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Abstract
It is time-memory consuming when numerically solving time fractional partial differential equations, as it requires O(N2)

computational cost and O(MN) memory complexity with finite difference methods, where, N and M are the total number of
time steps and spatial grid points, respectively. To surmount this issue, we develop an efficient hybrid method with O(N)
computational cost and O(M) memory complexity in solving two-dimensional time fractional diffusion equation. The presented
method is based on the Laplace transform method and a finite difference scheme. The stability and convergence of the proposed
method are analyzed rigorously by the means of the Fourier method. A comparative study drawn from numerical experiments
shows that the hybrid method is accurate and reduces the computational cost, memory requirement as well as the CPU time
effectively compared to a standard finite difference scheme.

Keywords: Caputo fractional derivative, fractional diffusion equation, Laplace transform, finite difference scheme, stability and
convergence analyses.
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1. Introduction

Fractional calculus which entails integrals and derivatives of fractional orders is one of the essential
topics of applied mathematics. In particular, much attention has been directed recently to fractional
differential equations (FDEs). This growing interest in FDEs is obviously attributed to their ability in
modeling many problems in engineering [6, 32], viscoelasticity [20], hydrology [4], bio science [19] and
other sciences [17, 22, 31].

Attempting to seek solutions of FDEs, several approaches including analytical and numerical methods
are suggested. Adomian decomposition [7], homotopy analysis [8] and tau method [16] are such examples
of analytical and approximate methods that can be found in literature. However, analytic solutions for
most fractional differential equations can not be obtained explicitly [10]. Consequently, significant effort
has been invested in developing numerical methods for solving these equations. Of numerical methods,
finite difference methods are prominently plentiful [1, 3, 11, 21, 23, 33].

In this study, we consider the following two-dimensional time fractional diffusion equation (TFDE)

C
0 D

α
t u(x,y, t) = a1

∂2u(x,y, t)
∂x2 + a2

∂2u(x,y, t)
∂y2 + f(x,y, t), 0 < α < 1, (1.1)

where a1,a2 > 0, and f(x,y, t) is the source term with the initial and boundary conditions
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u(x,y, 0) = g(x,y), x,y ∈ Ω,
u(x, 0, t) = g1(x, t), u(x,L, t) = g2(x, t),
u(0,y, t) = g3(y, t), u(L,y, t) = g4(y, t), 0 6 t 6 T ,

in which Ω = {(x,y)|0 6 x 6 L, 0 6 y 6 L}, and C
0 D

α
t u(x,y, t) is the Caputo fractional derivative given as

follows:

C
0 D

α
t u(x,y, t) =

1
Γ(n−α)

∫t
0

u(n)(x,y, τ)
(t− τ)α+1−ndτ.

The existing discretization schemes constructed based on finite difference approximations for solving
Eq. (1.1) require large computational cost and memory requirement. Such numerical schemes necessitate
O(N2) computational cost and O(MN) memory complexity [12, 14]. These considerable computational
challenges are mainly caused by the non-local property of the fractional derivative which employs the
solution values on all previous time steps to compute the solution at the current time level [26]. This is
in contrast with the classical diffusion equation, where the solution need to be stored at a fixed number
of time steps and the computational cost is linear with respect to N. To surmount such computational
challenges in solving FDEs numerically, several methods including parallel computing [9, 13], short mem-
ory principle [34], and multigrid method [24] have been suggested. In this study, we propose a hybrid
method which is based on Laplace transform technique and Crank-Nicolson difference scheme to achieve
an economical computational solution of the time fractional diffusion equation (1.1). To summarize, the
Laplace transform method is used at first to approximate the Caputo-type time fractional derivative and
reduce the original TFDE (1.1) to its corresponding partial differential equation (PDE). Afterwards, a
Crank-Nicolson difference scheme is employed for solving the obtained PDE which result in a low cost
and fast solution method of the original TFDE. The stability and convergence of the developed numerical
scheme are discussed via the Fourier method. The advantages of the proposed method are demonstrated
in terms of the computational cost, memory complexity and execution times when compared to an exist-
ing standard finite difference scheme.

The rest of this manuscript is arranged as follows. In Section 2, we show the formulation of the
proposed method. The stability and convergence analyses are then discussed in Sections 3 and 4, respec-
tively. An existing standard finite difference scheme is presented in Section 5. The computational cost
and memory complexity of both standard and hybrid methods are also analyzed in the same section. The
computational superiority of the hybrid method over the standard scheme has been illustrated through
numerical experiments in Section 6. Eventually, conclusions are made in Section 7.

2. Construction of the hybrid method

Due to the non local property of the fractional derivative, solving problem (1.1) using standard finite
difference methods (such as explicit or implicit scheme with a certain discretization formula for the time
fractional derivative), necessitates the storage of the solution outcomes at all preceding time levels to
compute the solution at the current time level. To overcome this issue, we use the Laplace transform
method and linearization property proposed by Ren et al. [27] and utilized in [5, 26, 28–30] to approximate
the Caputo fractional derivative and convert the TFDE (1.1) to its corresponding PDE. The resulting PDE
will then be solved using Crank-Nicolson difference scheme, which generates a numerical solution close
to the exact solution of the original problem (1.1) with significant savings in computational cost and
memory requirement.

The time fractional derivative C0 D
α
t u(x,y, t) can be approximated using Laplace transform as follows

[25]

L{C0 D
α
t u(x,y, t)} = sαu(x,y, s) − sα−1u(x,y, 0) = sα[u(x,y, s) − s−1u(x,y, 0)], (2.1)
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in which u(x,y, s) is the Laplace transform of u(x,y, t). As we have 0 < α < 1, then the term sα is
linearized as

sα ≈ αs1 + (1 −α)s0 = αs+ (1 −α). (2.2)

By setting (2.2) into (2.1), we get the following expression

L{C0 D
α
t u(x,y, t)} ≈ [αs+ (1 −α)][u(x,y, s) − s−1u(x,y, 0)]

= αs[u(x,y, s) − s−1u(x,y, 0)] + (1 −α)[u(x,y, s) − s−1u(x,y, 0)].

Now, the inverse Laplace transform may be applied to yield

C
0 D

α
t u(x,y, t) ≈ α∂u(x,y, t)

∂t
+ (1 −α)[u(x,y, t) − u(x,y, 0)]. (2.3)

By taking Eq. (2.3) into consideration, the original TFDE (1.1) is simplified to the following PDE

∂u(x,y, t)
∂t

= A1
∂2u(x,y, t)

∂x2 +A2
∂2u(x,y, t)

∂y2 − (r− 1)u(x,y, t) + (r− 1)g(x,y) + rf(x,y, t), (2.4)

u(x,y, 0) = g(x,y), x,y ∈ Ω,
u(x, 0, t) = g1(x, t), u(x,L, t) = g2(x, t),
u(0,y, t) = g3(y, t), u(L,y, t) = g4(y, t), 0 6 t 6 T ,

where A1 = a1
α , A2 = a2

α and r = 1
α . This approach removes the fractional derivative of the original prob-

lem (1.1) and turns it into a PDE, which can minimize the computational cost and memory complexity.
Next, we utilize a finite difference scheme to attain the numerical solution of the PDE (2.4), which leads to
obtaining an approximate-numerical solution of the TFDE (1.1). Define a uniform solution domain with
tk = k∆t, k = 0, 1, 2, . . . ,N, xi = i∆x, i = 0, 1, 2, . . . ,Mx, and yj = j∆y, j = 0, 1, 2, . . . ,My, where Mx, My

and N are positive integers. Based on the central difference approximations in time and space directions
about the point (xi,yj, tk+1/2), the following Crank-Nicolson difference scheme is utilized to discretize
the simplified problem (2.4)

uk+1
i,j − uki,j
∆t

=
A1

2

(
uk+1
i+1,j − 2uk+1

i,j + uk+1
i−1,j

(∆x)2 +
uki+1,j − 2uki,j + u

k
i−1,j

(∆x)2

)

+
A2

2

(
uk+1
i,j+1 − 2uk+1

i,j + uk+1
i,j−1

(∆y)2 +
uki,j+1 − 2uki,j + u

k
i,j−1

(∆y)2

)

− (r− 1)

(
uk+1
i,j + uki,j

2

)
+ (r− 1)u0

i,j + rf
k+1/2
i,j +O

(
(∆t)2 + (∆x)2 + (∆y)2) .

(2.5)

Upon simplification and neglecting higher order terms, the following fully-discrete Crank-Nicolson scheme
is obtained:

uk+1
i,j =

1
1 + 0.5(r− 1)∆t+ q1 + q2

[
q1

2

(
uk+1
i+1,j + u

k+1
i−1,j + u

k
i+1,j + u

k
i−1,j

)
+
q2

2

(
uk+1
i,j+1 + u

k+1
i,j−1 + u

k
i,j+1 + u

k
i,j−1

)
+ (1 − 0.5(r− 1)∆t− q1 − q2)u

k
i,j

+ (r− 1)∆tu0
i,j + r∆tf

k+1/2
i,j

]
,

(2.6)

in which q1 = A1∆t
∆x2 , q2 = A2∆t

∆y2 with the initial and boundary conditions

u0
i,j = g(xi,yj), uki,0 = g1(xi, tk), uki,L = g2(xi, tk), uk0,j = g3(yj, tk), ukL,j = g4(yj, tk),

for i = 1, 2, . . . ,Mx − 1, j = 1, 2, . . . ,My − 1 and k = 0, 1, . . . ,N− 1.
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3. Stability analysis

In this section, we analyze the stability of the difference scheme (2.6) by the means of the Fourier
analysis method. Assume that Uki,j is the approximate solution of Eq. (2.6), then the error can be defined
as follows:

ξki,j = u
k
i,j −U

k
i,j, 1 6 i 6Mx − 1, 1 6 j 6My − 1, 0 6 k 6 N.

Utilizing the above definition along with the Eq. (2.6), we can easily obtain the following round-off error
equation:

−q1

2
(ξk+1
i+1,j + ξ

k+1
i−1,j) + (1 + 0.5(r− 1)∆t+ q1 + q2)ξ

k+1
i,j −

q2

2
(ξk+1
i,j+1 + ξ

k+1
i,j−1)

=
q1

2
(ξki+1,j + ξ

k
i−1,j) + (1 − 0.5(r− 1)∆t− q1 − q2)ξ

k
i,j +

q2

2
(ξki,j+1 + ξ

k
i,j−1) + (r− 1)∆tξ0

i,j.
(3.1)

For k = 0, 1, . . . ,N, we define the discrete function

ξk(x,y) =


ξki,j, xi−∆x

2
< x 6 xi+∆x

2
,y
j−∆y

2
< y 6 y

j+∆y
2

,

0, 0 6 x 6 ∆x
2 or L− ∆x

2 6 x 6 L,
0, 0 6 y 6 ∆y

2 or L− ∆y
2 6 y 6 L.

Expanding ξk(x,y) in a Fourier series, yields

ξk(x,y) =
∞∑

l1=−∞
∞∑

l2=−∞ λ
k(l1, l2)e2π

√
−1(l1x/L+l2y/L),

in which

λk(l1, l2) =
1
L2

∫L
0

∫L
0
ξk(x,y)e−2π

√
−1(l1x/L+l2y/L)dxdy.

Utilizing the l2 norm definition together with the Parseval’s equality, we obtain

‖ξk‖2
2 =

Mx−1∑
i=1

My−1∑
j=1

∆x∆y|ξki,j|
2 =

∞∑
l1=−∞

∞∑
l2=−∞ |λk(l1, l2)|2.

Next, assume the solution of Eq. (3.1) is of the following form:

ξki,j = λ
ke
√
−1(β1i∆x+β2j∆y), (3.2)

where β1 = 2πl1/L and β2 = 2πl2/L. Substituting (3.2) into (3.1), yields

λk+1 =
1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
λk +

(r− 1)∆t
1 + 0.5(r− 1)∆t+ ρ1 + ρ2

λ0, (3.3)

where

ρ1 = 2q1 sin2
(
β1∆x

2

)
, ρ2 = 2q2 sin2

(
β2∆y

2

)
.

Proposition 3.1. If 2 − (r− 1)∆t > 0 and λk (k = 0, 1, . . . ,N− 1) satisfies Eq. (3.3), then |λk+1| 6 |λ0|.
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Proof. We use mathematical induction to prove the above result. For k = 0 and according to Eq. (3.3), we
have ∣∣λ1∣∣ 6 ∣∣∣∣1 + 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣λ0∣∣.
Since ρ1 > 0 and ρ2 > 0, we get ∣∣λ1∣∣ 6 ∣∣λ0∣∣.
Next, supposing that |λs| 6

∣∣λ0
∣∣ for s = 1, 2, . . . , k. From Eq. (3.3) we obtain

∣∣λk+1∣∣ 6 ∣∣∣∣1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣λk∣∣+ ∣∣∣∣ (r− 1)∆t
1 + (r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣λ0∣∣
6

∣∣∣∣1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣λ0∣∣+ (r− 1)∆t
1 + (r− 1)∆t+ ρ1 + ρ2

∣∣λ0∣∣.
If 1 − 0.5(r− 1)∆t− ρ1 − ρ2 > 0 and since ρ1, ρ2 > 0, then∣∣λk+1∣∣ 6 1 − 0.5(r− 1)∆t− ρ1 − ρ2 + (r− 1)∆t

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣λ0∣∣ = 1 + 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣λ0∣∣ 6 ∣∣λ0∣∣.
If 1 − 0.5(r− 1)∆t− ρ1 − ρ2 < 0, then∣∣λk+1∣∣ 6 −1 + 0.5(r− 1)∆t+ ρ1 + ρ2 + (r− 1)∆t

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣λ0∣∣ = −1 + 1.5(r− 1)∆t+ ρ1 + ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣λ0∣∣.
Here, ∣∣λk+1∣∣ 6 ∣∣λ0∣∣

⇔ −1 + 1.5(r− 1)∆t+ ρ1 + ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
6 1

⇔ −1 + 1.5(r− 1)∆t+ ρ1 + ρ2 6 1 + 0.5(r− 1)∆t+ ρ1 + ρ2

⇔ 2 − (r− 1)∆t > 0.

Now, using Proposition 3.1 along with the Parseval’s equality, we obtain the following result:

‖ξk‖2
2 =

∞∑
l1=−∞

∞∑
l2=−∞ |λk(l1, l2)|2 6

∞∑
l1=−∞

∞∑
l2=−∞ |λ0(l1, l2)|2 = ‖ξ0‖2

2,

that is
‖ξk‖2

2 6 ‖ξ0‖2
2.

According to the above analysis, it can be seen that the difference scheme (2.6) is stable given that 2− (r−
1)∆t > 0 is satisfied.

4. Convergence analysis

This section investigates the convergence of the difference scheme (2.6) by following an analogous
approach to that of Section 3. Suppose that the truncation error at the grid point (xi,yj, tk+1/2) is denoted

by Rk+1/2
i,j . From Eq. (2.5) there is a positive constant C1 such that for all the values of i, j and k, we have

R
k+1/2
i,j 6 C1((∆t)

2 + (∆x)2 + (∆y)2), (4.1)
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where
C1 = max

16i6Mx−1,16j6My−1,06k6N

{
Cki,j
}

.

Suppose that the exact solution is denoted by Uki,j while the approximate solution is denoted by uki,j.
Consequently, the exact solution at the time level k+ 1/2 is given as follows:

Uk+1
i,j =

1
1 + 0.5(r− 1)∆t+ q1 + q2

[
q1

2

(
Uk+1
i+1,j +U

k+1
i−1,j +U

k
i+1,j +U

k
i−1,j

)
+
q2

2

(
Uk+1
i,j+1 +U

k+1
i,j−1 +U

k
i,j+1 +U

k
i,j−1

)
+ (1 − 0.5(r− 1)∆t− q1 − q2)U

k
i,j

+ (r− 1)∆tU0
i,j + r∆tf

k+1/2
i,j +∆tR

k+1/2
i,j

]
.

(4.2)

The error can be represented as Eki,j = U
k
i,j − u

k
i,j. By Subtracting (2.6) form (4.2), the next error equation

follows immediately as

Ek+1
i,j =

1
1 + 0.5(r− 1)∆t+ q1 + q2

[
q1

2

(
Ek+1
i+1,j + E

k+1
i−1,j + E

k
i+1,j + E

k
i−1,j

)
+
q2

2

(
Ek+1
i,j+1 + E

k+1
i,j−1 + E

k
i,j+1 + E

k
i,j−1

)
+ (1 − 0.5(r− 1)∆t− q1 − q2)E

k
i,j

+ (r− 1)∆tE0
i,j +∆tR

k+1/2
i,j

] (4.3)

and

E0
i,j = 0, 0 6 i 6Mx, 0 6 j 6My,

Ek0,j = E
k
Mx,j = 0, 0 6 j 6My, 0 6 k 6 N,

Eki,0 = Eki,My
= 0, 0 6 i 6Mx, 0 6 k 6 N.

For k = 0, 1, . . . ,N, we define the discrete functions

Ek(x,y) =


Eki,j, xi−∆x

2
< x 6 xi+∆x

2
,y
j−∆y

2
< y 6 y

j+∆y
2

,

0, 0 6 x 6 ∆x
2 or L− ∆x

2 6 x 6 L,
0, 0 6 y 6 ∆y

2 or L− ∆y
2 6 y 6 L,

and

Rk(x,y) =


Rki,j, xi−∆x

2
< x 6 xi+∆x

2
,y
j−∆y

2
< y 6 y

j+∆y
2

,

0, 0 6 x 6 ∆x
2 or L− ∆x

2 6 x 6 L,
0, 0 6 y 6 ∆y

2 or L− ∆y
2 6 y 6 L.

Next, Fourier series expansions of the functions Ek(x,y) and Rk(x,y) can be written as follows:

Ek(x,y) =
∞∑

l1=−∞
∞∑

l2=−∞ψ
k(l1, l2)e2π

√
−1(l1x/L+l2y/L),

Rk(x,y) =
∞∑

l1=−∞
∞∑

l2=−∞φ
k(l1, l2)e2π

√
−1(l1x/L+l2y/L),

in which

ψk(l1, l2) =
1
L2

∫L
0

∫L
0
Ek(x,y)e−2π

√
−1(l1x/L+l2y/L)dxdy, (4.4)
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φk(l1, l2) =
1
L2

∫L
0

∫L
0
Rk(x,y)e−2π

√
−1(l1x/L+l2y/L)dxdy. (4.5)

Utilizing the l2 norm definition together with the Parseval’s equality, we obtain

‖Ek‖2
2 =

Mx−1∑
i=1

My−1∑
j=1

∆x∆y
∣∣Eki,j∣∣2 =

∞∑
l1=−∞

∞∑
l2=−∞

∣∣ψk(l1, l2)
∣∣2, (4.6)

‖Rk‖2
2 =

Mx−1∑
i=1

My−1∑
j=1

∆x∆y
∣∣Rki,j∣∣2 =

∞∑
l1=−∞

∞∑
l2=−∞

∣∣φk(l1, l2)
∣∣2. (4.7)

Based on the above analysis, we assume that the solution of Eq. (4.3) has the following forms:

Eki,j = ψ
ke
√
−1(β1i∆x+β2j∆y), Rki,j = φ

ke
√
−1(β1i∆,x+β2j∆y), (4.8)

where β1 = 2πl1/L and β2 = 2πl2/L. Substituting Eq. (4.8) into Eq. (4.3), we get

ψk+1 =
1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
ψk +

(r− 1)∆tψ0 +∆tφk+1/2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
, (4.9)

where ρ1 and ρ2 are as defined in the previous section.

Proposition 4.1. Suppose that ψk (k = 0, 1, . . . ,N− 1) form the solution of (4.9), then there is a positive constant
C2 such that

∣∣ψk+1
∣∣ 6 C2(k+ 1)∆t

∣∣φ1/2
∣∣.

Proof. Since E0 = 0 and form (4.4), we obtain

ψ0 = ψ0(l1, l2) = 0. (4.10)

From (4.5) and (4.7), there exists a positive constant C2 such that∣∣φk∣∣ 6 C2

∣∣∣φ1/2
∣∣∣, k = 0, 1, . . . ,N. (4.11)

Next, we complete the proof by using mathematical induction. For k = 0 and from (4.9) and (4.10), we
have

ψ1 =
1

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
∆tφ1/2.

Since ρ1, ρ2 > 0 and from (4.11), we obtain∣∣ψ1∣∣ 6 ∆t∣∣∣φ1/2
∣∣∣ 6 C2∆t

∣∣∣φ1/2
∣∣∣.

Now, supposing that
∣∣ψs+1

∣∣ 6 C2(s+ 1)∆t
∣∣φ1/2

∣∣, s = 0, 1, . . . , k− 1. Then according to equations (4.9)-
(4.11), we get

∣∣ψk+1∣∣ 6 ∣∣∣∣1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣ψk∣∣+ ∣∣∣∣ 1
1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣∣∣∣∆tφk+1/2
∣∣∣

6

∣∣∣∣1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2

∣∣∣∣C2k∆t
∣∣∣φ1/2

∣∣∣+ 1
1 + 0.5(r− 1)∆t+ ρ1 + ρ2

C2∆t
∣∣∣φ1/2

∣∣∣.
If 1 − 0.5(r− 1)∆t− ρ1 − ρ2 > 0 and since ρ1, ρ2 > 0, then∣∣ψk+1∣∣ 6 [1 − 0.5(r− 1)∆t− ρ1 − ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
k+

1
1 + 0.5(r− 1)∆t+ ρ1 + ρ2

]
C2∆t

∣∣∣φ1/2
∣∣∣ 6 C2(k+ 1)∆t

∣∣∣φ1/2
∣∣∣.
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If 1 − 0.5(r− 1)∆t− ρ1 − ρ2 < 0 and since ρ1, ρ2 > 0, then∣∣ψk+1∣∣ 6 [−1 + 0.5(r− 1)∆t+ ρ1 + ρ2

1 + 0.5(r− 1)∆t+ ρ1 + ρ2
k+

1
1 + 0.5(r− 1)∆t+ ρ1 + ρ2

]
C2∆t

∣∣∣φ1/2
∣∣∣ 6 C2(k+ 1)∆t

∣∣∣φ1/2
∣∣∣.

Theorem 4.2. The proposed difference scheme (2.6) is l2 convergent with convergence order of O((∆t)2 + (∆x)2 +
(∆y)2).

Proof. Applying Proposition 4.1 along with Eqs. (4.6) and (4.7), yields

‖Ek‖2
2 =

∞∑
l1=−∞

∞∑
l2=−∞

∣∣ψk(l1, l2)
∣∣2 6

∞∑
l1=−∞

∞∑
l2=−∞C

2
2(k+ 1)2(∆t)2

∣∣∣φ1/2(l1, l2)
∣∣∣2 = C2

2(k+ 1)2(∆t)2‖R1/2‖2
2.

Utilizing the inequality (4.1), there exists a positive constant C1 such that

‖Ek‖2 6 C2(k+ 1)∆t‖R1/2‖2 6 C1C2(k+ 1)∆t((∆t)2 + (∆x)2 + (∆y)2) 6 C((∆t)2 + (∆x)2 + (∆y)2),

where C = C1C2T as (k+ 1)∆t 6 T . This completes the proof.

5. Review of existing standard finite difference scheme

There are various finite difference methods such as explicit and implicit schemes that can be used to
solve problem (1.1) with a particular approximation formula for the Caputo fractional derivative. Here,
we recall a standard Crank-Nicolson finite difference scheme proposed by Balasim and Ali [2] for solving
problem (1.1) to compare it with the proposed hybrid method in the previous section. Utilizing the
discretization formula in [15] to approximate the time fractional derivative in Eq. (1.1), and replacing the
partial space derivatives by central difference approximations about the point (xi,yj, tk+1/2), the standard
Crank-Nicolson difference scheme for solving (1.1) yields immediately as follows [2]:

uk+1
i,j =

1
1 + r1 + r2

[
r1

2

(
uk+1
i+1,j + u

k+1
i−1,j + u

k
i+1,j + u

k
i−1,j

)
+
r2

2

(
uk+1
i,j+1 + u

k+1
i,j−1 + u

k
i,j+1 + u

k
i,j−1

)
+
(
1 − 21−αw1 − r1 − r2

)
uki,j

+ 21−α
k−1∑
s=1

[wk−s −wk−s+1]u
s
i,j + 21−αwku

0
i,j +m0f

k+1/2
i,j

]
,

(5.1)

in which m0 = 21−αΓ(2−α)(∆t)α, r1 = a1m0
(∆x)2 , r2 = a2m0

(∆y)2 , ws = (s+ 1
2)

1−α−(s− 1
2)

1−α and the truncation
error at the point (xi,yj, tk+1/2) is of O((∆t)2−α + (∆x)2 + (∆y)2).

Next, the memory space usage and the computational cost of both standard and hybrid methods
shall be discussed. From (5.1), it can be observed that we need to store the solution outcomes at all
preceding time steps to obtain the solution at the present time step. This indicates that there are NMxMy

outcomes must be stored in the memory. Disregard the memory requirement of the source term, initial
condition and coefficients, it takes 8 bytes (without loss of generality) to store each outcome, meaning
that the standard scheme defined in (5.1) allocates around 8NMxMy bytes of memory space. By way of
illustration, with Mx = 10240, My = 10240 and N = 1024, it needs 800 GB. On the contrary, and from
(2.6), it can be observed that the solution outcomes need to be saved only at two time steps, k and k+ 1
until the required time level N is attained. So, only 2MxMy solution values need to be stored in the
memory. Thus, the hybrid method requires memory space of only 16MxMy bytes. Depending on what
have been discussed, the hybrid method allocates total memory of O(M), which is far cheaper than the
standard method of O(NM), where M =MxMy.
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Besides the additional memory space required using the standard scheme, the considerable com-
putational cost that makes the scheme implementation time consuming is the other challenge. The
right hand side of Eq. (5.1) need to be computed in order to attain uk+1

i,j , where each grid point of
time step tk+1 requires 11 + (k− 1) additions and 8 + (k− 1) multiplications, presuming that the coeffi-
cients are evaluated and saved beforehand. Since each time step include (Mx − 1)(My − 1) grid points,
there are [19 + 2(k− 1)](Mx − 1)(My − 1) arithmetic operations to be performed at each time step. Since
k = 0→ N− 1, the whole computational cost using the standard scheme (5.1) is given by

19N(Mx−1)(My − 1) + 2(1 + 2 + · · ·+N− 2)(Mx − 1)(My − 1)

= 19N(Mx − 1)(My − 1) + 2
(
(N− 2)(N− 1)

2

)
(Mx − 1)(My − 1)

= (N2 + 16N+ 2)(Mx − 1)(My − 1).

As an alternative solution method, every grid point uk+1
i,j evaluation using (2.6) involves 10 additions

and 8 multiplications in which the coefficients are computed and stored in advance. Since each time
step contain (Mx − 1)(My − 1) grid points, there are 18(Mx − 1)(My − 1) arithmetical operations to be
implemented at each time step. Thus, the total computational cost utilizing the hybrid method is around
18N(Mx − 1)(My − 1), since there are N time levels. Depending on this analysis, the computational work
of using the hybrid method is of only O(N) which is significantly cheaper than the standard scheme
of O(N2). Assuming that the execution times of addition and multiplication operations are roughly the
same, the proposed hybrid method is expected to exhibit more rapid convergence than the standard
method. Table 1 highlights the computational cost and memory requirement when applying each of the
standard and hybrid methods.

Table 1: Memory requirement and computational cost of the standard [2] and proposed hybrid methods.
Method Memory requirement (byte) Computational cost

Standard 8NMxMy (N2 + 16N+ 2)(Mx − 1)(My − 1)
Hybrid 16MxMy 18N(Mx − 1)(My − 1)

6. Numerical experiments and results

Two model problems are employed to investigate the performance of the proposed hybrid method
developed in Section 3 in comparison to the existing standard finite difference method in [2] for solving
the two-dimensional time fractional diffusion equation. To confirm our considerations, both standard and
hybrid methods are implemented using Gauss-Seidel method and run on laptop with core 4, 8 GB of
RAM with Windows 10 operating system and Mathematica 11.3 software. A tolerance factor of ε = 10−5

and l∞ norm are utilized for the convergence criteria. In both examples, the solution domain is discretized
for various time steps of 10, 15, 20 and 25 and for space discretization, we assume a fixed uniform mesh
size h = ∆x = ∆y = 1/50.
Example 6.1. Consider the following two-dimensional TFDE [35]:

C
0 D

α
t u(x,y, t) =

∂2u

∂x2 +
∂2u

∂y2 +

(
2

Γ(3 −α)
t2−α + 2t2

)
(sin(x) sin(y)) ,

subject to the initial-boundary conditions given by

u(x,y, 0) = 0,

u(x, 0, t) = 0, u(x, 1, t) = t2 sin(x) sin(1),

u(0,y, t) = 0, u(1,y, t) = t2 sin(1) sin(y),

in which 0 6 x,y 6 1, 0 6 t 6 1 and the exact solution is u(x,y, t) = t2 sin(x) sin(y).
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Example 6.2. Here we apply both standard and hybrid methods on the two-dimensional TFDE [18]:

C
0 D

α
t u(x,y, t) =

∂2u

∂x2 +
∂2u

∂y2 +

[
2t2−α

Γ(3 −α)
− 2t2

]
ex+y,

subject to the initial-boundary conditions

u(x,y, 0) = 0, u(x, 0, t) = t2ex, u(x, 1, t) = t2ex+1,u(0,y, t) = t2ey, u(1,y, t) = t2e1+y,

in which 0 6 x,y 6 1, 0 6 t 6 1 and the exact solution is u(x,y, t) = t2ex+y. The accuracy and execution
times (in seconds) of the standard and hybrid methods are compared in Tables 2 and 3, where the accuracy
is determined by the maximum absolute error (Max) between the exact and numerical solutions. In view
of Table 2, it can be observed that the hybrid method performs 3.14-6.00 faster than the standard method
without jeopardize the accuracy of numerical solution of Example 6.1. For instance, with N = 25 and
α = 0.3, the execution time of the standard method is 1975 s while the execution time of the hybrid
method is 329 s. A similar performance improvement in which the hybrid method runs 2.36-6.38 faster
than the standard method for Example 6.2 is shown in Table 3. As an illustration, with N = 25 and
α = 0.3, the execution time of the standard method is 4044 s while the execution time of the hybrid
method is 633 s.

On the other hand, the memory space usage of both standard and hybrid methods for various time
steps are illustrated in Table 4. We note that the memory requirement of the hybrid method is only about
8-20% of the standard method. Figures 1 and 2 show the execution time for both methods versus N.
Clearly, we can observe that the hybrid method requires much less computational time than the standard
method, which is in agreement with the theoretical computational complexity analysis in Section 3.

Table 2: Comparison between the standard [2] and proposed hybrid methods at h = 1/50 for Example 6.1.
N Method Execution time (sec.) Speedup Max error

α = 0.3
10 Standard 685 3.24 1.2259E-03

Hybrid 211 1.4781E-03

15 Standard 1164 4.44 1.2101E-03
Hybrid 262 1.3833E-03

20 Standard 1495 5.01 1.3293E-03
Hybrid 298 1.3672E-03

25 Standard 1975 6.00 1.2158E-03
Hybrid 329 1.3605E-03

α = 0.7
10 Standard 589 3.14 1.4432E-03

Hybrid 187 1.2438E-03

15 Standard 924 4.25 1.3235E-03
Hybrid 217 1.1814E-03

20 Standard 1158 4.92 1.2869E-03
Hybrid 235 1.1592E-03

25 Standard 1478 5.88 1.2726E-03
Hybrid 251 1.1373E-03
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Figure 1: The Execution time (in seconds) against the total number of time steps N for Example 6.1 (log-log in base 10 plot).

Table 3: Comparison between the standard [2] and proposed hybrid methods at h = 1/50 for Example 6.2.
N Method Execution time (sec.) Speedup Max error

α = 0.3
10 Standard 1028 2.78 5.1109E-03

Hybrid 369 4.1613E-03

15 Standard 1957 3.88 3.8115E-03
Hybrid 504 2.6622E-03

20 Standard 2758 4.79 2.4789E-03
Hybrid 575 2.7489E-03

25 Standard 4044 6.38 2.0563E-03
Hybrid 633 2.7995E-03

α = 0.7
10 Standard 747 2.36 2.4564E-03

Hybrid 316 1.4119E-03

15 Standard 1282 3.4 1.5626E-03
Hybrid 376 1.0533E-03

20 Standard 1669 3.97 1.5009E-03
Hybrid 420 9.3061E-04

25 Standard 2286 4.98 1.4626E-03
Hybrid 459 8.7441E-04
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Figure 2: The Execution time (in seconds) against the total number of time steps N for Example 6.2 (log-log in base 10 plot).

7. Conclusion

In this paper, we derived a hybrid method using Laplace transform and Crank-Nicolson finite differ-
ence scheme for the solution of two-dimensional TFDE. It has been shown that the derived method has
much less memory complexity of O(M) and computational work of O(N), compared to O(MN) memory
complexity and O(N2) cost when utilizing standard finite difference scheme. The stability and conver-
gence of the proposed method were discussed with complete details. Numerical results revealed that
the hybrid method is cheaper than the standard difference scheme in terms of the computational cost,
memory requirement as well as the CPU time, making it an effective method in solving the time fractional
diffusion problem.

Table 4: Memory space usage of the standard [2] and proposed hybrid methods.
N Method Memory usage (byte)
10 Standard 200000

Hybrid 40000
15 Standard 300000

Hybrid 40000
20 Standard 400000

Hybrid 40000
25 Standard 500000

Hybrid 40000
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