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Finding Laplace transform using difference equations
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Abstract

In this paper, we extend the properties of forward and backward difference operators to continuous variables. We construct
continuous solutions, with jump discontinues resulting from using floor functions, for difference equations. As an application
for these properties, we find the inverse Laplace transform of functions which have the form F(s)

a+bect .
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1. Introduction

Let F(s) = (Lf)(s) =
∫∞

0 e
−stf(t)dt, be the Laplace transform of f(t). In the t-domain we have the

unit step function (Heaviside function) is mapped by Laplace transform to the exponential function in the
s-domain. In fact,

L{u(t− c)g(t− c)} = e−csG(s). (1.1)

The Laplace transform has many properties, see [6–9]. On the contrary, the Laplace transform has
some disappointments, one of the disappointments of the Laplace transform is that the Laplace transform
of a product (a quotient) of two functions does not equal the product (the quotient) of their Laplace trans-
forms. In fact, the Laplace transform of the convolution of two functions equals the Laplace transform of
the product of these functions. In [2], a formula for the Laplace transform of a product of two functions
was given.

2. Difference operators

Definition 2.1. For any complex valued function f(z), the forward shift opertor Ec, the backward shift
opertor Bc, and the identity operator Ic are defined respectively as (Ecf)(z) = f(z+ c), (Bcf)(z) = f(z− c),
and (Icf)(z) = f(z).
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Clearly,
BcEc = EcBc = Ic.

Studying difference equations is important in Mathematics, Physics, and Engineering.
Now, for any meromorphic function of finite order f and c be a positive constant c, the backward

difference operator ∇c,α is given as

(∇c,αf)(z) = f(z) −αf(z− c) = ((I−αB)f)(z).

Clearly, the well-known forward difference operator ∆ and the backward difference operator ∇ are
related to ∇c,α as

(∆f)(z) = (∇1,1f)(z+ 1) = f(z+ 1) − f(z) = ((E1 − I1)f)(z),

and
(∇f)(z) = (∇1,1f)(z) = f(z) − f(z− 1) = ((I1 −B1)f)(z).

For further study of difference operators and their applications, see [1, 5, 9]. For example, in [4] and [3],
the difference equations are used to extend the properties of differential transform.

3. Main result

Define

gc,α(t) =

∞∑
k=0

αkf(t− kc)u(t− kc),

where u(t) is the unit step function. As a remark, since u(t− kc) = 1 when t > kc and zero elsewhere, it
is easy to see that

gc,α(t) =

[t/c]∑
k=0

αkf(t− kc),

where [x] is the greatest integer function or the floor function of x. Now, for n ∈ N, we have

g1,α(n) =

∞∑
k=0

αkf(n− k)u(n− k)

=

n∑
k=0

αkf(n− k)

=

n∑
k=0

αn−kf(k) = αn
n∑
k=0

α−kf(k).

The following are true about gc,α(t).

Proposition 3.1.

1. The Laplace transform G(s) of g(t) is G(s) = F(s)
1−αe−cs ; |α| < ecs.

2. gc,α(t) solves the difference equation

y(t) −αy(t− c) = f(t), t > 0, (3.1)

i.e., (∇c,αg)(t) = f(t).
3. For m ∈ Z, gc,α(t) solves the difference equation y(t) −αmy(t−mc) =

∑m−1
k=0 α

kf(t− kc)u(t− kc).
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Proof. Using (1.1), we get that L{αkf(t − kc)u(t − kc)} = e−kcsF(s). Hence, for |α| < ecs the Laplace
transform of gc,α(t) exists and it is calculated as

G(s) = L{

∞∑
k=0

αkf(t− kc)u(t− kc)}

= F(s)

∞∑
k=0

αke−kcs

=
F(s)

1 −αe−cs
.

Now, to prove the second part, for t > 0, we have

g(t) −αg(t− c) =

∞∑
k=0

αkf(t− kc)u(t− kc) −α

∞∑
k=0

αkf(t− c− kc)u(t− c− kc)

=

∞∑
k=0

αkf(t− kc)u(t− kc) −

∞∑
k=0

αk+1f(t− c(k+ 1))u(t− c(k+ 1))

=

∞∑
k=0

αkf(t− kc)u(t− kc) −

∞∑
k=1

αkf(t− kc)u(t− kc)

= f(t)u(t) = f(t).

Moreover, for m ∈ Z

gc,α(t) −α
mgc,α(t−mc) =

∞∑
k=0

αkf(t− kc)u(t− kc) −αm
∞∑
k=0

αkf(t−mc− kc)u(t−mc− kc)

=

∞∑
k=0

αkf(t− kc)u(t− kc) −αm
∞∑
k=0

αkf(t− c(k+m))u(t− c(k+m))

=

∞∑
k=0

αkf(t− kc)u(t− kc) −αm
∞∑
k=m

αk−mf(t− kc)u(t− kc)

=

m−1∑
k=0

αkf(t− kc)u(t− kc).

Now, the inverse of backward difference operator for a real-valued function f, denoted by (∇−1
c,αf)(t),

satisfies (∇c,α(∇−1
c,αf))(t) = f(t). In simple words, if gc,α(t) = (∇−1

c,αf)(t) if gc,α(t) − αgc,α(t− c) = f(t).
As a remark if y1(t) and y2(t) are solutions of (3.1) (i.e., they are two inverses of f(t)), then y1(t) −y2(t) is
a solution of y(t) −αy(t− c) = 0. For example, in the case of c = α = 1, for n ∈ N, we have y1(n) = 1+n
and y2(n) = (−1)n +n are solutions of y(n) − y(n− 1) = 2. Therefore, y1 and y2 are inverses of y(n)=2 in
the case of c = α = 1.

Example 3.2. When α = 1, we have

1. gc,1(t) = 1 + [ tc ] is an inverse of f(t) = 1.
2. gc,1(t) = (1 + [ tc ])(t−

c
2 [
t
c ]) is an inverse of f(t) = t.

3. gc,1(t) = a
t
(
ac−a−c[ tc ]

ac−1

)
is an inverse of f(t) = at.
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Proof. 1.

gc,1(t) − gc,1(t− c) = 1 + [
t

c
] − (1 + [

t− c

c
])

= 1 + [
t

c
] − (1 + [

t

c
] − 1) = 1.

2.

gc,1(t) − gc,1(t− c) = (1 + [
t

c
])(t−

c

2
[
t

c
]) − (1 + [

t− c

c
])(t− c−

c

2
([
t− c

c
]))

= (1 + [
t

c
])(t−

c

2
[
t

c
]) − [

t

c
](t− c−

c

2
([
t

c
] − 1)) = t.

3.

gc,1(t) − gc,1(t− c) = a
t
(ac − a−c[ tc ]

ac − 1

)
− at−c

(ac − a−c[ t−cc ]

ac − 1

)
=
at

(
ac − a−c[

t
c ]
)
− at

(
1 − a−c[

t
c ]
)

ac − 1
= at.

4. Numerical results

Example 4.1. Using Example 3.2, the function g(t) = 1 + [2t] is a solution y(t) − y(t− 1
2) = 1. Also, for

m ∈ Z, it is a solution of y(t) − y(t− 1
2m) = m.

Example 4.2. Using Proposition 3.1 with α = 1 and Example 4.1, we get that the inverse Laplace transform
of G(s) = 1

s(1−e−s/2)
=

coth(s/4)+1
2s is g(t) = 1 + [2t].

Example 4.3. Using Example 3.2, the function g(t) = (1 + [t])(t− 1
2 [t]) is a solution y(t) − y(t− 1) = t.

Example 4.4. Using Proposition 3.1 with α = 1 and Example 4.3, we get that the inverse Laplace transform
of G(s) = 1

s2(1−e−s) is g(t) = (1 + [t])(t− 1
2 [t]).

Example 4.5. Using Example 3.2, the function g(t) = 2t(2 − 2−[t]) = 2t+1 − 2t−[t] is a solution

y(t) − y(t− 1) = 2t.

Example 4.6. Using Proposition 3.1 with α = 1 and Example 4.5, we get that the inverse Laplace transform
of G(s) = 1

(s−ln2)(1−e−s) is g(t) = 2t+1 − 2t−[t].

Now, the following example will give us an idea how deal with a denominator in which contains more
than one term

Example 4.7. Using Example 4.5, we get that the inverse Laplace transform of

G(s) =
1

s(1 − e−s)(1 − 2e−s)
=

−1
s(1 − e−s)

+
2

s(1 − 2e−s)
,

is g(t) = 22+[t] − [t] − 3.
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