color classes. By Theorem 3.8, Γ copp(G) has two central vertices. Let Ci for 1 6 i 6 n be the color
classes of V

(
Γ copp(G)

)
and pick xi ∈ Ci, then to each color class C of the non-central vertices, we have

that d(e,C) = d
(
Z(G),C

)
= 1. Thus, each non-central vertex is dominated by the central vertices and

vice-versa. Therefore, each color class Ci is dominated by at least one vertex. Hence, χdom
(
Γ copp(G)

)
= n.

Suppose n 6= ps, then by Theorem 3.9, there exist some isolated vertices which must be assigned with
distinct colors (to be singleton classes). Also all the non-isolated vertices of the graph are adjacent to
central vertex (vertex of K1), which dominated their color classes. By Theorem 3.9, the minimum color
required to color the graph is max(psii ). Therefore, χdom

(
Γ copp(G)

)
= max(psii ) + |I| = ω

(
Γ copp(G)

)
+

|I|.

The Locating chromatic number of the order product prime graph on dihedral groups is given in
Proposition 3.13.
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Proposition 3.13. Let G be a dihedral group, Dn, n = ps, s ∈N. Then

χL
(
Γ copp(G)

)
=

{
n+ 2, if p = 2,
n+ 1, otherwise.

Proof. Let R = {e,a,a2, . . . ,an−1} and F = {b,ab, . . . ,an−1b} be the sets of the rotations and the re-
flections of G, then R is a clique of size n. Let Ci be the color classes of V

(
Γ copp(G)

)
and define

the distance d(x,Ci) = min{d(x,a)|a ∈ Ci}. To each vertex v, we can define a color code for v as
Cπ(v) =

(
d(v,C1),d(v,C2), . . . ,d(v,Ck)

)
. If p = 2, then by Lemma 3.7, n2 pairs of elements of F, that

is (aib,a
n
2 +1b), for 0 6 i 6 n

2 − 1 are cliques. Then each element of set R shall be given distinct color
class. To utilize the minimum number of color class, we shall share some of the color classes of the max-
imum clique, which is R with some elements of F since they are distinct cliques, such that for any two
vertices, vi, vj ∈ V

(
Γ copp(G)

)
, we have that Cπ(vi) 6= Cπ(vj). Now, for any ai ∈ R and aib ∈ F, we have

that Cπ(ai) 6= Cπ(a
ib), since they belong to distinct cliques. Therefore, the color codes are as follows;

C1 = {e},C2 = {a
n
2 },C3 = {a,b},C4 = {a2,ab}, . . . ,Cn

2 +1 = {a
n
2 −1,a

n
2 −2b},Cn

2 +2 = {a
n
2 +1,a

n
2 −1b},Cn

2 +3 =

{a
n
2 +2,a

n
2 b}, . . . ,Cn = {an−1,an−3b},Cn+1 = {an−2b}, Cn+2 = {an−1b}. Hence, χL

(
Γ copp(G)

)
= n+ 2.

If p 6= 2, then R is a clique and F is an independent set, so the class colors of R
/
{e} can be shared with

some elements of F. Now |R
/
{e}| = |F| − 1, so we need one additional color class for an element of F.

Therefore, the color classes are C1 = {e},C2 = {aj,aj−1b} for 2 6 i 6 n + 1, 1 6 j 6 n − 1. Hence,
χL
(
Γ copp(G)

)
= n+ 1.

The investigation of the edge chromatic number of the commuting order product prime graph on
dihedral groups is given in Proposition 3.14 and Proposition 3.15, respectively.

Proposition 3.14. Let G be a dihedral group, Dn, where n = ps, s ∈N. Then χ
′(
Γ copp(G)

)
= 2n− 1.

Proof. Let R and F be the set of the non-trivial rotations and the reflections of G, then A is a clique. If
p = 2, then by Theorem 3.8, the vertices {e,a

n
2 } of 2K1 are central. Thus, there exist edges from all the

vertices of the graph to e and a
n
2 . That is deg(e) = deg(a

n
2 ) is the maximum degree. As a result, we need

at least deg(e) = 2n− 1 colors to properly color the edges incident to the central vertex e. But the edges
incident to e are different from those incident to a

n
2 . Therefore the colors for the edges incident to e are

sufficient to color the edges incident to a
n
2 and also to color the remaining edges of the graph. Hence,

χ
′(
Γ copp(G)

)
= 2n− 1. If p 6= 2, then Z(G) is trivial and so R = {b,ab,a2b, . . . ,an−1b}, is an independent

set. Thus, aib ∼ e ∼ aj, for all 0 6 i 6 n− 1, 1 6 j 6 n− 1. Therefore deg(e) = |R|+ |F| = 2n− 1, but since
R is a clique, then the colors for the edges of the vertices of R that are incident to e is sufficient to color
the edges adjacent to the entire elements of R. Thus, we need |R|+ |F| colors to properly color the entire
edges of the graph. Therefore, χ

′(
Γ copp(G)

)
= 2n− 1.

Proposition 3.15. Let G be a dihedral group, Dn, where n =
∏
psii , si ∈ N. Then χ

′(
Γ copp(G)

)
= n +∑d

i=1(p
si
i − 1).

Proof. Let R and F be the sets of the rotations and the reflections of G, respectively and let Ai = {x ∈
R|O(x) = psii , si > 0}. Since n =

∏
psii , then |G| = 2

∏
psii . Thus, there are some elements h ∈ G such that

O(h) = 2
∏
pkii , k ∈ N, which can not be considered for this coloring since they are edge-less. Suppose

p1 = 2 and let B = {aib,ai+
n
2 b}, where aib,ai+

n
2 b ∈ F. Then corresponding to each prime pi in Ai,

there is a clique of size φ(psii ). Let A
′

be the set of these cliques, also in set B, corresponding to each
i, there is a clique of size two. Now, for any vertex x ∈ A ′ and y ∈ F, we have that x ∼ e ∼ y, thus
deg(e) = |A

′
|+ |F| = n+

∑d
i=1(p

si
i − 1) is the maximum degree. Thus, we need at least n+

∑d
i=1(p

si
i − 1)

colors to properly color the edges of the graph. It is easy to see that these colors are sufficient to color the
entire edges of the graph, since by the vertex adjacency, {e,a

n
2 ,aib,ai+

n
2 b} is a clique where two edges

of aib,ai+
n
2 b are incident to e and also to a

n
2 . Thus, two colors can be managed by aib,ai+

n
2 b for a

particular i. Therefore, n+
∑d
i=1(p

si
i − 1) colors can be utilized for proper coloring of the edges of the
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graph. Thus, χ
′(
Γ copp(G)

)
= n+

∑d
i=1(p

si
i − 1). If pi 6= 2, then Z(G) is trivial and so F is an independent

set. Pick arbitrary xi ∈ Ai and y ∈ F, then xi ∼ e ∼ y, therefore deg(e) = |Ai|+ |F| =
∑d
i=1φ(Ai) + n =

n+
∑d
i=1(p

si
i − 1). Now since |B| > |Ai|, then the edges of the vertices of set B that are adjacent to e are

more than that of set Ai that are adjacent to e. Therefore the colors for the edges incident to the central
vertex e are sufficient to color the edges of the entire graph. Thus, χ

′(
Γ copp(G)

)
= n+

∑d
i=1(p

si
i − 1).

The vertex and edge coloring of the commuting order product prime graph on dihedral group of
degree five is given in Figure 2.

Figure 2: Vertex and edge coloring of the commuting order product prime graph of the dihedral group of degree five.

The results on the commuting order product prime graph on generalized quaternion group are given
here. The investigation begins with the structure for the graph, which is given in Theorems 3.16 and 3.17,
respectively.

Theorem 3.16. Let G be a generalized quaternion group, Q4n, n = ps, s ∈N. Then

Γ copp(G) =

{
2K1 +

(
K2(n−1) ∪nK2

)
, if p = 2,

K1 +
[
(K1 +nK2)∪Kn−1

]
∪Kn−1, otherwise.

Proof. We proof the Theorem by considering the group presentation. Let H =
〈
ai
〉

for 0 6 i 6 2n− 1,
then [H,G] = 2. Thus, H /G. Therefore, all ai satisfy the first condition to be adjacent to any other vertex.
On the other hand, the centralizer, CG(aib) =

〈
aib,an

〉
, for 0 6 i 6 2n− 1, so each {aib,ai+nb}, 0 6 i 6

2n− 1, is a clique of size 2. Now, we need to count the number of elements in H and CG(aib), we can see
that |H| = 2n and |CG(a

ib)| = 4. If p = 2, then e ∼ (ai,aib) ∼ Z(G), for all i. Therefore, H
/
{e,Z(G)} and

CG(a
ib)
/
{e,Z(G)} are cliques of sizes 2n− 2 and 2, respectively. Hence,

Γ copp(G) = 2K1 +

(
K
|H
/
{e,Z(G)}|

⋃
nK

|CG(aib
/
{e,Z(G)}|

)
= 2K1 +

(
K2(n−1) ∪nK2).

If p 6= 2, then we have the following sets; N = {x ∈ G|O(x) = pt, 1 6 t 6 s} and M = {y ∈ G|O(y) =
4pt, 1 6 t 6 s}, where |N| = φ(ps) = |M| = n− 1. By the vertex adjacency, x ∼ e, but M is a set of isolated
vertices. Therefore,

Γ copp(G) = K|e| +
[(
K|Z(G)| +nK|CG(aib)

/
{e,Z(G)}|

)
∪K|N|

]
∪K|N| = K1 +

[
(K1 +nK2)∪Kn−1

]
∪Kn−1.

Theorem 3.17. Let G be a generalized quaternion group, Q4n, n =
∏
psii , si ∈N. Then

Γ copp(G) =

{
K1 +

[
K1 + (K

(p
s1+1
1 −2)

∪nK2)
⋃d
i=2 K(p

si
i −1)

]
∪K2(n−2s1)−

∑d
i=2(p

si
i −1), if p1 = 2,

K1 +
[
(K1 +nK2)

⋃d
i=1 K(p

si
i −1)

]
∪K2(n−1)−

∑d
i=1(p

si
i −1), otherwise.
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Proof. We consider the roup presentation. Let A =
〈
ai ∈ G|0 6 i 6 2n− 1

〉
and B = {ajb ∈ G|o 6 j 6

2n− 1} and define the sets Ni = {x ∈ A|O(x) = psii , si > 0}, M = {y ∈ B|O(y) =
∏
pti , 0 6 t 6 si}. Then

|Ni| = φ(p
si
i ) = p

si
i − 1 and |B| = 2n. Now, we need to know |M|. So,

|M| = |G|− {|e|+ |Ni|+ |B|} = 2n− [1 +

d∑
i=1

φ(psii )].

Next we determine the cliques in both sets A and B. In set A, corresponding to each prime pi, there is a
clique of size φ(psii ), for 1 6 i 6 d. Thus, set A has d distinct cliques. For each ajb ∈ B, the centralizer
CG(a

jb) =
〈
ajb,an

〉
. Thus, the set {ajb,ai+nb} for o 6 j 6 2n− 1 is a clique each of size 2, and we have

n such cliques. Now, for any aib, we have that e ∼ aib ∼ Z(G). Therefore, the elements of B make n
cliques each of size 2. If p1 = 2, then φ(ps1

1 ) = ps1+1
1 − 1. Therefore,

Γ copp(G) = K1 +
[
K1 + (K|N1−1| ∪nK2)

d⋃
i=2

K|Ni|

]
∪K|M|

= K1 +
[
K1 + (K

(p
s1+1
1 −2)

∪nK2)

d⋃
i=2

K(p
si
i −1)

]
∪K2(n−2s1)−

∑d
i=2(p

si
i −1).

If pi 6= 2, then Z(G) should also be removed from M. So, M = 2(n− 1) −
∑d
i=1(p

si
i − 1). Therefore,

Γ copp(G) = K1 +
[
(K1 +nK2)

d⋃
i=1

K|Ni|

]
∪K|M| = K1 +

[
(K1 +nK2)

d⋃
i=1

K(p
si
i −1)

]
∪K2(n−1)−

∑d
i=1(p

si
i −1).

The connectivity, regularity, completeness, and planarity of the commuting order product prime graph
on generalized quaternion groups is given in Proposition 3.18.

Proposition 3.18. LetG be a generalized quaternion group,Q4n. Then Γ copp(G) is connected only if n = 2s, s > 0
and planar if n = 2, but not complete and not regular.

Proof. Suppose n = 2s, then G is a p-group. Let vi, vj, i 6= j, be any two vertices of Γ copp(G). Then
vi ∼ e ∼ vj, for all vi, vj ∈ V

(
Γ copp(G)

)
. Hence, each vertex is reachable from the others through e.

Therefore, Γ copp(G) is connected. Suppose on the other hand that n 6= 2s, then |G| = 4ps, and so, there
exists x ∈ G 3 o(x) = 2ps which are not reachable from others. Hence, Γ copp(G) is not connected in this
case. For planarity, if p = 2, then |G| = 8 and by Theorem 3.16, the maximum complete component is K4,
which is planar. For completeness, aib× ai+1b 6= ai+1b× aib. Therefore, {aib,ai+1b} is an independent
set. Hence, Γ copp(G) is not complete. For regularity, let v be an arbitrary vertex of Γ copp(G), then e ∼ v,
therefore, deg(e) > deg(v) for all non-central vertex v of Γ copp(G). Hence, Γ copp(G) is not regular.

Various chromatic numbers of the commuting order product prime graph on generalized quaternion
groups are investigated here. The investigation begins by giving the clique number of the commuting
order product prime graph on generalized quaternion groups in Propositions 3.19 and 3.20.

Proposition 3.19. Let G be a generalized quaternion group, Q4n, n = ps, s ∈N. Then

ω
(
Γ copp(G)

)
=


2n, if p = 2,
4, if n = 3,
n, otherwise.
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Proof. Suppose p = 2 and consider the group presentation. Let A = {ai}, B = {aib,ai+nb}, for 0 6 i 6
2n− 1. Then A /G, thus, A is a clique of size 2n. Since the centralizer, CG(aib) =

〈
aib,an

〉
, then B is

a clique of size 2. But |B| < |A|, therefore, A is the maximum clique and so, ω
(
Γ copp(G)

)
= |A| = 2n.

If n = 3, then |G| = 12, so we have the cliques; {e,a2,a4} of size three and {e,a3,aib,ai+nb} of size
4. Therefore, ω

(
Γ copp(G)

)
= 4. If p 6= 2, n > 3, then |G| = 4ps. Thus, there exist some elements,

x ∈ A such that O(x) = 2ps, meaning that the entire A is not clique, but corresponding to the prime,
p, the set A

′
= {y ∈ A|O(y) = pt, 0 6 t 6 s} is a clique, such that |A

′
| = ps. Now |A

′
| > |B|, thus,

ω
(
Γ copp(G)

)
= |A

′
| = ps = n.

Proposition 3.20. Let G be a generalized quaternion group, Q4n, for n =
∏d
i=1 p

si
i , si ∈ N, for some prime p.

Then

ω
(
Γ copp(G)

)
=

{
ps1+1

1 , if ps1+1
1 > max(psii ), 2 6 i 6 d,

max(psii ), if ps1+1
1 < max(psii ) or if pi 6= 2.

Proof. Consider the presentation in Theorem 3.17. If p1 = 2, then the connected component of Γ copp(G) is
the join union of K

p
s1+1
1

, nK4 and
⋃d
i=2 Kpsii

. Thus, the maximum complete component is either, K
p
s1+1
1

or

max(Kpsii ), for 2 6 i 6 d. Hence, ω
(
Γ copp(G)

)
= ps1+1

1 if ps1+1
1 > max(Kpsii ) and ω

(
Γ copp(G)

)
= max(psii )

if ps1+1
1 < max(Kpsii ). If pi 6= 2, then the connected component of Γ copp(G) is a join union of nK4 and⋃d

i=1 Kpsii
. Thus, the maximum complete component is max(Kpsii ). Hence, ω

(
Γ copp(G)

)
= max(psii ).

The vertex chromatic number of the commuting order product prime graph on generalized quaternion
group is given in Propositions 3.21 and 3.22, respectively.

Proposition 3.21. Let G be a generalized quaternion group, Q4n, n = ps, s ∈ N. Then χ
(
Γ copp(G)

)
=

ω
(
Γ copp(G)

)
.

Proof. Let A = {ai ∈ G, 0 6 i 6 2n− 1}, B = {aib ∈ G, 0 6 i 6 2n− 1} and A
′
= {ai ∈ A|O(ai) =

pt, 0 6 t 6 s}. Then |A| = |B| = 2n, |A
′
| = φ(ps) = ps. Since the centralizer, CG(aib) =

〈
aib,an

〉
, then

the pair {aib,ai+nb}, for 0 6 i 6 n− 1 are the cliques in B. Thus, set B contains n such cliques each of
size two. Let x be an arbitrary non-central element of A, then aib � x � ai+1b. Therefore, {aib, x,ai+1b}

is an independent set and so all its elements can be assigned with same color. That is the colors for
the maximum component of the graph are sufficient to color all the vertices of the graph. Therefore,
χ
(
Γ copp(G)

)
= ω

(
Γ copp(G)

)
.

Proposition 3.22. Let G be a generalized quaternion group, Q4n, for n =
∏
psii , si > 0. Then χ

(
Γ copp(G)

)
=

|max(psii )|.

Proof. Since n =
∏
psii , then |G| = 4

∏
psii . Let Ai = {x ∈ G|O(x) = psii , si > 0}, B = {y ∈ G|O(y) =∏

pti , 1 6 t 6 si} and C = {aib,ai+nb, 0 6 i 6 n− 1}. Now sets A,B, and C are the sets consisting
of all the vertices of Γ copp(G). So, {x,y, c}, ∀ c ∈ C is an independent set, and all the elements of the set
can therefore be assigned with same color. Thus, the colors for the vertices of the maximum complete
subgraph is sufficient to properly color the vertices of the other components. But by Proposition 3.20, the
maximum complete component is |max(psii )|. Therefore, χ

(
Γ copp(G) = |max(psii )|.

The dominated chromatic number of the commuting order product prime graph on generalized
quaternion group is given in Propositions 3.23 and 3.24, respectively.

Proposition 3.23. Let G be a generalized quaternion group, Q4n, n = ps, s ∈N. Then,

χdom
(
Γ copp(G)

)
=


2n, if p = 2,
6, if n = 3,
2n− 1, otherwise.
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Proof. If p = 2, then by Propositions 3.19 and 3.21, Γ copp(G) required 2n distinct colors for proper vertex
coloring. Assume that each color corresponds to a color class. So, we need to check if each of these colors
is dominated by some vertices of the graph. Pick arbitrary v ∈ V

(
Γ copp(G)

)
, then e ∼ v ∼ Z(G). Thus, e and

Z(G) = an are central vertices. Hence, the central vertices e and an dominate all the color classes of the
vertices of the graph. Therefore, the color classes are; C1 = {e}, C2 = {an}, C3 = {a,ab,a2b, . . . ,an−1b},
C4 = {a2,anb,an+1b, . . . ,a2n−1b},C5 = {a3}, C6 = {a4}, . . . ,C2n = {a2n−1}. These color classes are all
dominated by e and an and vice versa. Thus, χdom

(
Γ copp(G)

)
= 2n. If n = 3, then |G| = 12. Thus,

there exist two isolated vertices which cannot be dominated by any other vertex, which must be assigned
with distinct color classes. By Propositions 3.19 and 3.21, four colors are sufficient to properly color the
vertices of the graph. Therefore, χdom

(
Γ copp(G)

)
= 6. If p 6= 2, n > 3, then by Proposition 3.18, Γ copp(G) is

disconnected, therefore has some isolated vertices, which cannot be dominated by any other vertex of the
graph and so each of them must have distinct color class. So, the dominated chromatic number will be the
sum of the vertex chromatic number and the number of the isolated vertices of the graph. Therefore, the
color classes are; C1 = {e}, C2 = {an}, C3 = {a2,b,ab, . . . ,an−1b}, C4 = {a4,anb,an+1b, . . . ,a2n−1b},C5 =
{a6}, C6 = {a8}, . . . ,Cn = {a2n−2}, Cn+1 = {a},Cn+2 = {a3},Cn+3 = {a5}, . . . ,C2n−1 = {a2n−1}. Thus,
χdom

(
Γ copp(G)

)
= 2n− 1.

Proposition 3.24. Let G be a generalized quaternion group, Q4n, where n =
∏
psii , si > 0. Then

χdom
(
Γ copp(G)

)
=

{
2n−

∑d
i=2(p

si
i − 1), if p1 = 2, s > 0,

|max(psii )|+ 2(n− 1) −
∑d
i=1(p

si
i ), otherwise,

where d is the number of prime divisors of n.

Proof. If n =
∏
psii , then |G| = 4

∏
psii and so there exists a set I = {h ∈ G|O(h) =

∏
pti , t > 0}. By

Propositions 3.20 and 3.22, there is need for |max(psii )| colors to properly color the vertices of Γ copp(G).
Hence, each color corresponds to distinct color class. Since set I contains some isolated vertices, which
cannot be dominated by any other vertex, then each of these vertices must be assigned with distinct
color classes. Therefore, for proper dominated coloring, we need |max(psii )| + |I| color classes. Thus,
χdom

(
Γ copp(G)

)
= |max(psii )|+ |I|. If p1 = 2, then by Theorem 3.17, |I| = 2(n− 2s1) −

∑d
i=2(p

si
i − 1). There-

fore, χdom
(
Γ copp(G)

)
= |max(psii )|+ 2(n− 2s1) −

∑d
i=2(p

si
i − 1) = 2n−

∑d
i=2(p

si
i − 1), since |max(psii )| =

2s1+1 if p1 = 2. If pi 6= 2, then still by Theorem 3.17, |I| = 2(n − 1) −
∑d
i=1(p

si
i − 1). Therefore,

χdom
(
Γ copp(G)

)
= |max(psii )|+ 2(n− 1) −

∑d
i=1(p

si
i − 1).

The locating chromatic number is distance based, so can only be obtained in a connected graph. As a
result, we consider only the situation when n = 2s, s ∈ N. The result on the locating chromatic number
is given in Proposition 3.25.

Proposition 3.25. Let G be a generalized quaternion group, Q2α , α ∈N. Then, χL
(
Γ copp(G)

)
= 2n+ 1.

Proof. Define the distance between the vertex v and the color classes Ci, by d(v,Ci) = min{d(v,a)|a ∈ Ci}.
Define also the color code of the vertex v as Cπ(v) =

(
d(v,C1),d(v,C2), . . . ,d(v,Ck)

)
. Now consider the

2n color classes given in Proposition 3.21 and pick arbitrary vertex u ∈ V
(
Γ copp(G)

)
, then d(u,ab) =

d(u,a2b) = · · · = d(u,an−1b), also d(u,anb) = d(u,an+1b) = · · · = d(a2n−1b). Thus, Cπ(ab) =
Cπ(a

2b) = · · · = Cπ(a
n−1b) and Cπ(anb) = Cπ(a

n+1b) = · · · = Cπ(a
2n−1b), which is problem to this

coloring. That is this coloring is not proper, hence, we need to add some color classes, so that Cπ(vi) 6=
Cπ(vj), for all vi, vj ∈ V

(
Γ copp(G)

)
. Observe that d(ai, v) 6= d(aib, v), for all v ∈ V

(
Γ copp(G)

)
, then

(ai,aib) can be in a class. Therefore, we have the following color classes; C1 = {e}, C2 = {an}, C3 = {a,b},
C4 = {a2,ab}, C5 = {a3,a2b}, . . . ,Cn+2 = {an+1,an−1b}, Cn+3 = {an+2,anb}, . . . ,C2n = {a2n−1,a2n−3b},
C2n+1 = {a2n−2b,a2n−1b}. Hence, χL

(
Γ copp(G)

)
= 2n+ 1.

The edge chromatic number of the commuting order product prime graph on generalized quaternion
group is given in Propositions 3.26 and 3.27, respectively.
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Proposition 3.26. Let G be a generalized quaternion group, Q4n, where n = ps, s > 0. Then

χ
′(
Γ copp(G)

)
=

{
4n− 1, if p = 2,
3n, otherwise.

Proof. If p = 2, then by Theorem 3.16, Γ copp(G) is a join union of K2n and nK4, with e and an as central
vertices of each component. Pick arbitrary, u ∈ V(Kn) and v ∈ V(nK4) such that u and v are non-central
vertices of Γ copp(G), then u � v, but u ∼ {e,an} ∼ v. Thus, the color for the edges incident to the vertices
of K2n cannot be shared with that of nK4. Hence, the colors require to be fully utilized is the sum of the
colors for K2n and nK4. Since nK4 = K4 ∪ K4 ∪ · · · ∪ K4 n-tuple and two edges from each K4 are incident
to the vertex e, while the other two edges are incident to the other central vertex an, then the edge colors
for 1

2(nK4) are sufficient to fully color the whole nK4. Therefore, χ
′(
Γ copp(G)

)
= χ

′
(K2n) + χ

′
( 1

2nK4) =
(2n− 1)+ 2n = 4n− 1. If p 6= 2, then still by Theorem 3.16, Γ copp(G) have some isolated vertices. But these
vertices are edge-less, so we do not consider them in edge coloring. Therefore, the connected component
of the graph is the join union of Kn and nK4, whose each vertex is adjacent to the central vertices {e,an}.
By using similar argument as in the previous case, we have that χ

′(
Γ copp(G)

)
= χ

′
(Kn) + χ

′
( 1

2nK4) =
n+ 2n = 3n since n is odd.

Proposition 3.27. Let G be a generalized quaternion group, Q4n, where n =
∏
psii , si > 0. Then

χ
′(
Γ copp(G)

)
=

{
2(n+ 2s1) −

(
1 −
∑d
i=2(p

si
i − 1)

)
, if p1 = 2,

1 + 2n+
∑d
i=1(p

si
i ), otherwise,

where d is the number of prime divisors of n.

Proof. By Theorem 3.17, Γ copp(G) has some edge-less vertices, so they will not be considered in edge
coloring of the graph. Therefore, we consider the connected component of the graph, which is K1 +

[K1 + (K
(p
s1+1
1 −2)

∪ nK2)
⋃d
i=2 K(p

si
i −1)], where e is the central vertex, that is vertex of K1 and also an is

the central vertex of K(p
si
1+1−2) ∪ nK2. Pick u ∈ V(K

(p
s1+1
1 )−2), vi ∈ V(∪

d
i=2K(p

si
i −1)) and wj = V(nK2),

for 1 6 j 6 n. Then {u,wj, vi} is an independent set and so, the edges incident to them that are not
incident to e can share same color. But all the vertices of the graph are adjacent to e, hence, deg(e) =

2(n+ 2s1)− (1−
∑d
i=2(p

si
i − 1)), which is sufficient to color the edges incident to the other vertices. Hence,

χ
′(
Γ copp(G)

)
= 2(n+ 2s1) − (1 −

∑d
i=2(p

si
i − 1)). If pi 6= 2, still by Theorem 3.17, e is the central vertex

and deg(e) = 1 + 2n+
∑d
i=1(p

si
i − 1). By using similar argument as in the previous case, we have that

χ
′(
Γ copp(G)

)
= 1 + 2n+

∑d
i=1(p

si
i − 1).

The dominated and edge coloring of the commuting order product prime graph on generalize quater-
nion group of order twelve is given in Figure 3.

Figure 3: The dominated and edge coloring of the commuting order product prime graph of the generalized quaternion group
of order twelve.
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The result on the commuting order product prime graph on quasi-dihedral group is given here. Be-
ginning with the general structure of the graph, which is given in Theorem 3.28.

Theorem 3.28. Let G be a quasi-dihedral group, QD2n , where n > 2. Then Γ copp(G) = 2K1 + (K2(2n−2−1) ∪
2n−2K2).

Proof. Since G is a p-group, then all the elements of G satisfy the first condition to be adjacent to each
other. It remains to show the second condition, which is commutativity. Consider the group presentation
and let A =

〈
a
〉
, Bi = {ajb,aj+2n−2

b}, for 1 6 i 6 2n−2, 0 6 j 6 (2n−2 − 1). Then A is a clique of size 2n−1

and each Bi is a clique of size 2. So, we have 2n−2, Bi, each of size 2. Pick arbitrary a ∈ A, ajb ∈ Bi, then
ajb ∼ {e,a2n−2

} ∼ a, where a2n−2
is the center of G. But {e,a2n−2

} ∈ A, therefore |A
/
{e,a2n−2

}| = 2(2n−2 − 1).
Thus,

Γ copp(G) = |{e,a2n−2
}|K1 +

(
K
|A
/
{e,a2n−2

}|
∪n(Bi)K|Bi|

)
= 2K1 +

(
K2(2n−2−1) ∪ 2n−2K2

)
.

The connectedness, completeness, regularity, and the planarity of the commuting order product prime
graph on quasi-dihedral groups is given in Proposition 3.29.

Proposition 3.29. Let G be a quasi-dihedral group, QD2n , where n > 2. Then Γ copp(G) is connected, not complete,
not regular, but planar when n = 3.

Proof. Let vi, vj, i 6= j be arbitrary non-central vertices of Γ copp(G). Then vi ∼ e ∼ vj, for all vi, vj ∈
V
(
Γ copp(G)

)
. Thus, each vertex of the graph is reachable through e. Therefore, Γ copp(G) is connected.

For completeness, by considering the group presentation, ai � aib. Thus, Γ copp(G) is not complete. For
regularity, since e is a central vertex, then deg(e) > deg(ai), for any non-central vertex ai. Thus, the
degree of some vertices varies, therefore Γ copp(G) is not regular. For planarity, by Theorem 3.28, the
maximum complete subgraph is K2n−1 . Thus, Γ copp(G) is planar when n = 3. Suppose on the other hand
that n = 4, then the maximum subgraph is K8, which cannot be drawn in a plane without edge crossing.
Hence, Γ copp(G) is planar only when n = 3.

The investigation for the chromatic numbers of the commuting order product prime graph on quasi-
dihedral group is given here. The investigation begins with the vertex chromatic number, which is given
in Proposition 3.30.

Proposition 3.30. Let G be a quasi-dihedral group, QD2n , where n > 2. Then χ
(
Γ copp(G)

)
= 2n−1.

Proof. Consider the group presentation and let A =
〈
a
〉
, B = {aib|0 6 i 6 (2n−1 − 1)} and Ck =

{ajb,aj+2n−2
b}, for 0 6 j 6 2n−2 − 1 and 1 6 k 6 2n−2. Then Ck ⊂ B, now for each x ∈ Ck, we

have that e ∼ x ∼ a2n−2
. Therefore, Ck ∪ {e,a2n−2

} is a clique of size 4 and |A| = 2n−1. Thus, A is the
maximum clique of the graph. Hence, we need at least 2n−1 colors to color the vertices of the graph.
Since {aib,ai+1b} is an independent set, then the vertices of set B can share two colors which can be
picked from the colors for the vertices of A. Thus, the colors for the vertices of set A are sufficient to color
the rest of the vertices for the graph. Therefore, χ

(
Γ copp(G)

)
= 2n−1.

The dominated chromatic number of the commuting order product prime graph on quasi-dihedral
group is given in Proposition 3.31.

Proposition 3.31. Let G be a quasi-dihedral group, QD2n , where n > 2. Then χdom
(
Γ copp(G)

)
= 2n−1.
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Proof. By Proposition 3.30, there is need for 2n−1colors to properly color the vertices of Γ copp(G). Hence,
for dominated coloring, each color corresponds to a color class, since each color is dominated by the cen-
tral vertices, e and a2n−2

. Therefore, we have the following color classes; C1 = {e},C2 = {a2n−2
}, C3 =

{a,b,ab,a2b, . . . ,a2n−2−1b}, C4 = {a2,a2n−2
b,a2n−2+1b, . . . ,a2n−1

b}, C5 = {a3}, . . . ,C2n−2+1 = {a2n−2−1},
C2n−2+2 = {a2n−2+1}, C2n−2+3 = {a2n−2+2}, . . . ,C2n−1 = {a2n−1−1}. But when n = 3, then Z(G) = a2, so
in this case, C4 = {a3,a2b,a3b}. Therefore, χdom

(
Γ copp(G)

)
= 2n−1.

The locating chromatic number of the order product prime graph on quasi-dihedral groups is given
in Proposition 3.32.

Proposition 3.32. Let G be a quasi-dihedral group, QD2n , where n > 2. Then χL
(
Γ copp(G)

)
= 2n−1 + 1.

Proof. Consider the color classes in Proposition 3.30. Define the distance between an arbitrary vertex
v ∈ V

(
Γ copp(G)

)
and these color classes by d(v,Ci) = min{d(v,a)|a ∈ Ci}. Define also the color code

for the vertex v as Cπ(v) =
(
d(v,C1),d(v,C2), . . . ,d(v,Ck)

)
, k ∈ N, then d(b, v) = d(ab, v) = · · · =

d(a2n−2
b, v). Thus, Cπ(b) = Cπ(ab) = · · · = Cπ(a

2n−2
b), which is a problem to the locating coloring

of the graph. Hence, we need to re-partition the color classes, so that Cπ(u) 6= Cπ(v), for all u, v ∈
V
(
Γ copp(G)

)
. Thus, we have the following color classes; C1 = {e}, C2 = {a2n−2

}, C3 = {a,b}, C4 =

{a2,ab}, . . . ,C2n−2+1 = {a2n−2−1,a2n−2−2b}, C2n−2+2 = {a2n−2+1,a2n−2−1b}, . . . ,C2n−1 = {a2n−1−1,a2n−1−3b},
C2n−1+1 = {a2n−1−2b,a2n−1−1b}, but recall that if n = 3, then Z(G) = a2, so in this case, C4 = {a3,ab}.
Therefore, χL

(
Γ copp(G)

)
= 2n−1 + 1.

The edge chromatic number of the commuting order product prime graph on quasi-dihedral group is
given in Proposition 3.33.

Proposition 3.33. Let G be a quasi-dihedral group, QD2n , where n > 2. Then χ
′(
Γ copp(G)

)
= 2n − 1.

Proof. Consider the group presentation and let A =
〈
a
〉
= {ai}, B = {aib}, for 0 6 i 6 2n−1 − 1. Then A

is a clique, thus, deg(ai) = |A|− 1, for ai ∈ A. Therefore, we need |A| colors to properly color the edges
incident to the elements of A. But |A| is even, so we need |A|− 1 = 2n−1 − 1 colors. For the edges incident
to the vertices of the other components of the graph, since e ∼ aib ∼ a2n−2

, then there exist edges from
the vertices aib to both e and a2n−2

. But since {akb,ak+2n−2
b}, for 0 6 k 6 2n−2 − 1 is an independent

set, then the edges between the vertices aib and e can share same color with the edges between aib and
a2n−2

. Therefore, we need (|A|− 1) + |B| colors to properly color the edges incident to all the vertices of
Γ copp(G). Thus, χ

′(
Γ copp(G)

)
= 2n − 1.
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