J. Math. Computer Sci., 23 (2021), 80-85

Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Q¥

3

yourna/ oF
o
N
U109 ¥

PEicinos
Journal Homepage: www.isr-publications.com/jmcs

Statistical convergence in non-archimedean Kothe sequence @ checkfor updates
spaces

D. Eunice Jemima?*, V. Srinivasan®

4Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur,
Chennai-603203, India.

b(Retd. Professor) Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology,
Kattankulathur, Chennai-603203, India.

Abstract

The aim of this paper is to examine statistical convergence in a Kéthe sequence space, when the sequences have their entries
in a non-archimedean field ¢ which is both non-trivial and complete under the metric induced by the valuation | . |: .#" — [0, c0),
which is denoted by K(B).
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1. Introduction

In classical analysis, the study of certain pairs of subspaces of the space of all real sequences was
initiated by Kothe and Toeplitz, and a little later by Kothe alone. Lorentz and Wertheim, Dieudonne and
Cooper generalized their concept.

A set A of non-negative sequences (ot )nen is called a Kothe set, if

(i) for each n € N, there exists o € A with o, > 0;
(ii) for each pair (o, ) € A x A, there exists ay € A such that max(an,n) < yn, foralln € N.

Kothe sequence spaces are defined classically as the orthogonals of certain subsets of Kéthe sets. They
are locally convex topological vector spaces which are Hausdorff and complete.

1.1. Non-archimedean Kothe spaces

Definition 1.1. Consider an infinite matrix B = (by, x) consisting of positive real numbers, and satisfying
the condition
bTL,k < bTL,k+1/ Tl'/k = 1/ 2/ .

The non-archimedean Kothe space K(B) associated with the matrix B is defined by De Grande-De Kimpe
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[3] and Sliwa [11] as
K(B) :{(OLTI)I Xn e‘%/ |O(n|bn,k_>0/ n/k:]‘lzl"'}/

with the sequence of norms
(o )le = max Jon| bk, k=12,

Example 1.2. Consider the matrix B = (by, k) where
by =exp(—bn/k),

and (b, ) is a non-decreasing sequence of positive real numbers with li_r>n b = co. Then K(B) is a Kothe
n o0

space associated with the matrix B since,
‘ ot | bn,k‘ = mT?X‘ lotn| bn,k‘

= max |y |e on/K
n

1
= mf”““'m — 0, as mn — oo.

That is, lim | lotn bn,k} =0.
n—oo

Definition 1.3. Let J#" be a complete, non-trivially valued, non-archimedean field. In [12], a sequence
x = (xx),xx € #,k=1,2,---, is defined to be statistically convergent to a limit 1, if for every € > 0,

lim 1 H{k<n:ie—1>e}[=0,
n—oo N

where the outer vertical bars stand for the set’s cardinality. Symbolically, it is written as stat-limx; =1 or

stat
Xx — L.

We now define statistical convergence in a non-archimedean Kothe space as follows.
Definition 1.4. A sequence x = (x,) of a non-archimedean Ké&the space K(B) is said to be statistically

convergent to a limit 1, if for any € > 0,

1
Iim — Hn,kgm: Hxnl bn,k—l} > e}‘ =0.

m—oco M

Symbolically, we write xx — YS(K(B))}, where {S(K(B))} denotes the set of statistically convergent
non-archimedean Kothe spaces.

Definition 1.5. A sequence x = (x,,) of a non-archimedean Koéthe space K(B) is said to be a statistically
null sequence, if for any € > 0,

1
lim — Hn,k< m: }IxnI bn,k‘ > e}‘ =0.

m—o0 MM

2. Main results

Theorem 2.1. If a sequence x = (xn) of a non-archimedean Kothe space K(B) is convergent to 1, then (xn) is
statistically convergent to 1. i.e., if xn — L(K(B)), then x,, = YS(K(B))}.
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Proof. Let us assume that a non-archimedean Kothe sequence x = (xy,) is convergent to 1. Then,

lim
n—oo

IXnl bn,k - 1’ =0,

which implies that,

lim max(|xn| bnx —1) =0. (2.1)
n—oo

=0, consider
m—o0 N

1’{n,k< m: |xnl bk —1| = e}’
m

1
= mHn,k <m:max([xn| bpx—1) = e}‘ —0 as m—oo, (using(2.1)).

1
To prove x, — YS(K(B))}, i.e., to prove lim Hn,kgm:}lxnl bn,k—l]>e}

m—oo M

1
Therefore, lim — Hn,k <m: Hxnl bk — l} > eH = 0. This implies that, x, — {S(K(B))}. O
Theorem 2.2. If a sequence x = (xn) of a non-archimedean Kothe space K(B) is statistically convergent to 1
then (xy) is convergent to 1 provided, sup |xn| bnx| < co. That is, xn — YS(K(B))} implies xn, — L(K(B)) if
n

sup ‘Ixnl bn,k} < 0.
n

Proof. Let us assume that sup |[xn| bn x| < co. Then, there exists a positive integer M > 0 such that,
n

“Xn| bn,k‘ <M

That is,
“Xn| bn,k_l‘i‘l‘ <M

which implies that

) <M. (2.2)

Also, since the Kothe sequence (xy,) is statistically convergent to 1, we have

max (‘Ixnl bnx—1
lim © [dnk<m: bl -1 > S < & 2.3)
mlinoo m N,Ks M |[Xn| Onk Z 5 M’ .

Let I, = {n,k <m: ‘Ixnl bk —l{ > ;} Now, consider

1 — 1 1
— D [Ralbra—l=— 3 [xalbrx—U+— D |xnlbni—1

n k=1 nkeln nk&ln

1 1
<E sup ‘Ixnlb k—l}+— sup ‘IxnIb k—l|

nkeln Im
<L oMy 1( $) (using (2.2) and (2.3))
m 2M 2 1= '
< €.
1 m
Therefore, lim — > ‘Ixnl bnx — 1| = 0. That is, (xn,) is convergent to 1. O
m—oo M 57
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Theorem 2.3. A sequence x = (xn) of a non-archimedean Kothe space K(B) is statistically convergent to 1, if and
only if the following condition is satisfied

. 1
n}gnooa {n,k,n’ <m: |l bk — Xnr ()] brr e x| = e}‘ =0,

where (Xy/(y)) is a subsequence of (xn) such that (x,,/(r)) is convergent to .

Proof. Let us assume that (x,,) of a non-archimedean Kothe space is statistically convergent to 1. Then, for
any € >0,
1
Iim — Hn,kgm: Hxnl bn,k—l} > e}‘ =0. (2.4)

m—0o0 1N
Consider

1
m‘{ﬂ, k,Tl/ <m: “Xn| bn,k — |Xn’(r)| bn/(r),k‘ = 6}

1
= m'{n/k/n/ <m: “xn| bn,k_l+1_|xn/('r)| bn’(‘r),k‘ Z €

1
:m'{n,k,n’<m:\(Ixnlbn,k—l)—(lxn ) by — | = e}

gmax{nll}{n,kgm:‘Ixnlbn,k—l‘26},
1
L <m s sl B~ 1] 2 e}|}

< max {O , %Hn’,k <M (o) b — 1 = e}‘} (using (24)).  (2.5)

Since it is given that (x,,/(+)) is convergent to 1, by Theorem 2.1 (x,,/(,)) is statistically convergent to L.
That is,
1
lim Hn’,kgm:}lxn o —1| = e}

m—oo M

=0. (2.6)

Now using (2.6) in (2.5) we get,

i 1
Trlllinoo a {TL, k,n/ <m: “Xn| bn,k — |Xn/(r)| bn’('r),k’ > 6} =0.
Conversely, let us assume that
i 1
lim — {n,k,n’ <m: ‘Ixnl bk — Xn/(l bn/(r],k‘ > e} =0. (2.7)
m—oo M

To prove (xy) is statistically convergent to 1, consider

1

— Hn,kg m: }Ixnl bn,k—ll > e}
m

1
:m‘{n,k,n'gm:“xnlbnlkIxn ) b vy, + X (1) B k—l} H

4

1
< max{m‘{n/k/n, Lm: “Xn| bnx — |Xn’(r)‘ bn’(r),k‘ = €}
1

n—l‘{n’,kgm:‘\xn o —1 = e}‘}—>0 as m— oo, (by(2.6)and (2.7)).

1
Thus, lim — Hn,k <m: ‘Ixnl bk — l} > e}‘ = 0. That is, (xn.) is statistically convergent. O

m—oo M
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Theorem 2.4. Let x = (xn) and y = (yn) be sequences of a non-archimedean Kothe space K(B). If (xn) is
convergent to | and (yn) is statistically convergent to 0, then (xn +yn) is statistically convergent to 1. i.e., if

xn — UK(B)) and yn — O{S(K(B))}, then (xn +yn) — YS(K(B))}.
Proof.
Since xn — (K(B)), by Theorem 2.1,
xn — US(K(B))}

m—oo 1M

1
= lim — '{n,k< m: ‘IxnI bn,k—1| > e}

Also given,

yn — 0{S(K(B))}

1
— lim — Hn,kgm: ’Iynlbn,k—O‘ > e}‘

m—o0 1M

1
ie, lim — Hn,kg m: ‘Iyn| bn,k| > eH =0.

m—oo M

1
To prove (xn +yn) — US(K(B))}, ie., to prove lim — '{n,k <m: ‘Ixn + Ynl bn,k—l‘ > e}‘

2.8)

(2.9)

-0,

nll H{n k<m: lynl bux| = e}‘} —0 as m— oo, (by(2.8)and (2.9)).

m—0o0 TN
consider
1
- n/k<m3‘|xn+yn| bn,k_l‘>€
m
1
= —|yvk<m: [xnl bk — 1+ [ynl bnx| =€
1
< max{m ‘{n,kg m: ||xn\ bn,k—l‘ > e} ,
Therefore,

1

lim — Hn,kg m: ‘Ixn+yn| bn,k—l| > e}‘ =0.

m—oo 1M

That is, (xn +yn) — YS(K(B))}
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