

Available online at

http://www.TIMCS.com

The Journal of Mathematics and Computer Science Vol. 2 No.1 (2011) 130-140

$(\overline{\in}, \overline{\in} \land q_k)$ -Fuzzy Subalgebras in BCK/BCI-Algebras

Reza Ameri^{1,*}, Hossein Hedayati², Morteza Norouzi³

School of Mathematics, Statics and Computer Sciences, University of Tehran, P. O. Box 14155-6415, Tehran, Iran, Email: rameri@ut.ac.ir

Department of Mathematics, Faculty of Basic Science, Babol University of Technology, Babol, Iran, Email: hedayati143@yahoo.com

Department of Mathematics, University of Mazandaran, Babolsar, Iran, Email: m.norouzi65@yahoo.com

Received: September 2010, Revised: November 2010 Online Publication: January 2011

Abstract

In this paper, the notion of not quasi-coincidence (\overline{q}) of a fuzzy point with a fuzzy set is considered. We introduce the notion of $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy $((\overline{\in}, \overline{q_k})$ -fuzzy) subalgebra in a BCK/BCI-algebra X and several properties are investigated. Specially, we show that under certain conditions an $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebra can be expressed such that consist of a union of two proper non-equivalent $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebras.

Keywords: BCK/BCI-algebra, $(\overline{\in}, \overline{q_k})$ -fuzzy subalgebra, $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra, $(\overline{\in} \wedge q_k)$ -level subalgebra.

1. Introduction

It is well known, BCK and BCI-algebras are two classes of algebras of logic. They were introduced by Imai and Iseki (e.g. [6], [9]-[11]) and have been extensively investigated by many researchers, see (e.g. [3], [17]-[19], [23], [25]). BCI-algebras are generalizations of BCK-algebras. Iorgulescu (e.g. [7], [8]) showed that pocrims and BCK-algebras with condition (S) are

_

^{1,*} Corresponding author: R. Ameri *E-mail address*: rameri@ut.ac.ir

categorically isomorphic, and residuated lattices and bounded BCK-lattices with condition (S) are categorically isomorphic. Iseki and Tanaka [11] proved that Boolean algebras are equivalent to the bounded implicative BCK-algebras. Mundici [19] proved that MV-algebras are equivalent to the bounded commutative BCK-algebras, and so on.

The theory of fuzzy sets, proposed by Zadeh [24] in 1965, has provided a useful mathematical

tool for describing the behavior of systems that are too complex or illdefined to admit precise mathematical analysis by classical methods and tools. Murali [20] proposed a definition of a fuzzy point belonging to fuzzy subset under a natural equivalence on fuzzy subset. A new type of fuzzy subgroup, that is, the $(\in, \in V q)$ -fuzzy subgroup, was introduced by Bhakat and Das in (e.g. [1], [2]) by using the combined notions of "belongingness" and "quasi-coincidence" of fuzzy points and fuzzy sets, which was introduced by Pu and Liu [21]. In fact, the $(\in, \in V q)$ -fuzzy subgroup is an important generalization of Rosenfeld's fuzzy subgroup [22]. It is now natural to investigate similar type of generalizations of the existing fuzzy subsystems with other algebraic structures. With this objective in view, Jun [13] introduced the concept of (α, β) -fuzzy subalgebras of a BCK/BCI-algebra and investigated related results.

In this paper, we consider more general form of the \overline{q} (not quasi-coincidence) of a fuzzy point

with a fuzzy set. As a generalization of $(\overline{\in}, \overline{\in} \wedge q)$ -fuzzy subalgebras, we introduce the notions of $(\overline{\in}, \overline{q_k})$ -fuzzy subalgebras and $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebras in a BCK/BCI-algebra X, and several properties are investigated. Finally, we consider $(\overline{\in} \wedge q_k)$ -level subalgebra of a fuzzy set, and some related results are proved.

2. Preliminaries

By a BCI-algebra, we mean an algebra (X,*,0) of type (2,0) satisfying the axioms:

- (i) $(\forall x, y, z \in X) (((x * y) * (x * z)) * (z * y) = 0);$
- (ii) $(\forall x, y \in X) ((x * (x * y)) * y = 0);$
- (iii) $(\forall x \in X) (x * x = 0);$
- $(iv) \ (\forall x,y \in X) \ (x*y=y*x=0 \implies x=y).$

We can define a partial ordering \leq by $x \leq y$ if and only if x * y = 0. If a BCI-algebra X satisfies 0 * x = 0 for all $x \in X$, then we say that X is a BCK-algebra. Hung and Jun [5] studied ideals and subalgebras in BCI-algebras. In what follows, X is a BCK/BCI-algebra unless otherwise specified. A nonempty subset S of X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. We refer the reader to the books (e.g. [3], [17]) for further information regarding BCK/BCI-algebras.

A fuzzy set μ in a set X of the form

$$\mu(y) = \begin{cases} t \in (0,1] & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$

is said to be a fuzzy point with support x and value t and is denoted by $(x)_t$. For a fuzzy point $(x)_t$ and a fuzzy set μ in a set X, Pu and Liu [21] introduced the symbol $(x)_t \alpha \mu$, where $\alpha \in \{\in, q, \in V \ q, \in \Lambda \ q\}$. A fuzzy point $(x)_t$ is said to "belong to" (resp. be quasi-coincident with) a fuzzy set μ , written as $(x)_t \in \mu$ (resp. $(x)_t q \mu$) if $\mu(x) \ge t$ (resp. $\mu(x) + t > 1$). If $(x)_t \in \mu$ or

 $(x)_t q\mu$, then we write $(x)_t \in \forall q\mu$. If $(x)_t \in \mu$ and $(x)_t q\mu$, then we write $(x)_t \in \land q\mu$. To say that $(x)_t \overline{\alpha}\mu$, we mean $(x)_t \alpha\mu$ does not hold [14], and the symbol $\overline{\in \land q}$ means $\overline{\in \lor q}$.

Let k denote an arbitrary element of [0,1) unless otherwise specified. To say that $(x)_t q_k \mu$, we mean $\mu(x) + t + k > 1$. To say that $(x)_t \in \mu$, we mean $(x)_t \in \mu$ or $(x)_t q_k \mu$ [14].

3. Generalization of $(\overline{\in}, \overline{\in} \land q)$ -fuzzy subalgebras

Let *X* denote a BCK/BCI-algebras unless otherwise specified.

Definition 3.1. A fuzzy set μ in X is called an $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebra of X if, for all $t_1, t_2 \in (0,1]$ and $x, y \in X$

$$(x)_{t_1} \overline{\in} \mu, \ (y)_{t_2} \overline{\in} \mu \implies (x * y)_{\max \underline{\mathfrak{M}}_{1,t_2}} \overline{\in} \wedge q_k \mu.$$
 (1)

Theorem 3.2. A fuzzy set μ in X is called an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X if only if, for all $x, y \in X$

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\}.$$
 (2)

Proof. Let μ be an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X. Assume that (2) is not valid. Then there exist $a, b \in X$ such that

$$\mu(a * b) > \max\{\mu(a), \mu(b), \frac{1-k}{2}\}.$$

Hence we can take $t \in (0,1)$ such that

$$\mu(a * b) \ge t > \max\{\mu(a), \mu(b), \frac{1-k}{2}\}.$$

It follows that $(a)_t \ \overline{\in} \ \mu$ and $(b)_t \ \overline{\in} \ \mu$, then $(a*b)_t \ \overline{\in} \land \ q_k \ \mu$. Since $\ \mu(a*b) \ge t$, $(a*b)_t \in \mu$ and so $(a*b)_t \ \overline{q_k} \ \mu$.. Hence $\mu(a*b) + t \le 1 - k$. Thus $2t \le \mu(a*b) + t \le 1 - k$, then $t \le \frac{1-k}{2}$, which is a contradiction.

Conversely, suppose that μ satisfies (2). Let $x, y \in X$ and $t_1, t_2 \in (0,1]$ be such that $(x)_{t_1} \in \mu$ and $(y)_{t_2} \in \mu$. Then

$$\mu(x * y) \le \max \left\{ \mu(x), \mu(y), \frac{1-k}{2} \right\} < \max \left\{ t_1, t_2, \frac{1-k}{2} \right\}.$$

Assume that $t_1 \geq \frac{1-k}{2}$ or $t_2 \geq \frac{1-k}{2}$. Then $\mu(x*y) < max(t_1,t_2)$, which implies that $(x*y)_{\max \mathbb{E}[t_1,t_2)} \in \mu$. Now, suppose that $t_1 < \frac{1-k}{2}$ and $t_2 < \frac{1-k}{2}$. Then $\mu(x*y) < \frac{1-k}{2}$, and thus

$$\mu(x * y) + ma x(t_1, t_2) < \frac{1-k}{2} + \frac{1-k}{2} = 1 - k,$$

i.e., $(x*y)_{\max(t_1,t_2)}\overline{q_k}\mu$. Hence $(x*y)_{\max(t_1,t_2)}\overline{\in} \Lambda q_k\mu$, and consequently, μ is an $(\overline{\in},\overline{\in} \Lambda q_k)$ -fuzzy subalgebra of X.

Corollary 3.3. A fuzzy set μ in X is called an $(\overline{\in}, \overline{\in} \wedge q)$ -fuzzy subalgebra of X if only if, for all $x, y \in X$, $\mu(x * y) \leq \max(\mu(x), \mu(y), 0.5)$.

Proof. It follows taking k = 0 in Theorem 3.2.

Theorem 3.4. Let μ be a fuzzy set of X. Then μ is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X if only if the set $\overline{\mu_t} = \{x \in X | \mu(x) < t\}$ is a subalgebra of X for all $t \in (\frac{1-k}{2}, 1]$.

Proof. Assume that μ be an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X. Let $t \in (\frac{1-k}{2}, 1]$. and $x, y \in \overline{\mu_t}$. Then $\mu(x) < t$ and $\mu(y) < t$. It follows that

$$\mu(x * y) \le \max \left\{ \mu(x), \mu(y), \frac{1-k}{2} \right\} < \max \left\{ t, \frac{1-k}{2} \right\} = t.$$

so that $x * y \in \overline{\mu_t}$. Therefore $\overline{\mu_t}$ is a subalgebra of X.

Conversely, suppose that $\overline{\mu_t}$ is a subalgebra of X for all $t \in (\frac{1-k}{2}, 1]$. Let (2) is not valid, then

there exist $a, b \in X$ such that

 $\mu(a*b) > \max\{\mu(x), \mu(y), \frac{1-k}{2}\}.$

*	U	а	D	С
0	0	a	b	С
a	a	0	С	b
b	b	С	0	a
С	С	b	a	0

Hence we can take $t \in (0,1)$ such

that

$$\mu(a*b) \ge t > \max(\mu(a), \mu(b), \frac{1-k}{2}).$$

Then $t \in (\frac{1-k}{2}, 1]$ and $a, b \in \overline{\mu_t}$. Since $\overline{\mu_t}$ is a subalgebra of X, it follows that $a * b \in \overline{\mu_t}$, so that $\mu(a * b) < t$. This is a contradiction. Therefore (2) is valid. Consequently, μ is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X by Theorem 3.2.

Corollary 3.5. Let μ be a fuzzy set of X. Then μ is an $(\overline{\in}, \overline{\in} \wedge \overline{q})$ -fuzzy subalgebra of X if only if the set $\overline{\mu_t} = \{x \in X | \mu(x) < t\}$ is a subalgebra of X for all $t \in (0.5, 1]$.

Proof. In Theorem 3.4, taking k = 0.

Example 3.6. Consider a BCI-algebra $X = \{0, a, b, c\}$ with the following table:

Let μ be a fuzzy set in X defined by $\mu(0) = 0.37$, $\mu(a) = 0.3$ and $\mu(b) = \mu(c) = 0.42$.

(1) If k=0.1, then $\overline{\mu_t}=X$. for all $t\in(0.45,1]$. Hence μ is an $(\overline{\in},\overline{\in}\wedge q_{0.1})$ -fuzzy subalgebra

of X by Theorem 3.4.

(2) If k = 0.2, then

$$\overline{\mu_t} = \begin{cases} \{0, a\} & \text{if } t \in (0.4, 0.42] \\ X & \text{if } t \in (0.42, 1]. \end{cases}$$

Since *X* and $\{0, a\}$ are subalgebras of *X*, μ is an $(\overline{\in}, \overline{\in} \land q_{0,2})$ -fuzzy subalgebra of *X* by Theorem 3.4.

Example 3.7. Let *X* be the BCI-algebra given in Example 3.6. Let μ be a fuzzy set in *X* defined by $\mu(0) = 0.47$, $\mu(a) = \mu(b) = 0.49$, and $\mu(c) = 0.4$. If k = 0.12, then

$$\overline{\mu_t} = \begin{cases} \{c\} & if \ t \in (0.44, 0.47] \\ \{0, c\} & if \ t \in (0.47, 0.49] \\ X & if \ t \in (0.49, 1]. \end{cases}$$

Note that $\overline{\mu_t}$ is not a subalgebra for $t \in (0.44, 0.47]$. Hence μ is not an $(\overline{\in}, \overline{\in} \land q_{0.12})$ -fuzzy subalgebra of X by Theorem 3.4.

Theorem 3.8. Every $(\overline{\in}, \overline{\in})$ -fuzzy subalgebra of X is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X.

Proof. Straightforward. ■

The next corollary immediately follow from Theorem 3.8, by taking k = 0.

Corollary 3.9. Every $(\overline{\in}, \overline{\in})$ -fuzzy subalgebra of X is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X.

The converse of Theorem 3.8 is not true as seen in the following example.

Example 3.10. Consider the $(\overline{\in}, \overline{\in} \land q_{0.1})$ -fuzzy subalgebra of X given in Example 3.6. Then μ is not an $(\overline{\in}, \overline{\in})$ -fuzzy subalgebra of X since $(a)_{0.32} \overline{\in} \mu$ and $(a)_{0.36} \overline{\in} \mu$, but $(0)_{0.36} = (a*a)_{\max\{0.32,0.36\}} \in \mu$, because $\mu(0) = 0.37 \ge 36$.

Definition 3.11. A fuzzy set μ in X is called an $(\overline{\in}, \overline{q_k})$ -fuzzy subalgebra of X if, for all $t_1, t_2 \in (0,1]$ and $x, y \in X$

$$(x)_{t_1} \overline{\in} \mu, \ (y)_{t_2} \overline{\in} \mu \implies (x * y)_{\max(t_1, t_2)} \overline{q_k} \mu.$$
 (3)

Theorem 3.12. Every $(\overline{\in}, \overline{q_k})$ -fuzzy subalgebra of X is an $(\overline{\in}, \overline{\in} \land \overline{q_k})$ -fuzzy subalgebra of X.

Proof. Straightforward. ■

Taking k = 0 in Theorem 3.12, we have the following corollary.

Corollary 3.13. Every $(\overline{\in}, \overline{q_k})$ -fuzzy subalgebra of X is an $(\overline{\in}, \overline{\in} \land \overline{q_k})$ -fuzzy subalgebra of X.

The next example shows that the converse of Theorem 3.12 does not hold.

Example 3.14. Consider the $(\overline{\in}, \overline{\in} \land q_{0.2})$ -fuzzy subalgebra of X given in Example 3.6. Note that $(a)_{0.36} \overline{\in} \mu$ and $(b)_{0.43} \overline{\in} \mu$, but $(a*b)_{\max} \underline{\oplus}_{0.36,0.43)} = (c)_{0.43} q_{0.2} \mu$, since $\mu(c) + 0.43 + 0.2 > 1$. Therefore μ is not an $(\overline{\in}, \overline{q_{0.2}})$ -fuzzy subalgebra of X.

Theorem 3.15. Let X be BCK/BCI-algebra. If $0 \le r < k < 1$, then every $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X is an $(\overline{\in}, \overline{\in} \wedge q_r)$ -fuzzy subalgebra of X.

Proof. Straightforward. ■

The following example shows that if $0 \le r < k < 1$, then an $(\overline{\in}, \overline{\in} \wedge q_r)$ -fuzzy subalgebra of X may not be an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X.

Example 3.16. Let *X* and μ be as in Example 3.7. If r = 0.06 and k = 0.12, then

$$\overline{\mu_t} = \begin{cases} \{0, c\} & \text{if } t \in (0.47, 0.49] \\ X & \text{if } t \in (0.49, 1]. \end{cases}$$

Since *X* and $\{0, c\}$ are subalgebras of *X*, then μ is an $(\overline{\in}, \overline{\in} \land q_{0.06})$ -fuzzy subalgebra of *X* by Theorem 3.4. But μ is not an $(\overline{\in}, \overline{\in} \land q_{0.12})$ -fuzzy subalgebra of *X* (see Example 3.7).

Let *S* be a subset of *X*. Consider a fuzzy set μ_S in *X* where for all $x \in X$ defined by

$$\mu_{s}(x) = \begin{cases} 0 & if \ x \in S \\ 1 & otherwise. \end{cases}$$

Theorem 3.17. A non-empty subset *S* of *X* is a subalgebra of *X* if and only if the fuzzy set μ_s in *X* is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of *X*.

Proof. Let *S* be a subalgebra of *X*. Then $\overline{(\mu_s)_t}$ is clearly a subalgebra of *X* for all $t \in (\frac{1-k}{2}, 1]$. Hence μ_s is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of *X* by Theorem 3.4.

Conversely, assume that μ_s is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X. Let $x, y \in S$. Then

$$\mu_s(x * y) \le max\{\mu_s(x), \mu_s(y), \frac{1-k}{2}\} = max\{0, \frac{1-k}{2}\} = \frac{1-k}{2} < 1$$

for all $k \in [0, 1)$. Then $\mu_s(x * y) = 0$ and so $x * y \in S$. Therefore S is a subalgebra of X.

Theorem 3.18. Let S be a subalgebra of X. Then for every $t \in (\frac{1-k}{2}, 1]$, there exists an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra μ of X such that $\overline{\mu_t} = S$.

Proof. Let μ be a fuzzy set of X defined by

$$\mu(x) = \begin{cases} 0 & if \ x \in S \\ t & otherwise \end{cases}$$

for all $x \in X$, where $t \in (\frac{1-k}{2}, 1]$. Obviously, $\overline{\mu_t} = S$. Assume that (2) of Theorem 3.2 is not valid, then there exist $a, b \in X$ such that

$$\mu(a*b) > \max\{\mu(a), \mu(b), \frac{1-k}{2}\}.$$

Hence we can take $t \in (0,1)$ such that

$$\mu(a*b) \ge t > \max\{\mu(a), \mu(b), \frac{1-k}{2}\}.$$

Hence $\mu(a) < t$ and $\mu(b) < t$, and so $a, b \in \overline{\mu_t} = S$. Since S is subalgebra of X, $a * b \in S$. Thus $\mu(a * b) = 0 < t$ for all $t \in (0, 1)$, which is a contradiction. Therefore

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\}$$

for all $x, y \in X$. Using Theorem 3.2, we know that μ is an $(\overline{\in}, \overline{\in} \land q_k)$ -fuzzy subalgebra of X.

Taking k = 0 in Theorem 3.18, we have the following corollary.

Corollary 3.19. Let *S* be a subalgebra of *X*. Then for every $t \in (0.5, 1]$, there exists an $(\overline{\in}, \overline{\in} \land q)$ -fuzzy subalgebra μ of *X* such that $\overline{\mu_t} = S$.

Theorem 3.20. Let μ be an $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebra of X such that $\mu(x) \ge \frac{1-k}{2}$, for all $x \in X$. Then μ is an $(\overline{\in}, \overline{\in})$ -fuzzy subalgebra of X.

Proof. Straightforward.

Taking k = 0 in Theorem 3.20, we have the following corollary.

Corollary 3.21. Let μ be an $(\overline{\in}, \overline{\in} \land q)$ -fuzzy subalgebra of X such that $\mu(x) \ge 0.5$, for all $x \in X$. Then μ is an $(\overline{\in}, \overline{\in})$ -fuzzy subalgebra of X.

Theorem 3.22. Let $\{\mu_i \mid i \in A\}$ be a family of $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X. Then $\mu = \bigcup_{i \in A} \mu_i$ is an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X.

Proof. Let $x,y\in X$ and $t_1,t_2\in (0,1]$ be such that $(x)_{t_1} \overline{\in} \mu$ and $(y)_{t_2} \overline{\in} \mu$. Assume that $(x*y)_{\max\{t_1,t_2\}}\in \Lambda q_k\mu$. Then $\mu(x*y)\geq \max(t_1,t_2)$ and $\mu(x*y)+\max(t_1,t_2)>1-k$, which imply that $\mu(x*y)\geq \frac{1-k}{2}$. (4)

Let
$$\phi_1 = \{ i \in A \mid (x * y)_{max} \frac{1}{(t_1, t_2)} \in \mu_i \}$$
 and $\phi_2 = \{ i \in A \mid (x * y)_{max} \frac{1}{(t_1, t_2)} = \mu_i \} \cap \{ j \in A \mid (x * y)_{max} \frac{1}{(t_1, t_2)} \in \mu_j \}.$

Then $A=\varphi_1\cup\varphi_2$ and $\varphi_1\cap\varphi_2=\emptyset$. If $\varphi_2=\emptyset$, then $(x*y)_{max}(t_1,t_2)$ $\overline{\in}\ \mu_i$ for all $i\in A$, that is, $\mu_i(x*y)<\max(t_1,t_2)$ for all $i\in A$, which yields $\mu(x*y)<\max(t_1,t_2)$. This is a contradiction. Hence $\varphi_2\neq\emptyset$, and so for every $i\in\varphi_2$ we have $\mu_i(x*y)\geq\max(t_1,t_2)$ and $\mu_i(x*y)+\max(t_1,t_2)\leq 1-k$. It follows that $\max(t_1,t_2)\leq \frac{1-k}{2}$. Now, $(x)_{t_1}\overline{\in}\ \mu$ implies $\mu(x)< t_1$ and thus $\mu_i(x)<\mu(x)< t_1<\max(t_1,t_2)\leq \frac{1-k}{2}$ for all $i\in A$. Similarly $\mu_i(y)<\frac{1-k}{2}$ for all $i\in A$. Next suppose that $t=\mu_i(x*y)\geq \frac{1-k}{2}$. Taking $t>r>\frac{1-k}{2}$, we get $(x)_r\overline{\in}\ \mu_i$ and $(y)_r\overline{\in}\ \mu_i$, but $(x*y)_r\in\wedge\ q_k\mu_i$. This contradicts that μ_i is an $(\overline{\in},\overline{\in}\wedge\ q_k)$ -fuzzy subalgebra of X. Hence $\mu_i(x*y)<\frac{1-k}{2}$ for all $i\in A$, and so $\mu(x*y)<\frac{1-k}{2}$, which contradicts (4). Therefore $(x*y)_{\max(t_1,t_2)}\overline{\in}\wedge\ q_k\mu_i$.

Consequently μ is an $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebra of X.

Taking k = 0 in Theorem 3.22, we have the following corollary.

Corollary 3.23. Let $\{ \mu_i \mid i \in A \}$ be a family of $(\overline{\in}, \overline{\in} \wedge \overline{q})$ -fuzzy subalgebra of X. Then $\mu = \bigcup_{i \in A} \mu_i$ is an $(\overline{\in}, \overline{\in} \wedge \overline{q})$ -fuzzy subalgebra of X.

The following example shows that there exists $k \in [0,1)$ such that the intersection of two $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebras of X may not be an $(\overline{\in}, \overline{\in} \wedge \overline{q_k})$ -fuzzy subalgebra of X.

Example 3.24. Let $X = \{0, a, b, c\}$ be a BCI-algebras given in Example 3.6 and μ an $(\overline{\in}, \overline{\in} \land q_{0.2})$ -fuzzy subalgebra of X described in Example 3.6 (2). Let ν be a fuzzy set in X defined by $\nu(0) = 0.33$, $\nu(a) = \nu(c) = 0.42$, and $\nu(b) = 0.4$. Then

$$\overline{\nu_t} = \begin{cases} \{0, b\} & \text{if } t \in (0.4, 0.42] \\ X & \text{if } t \in (0.42, 1]. \end{cases}$$

Since *X* and $\{0,b\}$ are subalgebras of *X*, so ν is an $(\overline{\in}, \overline{\in} \land q_{0.2})$ -fuzzy subalgebra of *X* by Theorem 3.4. The intersection $\mu \cap \nu$ of μ and ν is given by $\mu \cap \nu(0) = 0.33$, $\mu \cap \nu(a) = 0.3$, $\mu \cap \nu(b) = 0.4$, and $\mu \cap \nu(c) = 0.42$. Hence

$$\overline{(\mu \cap \nu)_t} = \begin{cases} \{0, a, b\} & \text{if } t \in (0.4, 0.42] \\ X & \text{if } t \in (0.42, 1]. \end{cases}$$

Since $\{0, a, b\}$ is not a subalgebra of X, it follows that $\mu \cap \nu$ is not an $(\overline{\in}, \overline{\in} \land q_{0.2})$ -fuzzy subalgebra of X by Theorem 3.4.

For any fuzzy set μ in X and $t \in (0, 1]$, we denote

$$<\overline{\mu}>_t = \{x \in X \mid (x)_t \ \overline{q_k}\mu\} \text{ and } \overline{[\mu]}_t = \{x \in X \mid (x)_t \ \overline{\in} \land \ q_k\mu\}.$$

Obviously, $\overline{[\mu]}_t = \overline{\mu_t} \cup < \overline{\mu}>_t$.

Theorem 3.25. Let μ be a fuzzy set in X. Then μ is an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X if and only if $\overline{[\mu]}_t$ is a subalgebra of X for all $t \in (0,1]$.

We call $\overline{[\mu]}_t$ an $(\overline{\in \Lambda q_k})$ -level subalgebra of μ .

Proof. Assume that hen μ is an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X and let $x, y \in \overline{[\mu]}_t$ for $t \in (0,1]$. Then $(x)_t \overline{\in} \wedge q_k \mu$ and $(y)_t \overline{\in} \wedge q_k \mu$, that is, $\mu(x) < t$ or $\mu(x) + t \le 1 - k$, and $\mu(y) < t$ or $\mu(y) + t \le 1 - k$. Using Theorem 3.2, we have $\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\}$.

Case 1.
$$\mu(x) < t$$
 and $\mu(y) < t$. If $t \le \frac{1-k}{2}$, then

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\} < \max\{t, \frac{1-k}{2}\} = \frac{1-k}{2}$$

Hence $\mu(x * y) + t < \frac{1-k}{2} + \frac{1-k}{2} = 1 - k$, and so $(x * y)_t \overline{q_k} \mu$. If $t > \frac{1-k}{2}$, then

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\} < \max\{t, \frac{1-k}{2}\} = t.$$

and thus $(x*y)_t \overline{\in} \mu$. Therefore $(x*y)_t \overline{\in} \land q_k \mu$, i.e., $x*y \in \overline{[\mu]}_t$.

Case 2.
$$\mu(x) < t$$
 and $\mu(y) + t \le 1 - k$. If $t \le \frac{1-k}{2}$, then
$$\mu(x * y) \le \max \left\{ \mu(x), \mu(y), \frac{1-k}{2} \right\} < \max \left\{ \mu(y), \frac{1-k}{2} \right\}$$

$$\leq \max(1-k-t,\frac{1-k}{2})=1-k-t$$

and so $(x * y)_t \overline{q_k} \mu$. If $t > \frac{1-k}{2}$, then

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\} < \max\{t, 1-k-t\} = t.$$

Hence $(x * y)_t \overline{\in} \mu$. Therefore $(x * y)_t \overline{\in} \land q_k \mu$, i.e., $x * y \in \overline{[\mu]}_t$.

Case 3. $\mu(x) + t \le 1 - k$ and $\mu(y) < t$. Similar to the case 2.

Case 4.
$$\mu(x) + t \le 1 - k$$
 and $\mu(y) + t \le 1 - k$. If $t \le \frac{1-k}{2}$, then

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\} \le \max(1-k-t, \frac{1-k}{2}) = 1-k-t.$$

Thus $(x * y)_t \overline{q_k} \mu$. If $t > \frac{1-k}{2}$, then

$$\mu(x * y) \le \max\{\mu(x), \mu(y), \frac{1-k}{2}\} \le \max(1-k-t, \frac{1-k}{2}) = \frac{1-k}{2} < t,$$

and so $(x*y)_t \overline{\in} \mu$. Therefore $(x*y)_t \overline{\in} \wedge \overline{q_k} \mu$, i.e., $x*y \in \overline{[\mu]}_t$. Consequently, $\overline{[\mu]}_t$ is a subalgebra of X.

Conversely, let μ be a fuzzy set in X and $t \in (0,1]$ be such that $\overline{[\mu]}_t$ is a subalgebra of X. Let

there exists $a,b\in X$ such that $\mu(a*b)\geq t> \max\{\mu(a),\mu(b),\frac{1-k}{2}\}$ for some $t\in(0,1]$. Then $a,b\in\overline{\mu_t}\subseteq\overline{[\mu]}_t$, which implies that $a*b\in\overline{[\mu]}_t$. Hence $\mu(a*b)< t$ or $\mu(a*b)+t+k\leq 1$, a contradiction. Thus $\mu(x*y)\leq \max\{\mu(x),\mu(y),\frac{1-k}{2}\}$ for all $x,y\in X$. Using Theorem 3.2, we conclude that μ is an $(\overline{\in},\overline{\in}\wedge q_k)$ -fuzzy subalgebra of X.

A fuzzy set μ in X is said to be proper if $Im(\mu)$ has at least two elements. Two fuzzy sets are

said to be equivalent if they have same family of level subsets. Otherwise, they are said to be non-equivalent.

Theorem 3.26. Let μ be an $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X such that $\#\{\mu(x) \mid \mu(x) > \frac{1-k}{2}\} \ge 2$. Then there exist two proper non-equivalent $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebra of X such that μ can be expressed such that consist of a union of them.

Proof. Let $\{\mu(x)|\mu(x) > \frac{1-k}{2}\} = \{t_1, t_2, ..., t_r\}$, where $t_1 < t_2 < ... < t_r$ and $r \ge 2$. Then the chain of $(\overline{\in \Lambda} \ q_k)$ -level subalgebras of μ is

$$\overline{[\mu]}_{\frac{1-k}{2}}\subseteq\overline{[\mu]}_{t_1}\subseteq\overline{[\mu]}_{t_2}\subseteq\cdots\subseteq\overline{[\mu]}_{t_r}\subseteq X.$$

Define two fuzzy sets ν and γ of X by

$$\nu(x) = \begin{cases} t_1, & \text{if } x \in \overline{[\mu]}_{t_1} \\ t_2, & \text{if } x \in \overline{[\mu]}_{t_2} \backslash \overline{[\mu]}_{t_1} \\ \dots \\ t_r, & \text{if } x \in \overline{[\mu]}_{t_r} \backslash \overline{[\mu]}_{t_{r-1}} \end{cases} \qquad \gamma(x) = \begin{cases} \mu(x), & \text{if } x \in \overline{[\mu]}_{\frac{1-k}{2}} \\ k, & \text{if } x \in \overline{[\mu]}_{t_2} \backslash \overline{[\mu]}_{\frac{1-k}{2}} \\ t_3, & \text{if } x \in \overline{[\mu]}_{t_3} \backslash \overline{[\mu]}_{t_2} \\ \dots \\ t_r, & \text{if } x \in \overline{[\mu]}_{t_r} \backslash \overline{[\mu]}_{t_{r-1}} \end{cases}$$

respectively, where $t_2 < k < t_3$. Then ν and γ are $(\overline{\in}, \overline{\in} \wedge q_k)$ -fuzzy subalgebras of X, and $\nu, \gamma \leq \mu$. The chain of $(\overline{\in} \wedge q_k)$ -level subalgebras of ν and γ are, respectively, given by

$$\overline{[\mu]}_{t_1} \subseteq \overline{[\mu]}_{t_2} \subseteq \cdots \subseteq \overline{[\mu]}_{t_{r-1}} \quad \text{and} \quad \overline{[\mu]}_{\frac{1-k}{2}} \subseteq \overline{[\mu]}_{t_2} \subseteq \cdots \subseteq \overline{[\mu]}_{t_{r-1}}$$

Therefore ν and γ are non-equivalent and clearly $\mu \geq \nu \cup \gamma$. This completes the proof.

References

- [1] Bhakat, S.K., and Das, P., "On the definition of a fuzzy subgroup", Fuzzy Sets and Systems, Vol. 51, pp. 235-241, 1992.
- [2] Bhakat, S.K., and Das, P., " $(\in, \in V q)$ -fuzzy subgroup", Fuzzy Sets and Systems, Vol. 80, pp. 359-368, 1996.
- [3] Dudek, W.A., "On group-like BCI-algebras", Demonstratio Math, Vol. 21, pp. 369-376, 1998.
- [4] Huang, Y.S., "BCI-Algebra", Science Press, China, 2006.
- [5] Huang, W.P., and Jun, Y.B., "Ideals and subalgebras in BCI-algebras", Southeast Asian Bull. Math, Vol. 26, No. 4, pp. 567-573, 2002.
- [6] Imai, Y., and Iseki, K., "On axiom system of propositional calculus", Proc. Jpn. Acad, Vol. 42, pp. 19-22, 1966
- [7] Iorgulescu, A., "Some direct ascendents of Wajsberg and MV algebras", Sci. Math. Japon, Vol. 57, pp. 583-647, 2003.
- [8] Iorgulescu, A., "Pseudo-Iseki algebras. Connection with pseudo-BL algebras", Multiple-Valued Logic Soft Comput, Vol. 11, pp. 263-308, 2005.
- [9] Iseki, K., "An algebra related with a propositional calculus", Proc. Jpn. Acad, Vol. 42, pp. 26-29, 1966.
- [10] Iseki, K., "On BCI-algebras", Math. Seminar Notes (now Kobe Math. J.), Vol. 8, pp. 125-130, 1980.
- [11] Iseki, K., and Tanaka, S., "Ideal theory of BCK-algebras", Math. Japon, Vol. 21, pp. 351-366, 1966.
- [12] Jun, Y.B., "Fuzzy subalgebras of type (α, β) in BCK/BCI-algebras", Kyungpook Math. J, Vol. 47, pp. 403-410, 2007.
- [13] Jun, Y.B., "On (α, β) -fuzzy subalgebras of BCK/BCI-algebras", Bull. Korean Math. Soc, Vol. 42, No. 4, pp. 703-711, 2005.
- [14] Jun, Y.B., "Generalizations of $(\in, \in V q)$ -fuzzy subalgebras in BCK/BCIalgebras", Comput. Math. Appl, Vol. 58, pp. 1383-1390, 2009.
- [15] Jun, Y.B., and Xin, X.L., "Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras", Fuzzy Sets and Systems, Vol. 117, pp. 471-476, 2001.
- [16] Liu, Y.L., and Meng, J., "Quotient BCK-algebra by a fuzzy BCK-filter", Southeast Asian Bull. Math, Vol. 26, No. 5, pp. 825-834, 2003.
- [17] Meng, J., and Jun, Y.B., "BCK-Algebras", Kyungmoon Sa Co., Seoul, 1994.
- [18] Meng, J., and Xin, X.L., "Commutative BCI-algebras", Math. Japon, Vol. 37, pp. 569-572, 1992.
- [19] Mundici, D., "MV algebras are categorically equivalent to bounded commutative BCK-algebras", Math. Japon, Vol. 31, pp. 889-894, 1986.
- [20] Murali, V., "Fuzzy points of equivalent fuzzy subsets", Inform. Sci, Vol. 158, pp. 277-288, 2004.
- [21] Pu, P.M., and Liu, Y.M., "Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence", J. Math. Anal. Appl, Vol. 76, pp. 571-599, 1980.
- [22] Rosenfeld, A., "Fuzzy groups", J. Math. Anal. Appl, Vol. 35, pp. 512-517, 1971.

Reza Ameri, Hossein Hedayati, Morteza Norouzi/ TJMCS Vol .2 No.1 (2011) 130-140

- [23] Xi, O.G., "Fuzzy BCK-algebras", Math. Japon, Vol. 36, pp. 935-942, 1991. [24] Zadeh, L.A., "Fuzzy sets", Inform. Control, Vol. 8, pp. 338-358, 1965.
- [25] Zhan, J., and Tan, Z., "M-fuzzy BCK/BCI-algebras", J. Fuzzy Math, Vol. 12, No. 2, pp. 451-460, 2004.