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Abstract

Discrete Jensen-type inequality for a harmonically convex function was established by Dragomir in [S. S. Dragomir, RGMIA
Monographs, Victoria University, (2015)]. In [I. A. Baloch, A. H. Mughal, Y. M. Chu, M. De la Sen, Accepted in Aims Math-
ematics], Baloch et al. presented a variant of discrete Jensen-type inequality for harmonically convex functions. Moreover,
they established a Jensen-type inequality for harmonically h-convex functions, and then they proved the variant of Jensen-type
inequality for harmonically h-convex functions. Our results generalize and improve some earlier results in the literature (for
example see [S. S. Dragomir, RGMIA Monographs, Victoria University, (2015)] and [I. A. Baloch, A. H. Mughal, Y. M. Chu, M.
De la Sen, Accepted in Aims Mathematics]) for the said class. Additionally, using them gives us more interesting results.
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1. Introduction

The convexity of functions has been frequently used in various fields of pure and applied mathematics,
for instance in function theory, mathematical analysis, functional analysis, probability theory, optimization
theory, operational research and information theory. In short, convex functions entail a strong and elegant
interaction between analysis and geometry. The simple generalization to a convex function extensively
widens our scope for analysis. Inequalities are frequently used in solving several problems of the applied
sciences. Some recent work on the applications of mathematical inequalities can be found in [1-8, 15, 16,
18, 19, 22, 23, 25, 27, 28, 30-32, 34, 36].

Jensen’s inequality [24] is lord among inequalities because it make out at once the main part of the
other classical inequalities (e.g. those by Holder, Minkowski, Beckenbach-Dresher and Young, the A-G
inequality etc.) that holds for the class of convex functions under certain conditions. In 2003, Mercer [26]
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gave a variant of Jensen’s inequality which has an huge influence on the theory of inequalities. During the
investigation of convexity, many researchers founded new classes of functions which are not convex in
general. Some of them are the so called harmonically convex functions [21], harmonically («, m)-convex
functions [20], harmonically (s, m)-convex functions [11, 13] and harmonically (p, (s, m))-convex functions
[12]. For a quick glance on importance of these classes and applications see [10] and references therein.

Definition 1.1. A function f : I C R\{0} — R is said to be harmonically convex function on I if

Xy

holds for all x,y € T'and t € [0, 1]. If the inequality is reversed, then f is said to be harmonically concave.
In [10], Baloch et al. observed that class of harmonically convex functions is neither exactly that of
convex functions nor it is entirely different from class of convex functions. Furthermore, they investigated
remarkable relations between these two classes under certain conditions as follows.

Lemma 1.2. Let I C R/{0} be a real interval. Define ™! = {y € R,y = %,x € I}. A functionf:1 — Ris
harmonically convex if and only if g : 171 — R is convex, where g is defined as g(y) = f(%).

Lemma 1.3. Let I C (0,00) and 17! has similar definition as given in Lemma 1.2. A function f : I — R is
harmonically convex if and only if h : I — R is convex, where h is defined as h(z) = zf(z) .

Proposition 1.4. Let I C R/{0} be a real interval and f : I — R is a function, then

1. if I C (0, 00) and f is convex and nondecreasing function, then f is harmonically convex function;
2. if I C (0,00) and f is harmonically convex and nonincreasing function, then f is convex function;
3. if 1 C (—o0,0) and f is harmonically convex and nondecreasing function, then f is convex function;
4. if 1 C (—o0,0) and f is convex and nonincreasing function, then f is harmonically convex function.

Here, we reproduce some of the examples from article [10] for better understanding of our ongoing
work. Now, first of all, we give an example of harmonically convex function which is not a convex
function in Figure 1.

Figure 1

Here, we consider some more examples of harmonically convex functions in Figures 2 and 3.
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Y

Figure 2

The above function is an example that these two classes have a non-empty intersection.

Y Y
> ifo<x<1,
f(x) = , if 1<x<2,
f(x) = Vx =2 ifx > 2.
X X
Figure 3

As h-convex functions which unify many other generalized aspects of convex functions, like s-convex
functions, Godunova-Levin functions, s-Godunova-Levin functions and P-convex functions, was intro-
duced by Varosanec in [35]. In a similar manner, class of harmonically h-convex was introduced to
unify the various classes of harmonically convex functions. Here, we recall the definition of harmonically
h-convex functions.

Definition 1.5 ([29]). Let h: [0,1] — R be a non-negative function. A function f : I C R\{0} — R is said to
be harmonically h-convex function on I if

Xy
f (tx—l—(l—t)y) <hO)f(y)+h(1—1t)f(x)

holds for all x,y € Tand t € [0, 1]. If the inequality is reversed, then f is said to be harmonically concave.

In [17], Dragomir proved the following result, which is known as Jensen-type inequality for harmoni-
cally convex functions.

Theorem 1.6. Let I C (0, 00) be an interval. If f : I — R is harmonically convex function, then

(Z > Zwkf Xk), (1.2)
k=1 Xk
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holds for all x1,...,xn € Land wy € [0, 1] with Y 1wy = 1.
In [14], Baloch et al. proved the subsequent result.

Theorem 1.7. Let I C R\{0} be an interval. If f : I — R is harmonically convex function, then for any finite
positive sequence (xi)p_, € Land wy € [0,1] with Y 17 wi = 1, we have

1
f(l i ><fx1 + f(xn) Zwkka (1.3)

Mt R T ke

Also in [14], they corroborated Jensen-type inequality for harmonically h-convex function.

Theorem 1.8. Let wy,..., Wy be positive real numbers (n > 2) such that wy € [0,1] and Y _;wy = 1. If
h:] 2 (0,1) = R is a non-negative supermultiplicative function and if f is harmonically h-convex function, then

(Zk 1xk> ZhWk Xk

holds for any finite positive sequence (xy)i_; € L.
Further in [14], they proved a variant of Jensen-type inequality for harmonically h-convex function.

Theorem 1.9. Let h : ] D (0,1) — R be a non-negative supermutiplicative function on J. Let wy,..., wn be
positive real numbers (n > 2) such that y__;wyx = land Y _; h(wy) < 1. If f is a harmonically h—convex on
I € R\{0}, then for any finite positive increasing sequence (xi)y_; € 1, we have

f ( T 1 : > < f(x1) 4+ flxn) = D h(wi)f(xx). (1.4)

TR I K1

If Wis a submultiplicative function, ) _; h(wy) > 1 and f is harmonically h-concave then the inequality (1.4) is
reversed.

Theorem 1.10 ([14]). Let f be a harmonically convex function on [m, M]. Then

1 1 ab 2ab
rrga) =m0 [ (i) e ms oo (255) 09

forall a,b € [m, M].

In the next part, our main aim is to prove generalization and refinement of inequality (1.5) along with
some particular inequalities. Further, a simple proof of weighted HGA inequality by use of our previous
results for harmonically convex functions.

2. Main results

First of all, we establish a result similar to Theorem 1.10 under the same conditions.

Theorem 2.1. Let f be harmonically convex function on [m, M]. Then

! ab_(* 1 1 f(a) + f(b)
f<M _a+b><b_aLtzf(§1+_)dtéf(m)Jrf(M)—2 (2.1)

1 _1
2ab Mt

forall a,b € [m, M].
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Proof. Since f is harmonically convex on [m, M] C R\{0}, then by the Hermite-Hadamard type inequality
(2.2) of Theorem 2.4 from [21], we infer that

! 1 ! 1
Jf<¢+;—u+tﬂ>“:L%ﬂ&+;—p+u—m& ;—H)ﬁ

+
b (2.2)
> f 2 =1 !
S\ DG h) T\ Fr
On the other hand, a variant of Jensen-type inequality (1.3) gives
1
f( T ] rR—— ) < (M) + f(m) — (tf(a) + (1 —t)f(b)). (2.3)
e (f+ 55
M m a b
Integrating both sides of (2.3), we get
1 1 1
J otV at< M)+ fm) —J (tf(a) + (1—t)f(b))dt
0 \mtm—lat%) 0 (2.4)
M) + f(m) — LU EIE),
also
! 1 ab (1 1
f dt=— J —f ] at. (2.5)
e e e e
Hence, inequality (2.1) follows from inequalities (2.2), (2.4), and (2.5), this proves the assertion. O

The following result has been proved in Lemma 2.1 by Baloch et al. [14], however we prove it here for
the reader convenience but in a different way.

Lemma 2.2. Let f be harmonically convex function on [m, M] C R\{0}, then

1
fl +—5— | <fM)+f(m)—flax), (m<ax <M, k=1,...,n).
Mtm

ax
Proof. If f : [m, M] — R is harmonically convex function, then for any x,y € [m, M] and t € [0, 1], we have
(1.1).

. . M-—M —mM M-—M
It can be verified that if m < ax < M (k = 1,...,n), then Eak_Mit, ;:S:_ﬂak < 1and W +

mag—mM
mar—Mayg

= 1. Hence, by the use of (1.1), we have

flay) < mak—me mM — May

< f(M). 2.6
max — May m mak—Mak( ) (26)

On the other hand, m < ax <M (k =1,...,n) implies m < ﬁ <M (k=1,...,n). Thus, from
MTm o

(2.6), we conclude

f(M). (2.7)

f< } > - mM—Makfm max —mM

1 L |~ max —Mayg mayx — May
M Qi

Summing up (2.6) and (2.7), we get the desired result. O]
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Based on the above lemma, our first result can be stated as follows.

Theorem 2.3. Let f be a harmonically convex function on [m, M] C R\{0}. Then

1 = 1
f < ka
( +1}1£k1ak> kZ—l (7\1/1+ (k= 1Wkat+ )>

1 _
m
o (2.8)
< M)+ f(m) — 3 wicflay)
k=1
forall ay € [m,M] and wy, € [0,1] (k=1,...,n) with) _;wx = 1.
Proof. Firstly, since f is harmonically convex function, we have
1 1
ka } f —
Z < +om— (ko wilst +atk)> <Z1£1Wk(;34+$—(21£1vvk2§+$k))> 2.9)
1
V + H Zk 1 ak
On the other hand
iw f !
k -
k=1 Mt (Croawgnt + 5
n
= Z ka 1
k=1 (1_t)(ﬁ+%_ 2:1%:)"%“%4_%_&)
n
1 1
<D [“‘t)f SIS —— wk>+”<1+11>] (2.10)
k=1 M m k=1 Ay M m Ay
n n
= Z Wy [(1 —1) (f(M) + f(m) — Z wkf(ak)> + t(f(M) +f(m) — f(ak))]
k=1 k=1
n
= f(M) +f(m) — ) wif(ay)
k=1
Combining inequalities (2.9) and (2.10), we get (2.8). This proves the assertion. O]
Corollary 2.4. Let all assumptions of Theorem 2.3 hold, then
R
s w 1w 1 2
k JW“‘X% &3 f(t)dt
<2 3 T 1 (2.11)
k=1 ax 2—1% ﬁ+%17% Mt (o wi at+atk)

Proof. Integrating the inequality (2.8) over t € [0, 1], we get (2.11). Here, we used the fact that

1 1
Jf T T dt
0 \pt+m— (= 1Wk + )
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el

1 1
:Jof ((1—’0(;\1/[—1'111—22_1 %)"’t(ﬁ"" _alk)> “

-

1 1
:Lf<u&+$—zﬁquur4n +$—¢Jdt

1 1 n
1 MW TIR=1 @
1
T
m

f(t). O

Remark 2.5. Putn =2, wy = wy = %, a; = a, and ap = b in Corollary 2.4, then we get

b
f( L >< ab J 1f<1 )dtgf(m)Jrf(M)—f(a);rf(b),

L1 _atb | Sp_gqf 2 | L1

1 1
m M t

M m 2ab
which declares that our inequality (2.11) generalizes our result in inequality (2.1).

Now, we present more precise estimate in the following theorem.

Theorem 2.6. Let f: [m, M] C R\{0} — R be a harmonically convex function. Then

f< ! ><§wf< ! )
1 1 X k 1 1 1 1
MTm— Tkl—lﬂ k=1 m—i_ﬁ_f( le:l%:_’_ch)

m = Ay
n 1 2
Wy B N 1
< T waM 1 k=1 @ i+i—(zn = 0 f(t)dt (2.12)
k=1 ag k=1 ay S MTm k=1 ax ar
n
< F(M)+f(m) — ) wif(ay)
k=1

forall a € [m,M]and wy € [0,1] (k=1,...,n) with) _;wyx =1.

Proof. 1f f : [m, M] C R\{0} — R is a harmonically convex function, then, we have for any a,b € [m, M]

2ab 1 1 1 1 1 f(a) + f(b)
arb <;(3+1a+;+a)> 2 (zw) 2 (wa) 2

1 1 1 1
f dt = J f dt,
JQ Mt w (et ) o \mtm— (T +e)
we conclude that

1
f
1 1 b
(M—I—m_(ZIZb)
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Since, ax, Y 14 Vc‘l’k € [m, M], hence we can write

1
1 1 To1o T 1
1 )- [t s
1,1 1l owye 1 1 _ynowg 1,1
Mt w2 k=1 o t o) ar k=1 Ty m M (kg Lo
N 1 1 1 1 1 ’
2 \m+wm Xkt ar MTwm T a
where
1
1
f dt
1 1 t
JO <M+m_( k=1 ::;k—i_ak))
1 1 1 2
1 1 1
= M f(t)dt
1y "VkJ' 1 , 1 _ (yn it, t .
ax k=1 ax ﬁ+%712221% M + m (Zkzl Wk, ay + ak)
Multiplying by wx >0 (k =1,...,1n) and summing over k from 1 to n, we have
>t ! )
k 1 T _1/;vn w 1
=1 W+H*§(Zk_la7:+a7k)
n W . 1 2
k MTm—ag
<) T ow WkJM " 1 ST ety L) f(t)dt (2.13)
k=1 ax k=1 aj ﬁJr%,ZE:l% M k=1 "Y'k q ay
1 1 = 1
= 1 1 nw 1 1 1
2[ <M+m— k=lae/ ko \Mtm e

On the other hand, by (1.2)

1 1
f =1
(Zk 1Wk(R1 111 DI ak ) (ZE—Mk(ﬁA % %Zk 1§:+(111<))> (2.14)
N .
1
< Wi f ,
1<Z—1 (Al/LJrnlm_%(ZE—lg:Jrcp)
and by Theorem 1.7 and Lemma 2.2
1 1 1
ZHM+1— lek>+Zf<£A T 1)]
m o oo (2.15)
1
§§[f(M)+f kZkaf ak)—i—f Zwkf (lk —f Zwkf (lk
d

Combining (2.13), (2.14), and (2.15), we get (2.12), which proves the theorem.
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=1,...,n)with } _ywy =1 Then

Corollary 2.7. Let ay € [m, M] and wy € [0,1] (k

1 n 1 e
<
cw o)

1 1 1
M1 m T Lk=la k=1 \M
s w
k
con| Y
k=l SRS a (2.16)
1 1 2 :
1 1 n w
METmXk=1 @
xJ 1 T T (5wt £ f(t)dt
T 1 T M m k=1 "k qy ag
MTm™ ay
< mM
X n Wy *
k=1 dx
i O

logt, (0 < t)in Theorem 2.6, we get the inequality (2.16) after some simplifications

m, ap =M and w; = wy = % in Corollary 2.7, then we have

4mM
= < Amm < VMM,

Proof. Put f(t) =

Remark 2.8. If wesetn =2, a1 =

2mM <
m+M = /Bm+M)(m+3M)
where
n T — K 1 2
Mt IR a
Am,M = exp J M k — f(t)dt]
[; Zk e — ﬁJr%_(ZE*kalcT:Jraik)
Mt Ay
Remark 2.9.
1 = 2
< Z wicf ( w 1 )
(Zk 1ak> k=1 EZlT:+?k
n ay n
Wi 1
<) ———1 (anlwt)mm<2mmu
k=1 Y0 o @ Trp k=1 ak | oax k=1
3. Applications
In this section, we give interesting applications of our results. Since f(x) = x, Vx € (0, c0) is harmoni-
cally convex function, so from inequality (1.2) we get
= < Zwkxk (3.1)
Zk 1 xy
Taking
1
xx = k with wk:E(lgkgn) (3.2)
in inequality (3.1), we get
n
1
n+ 1 Z m’ (33)
m=1
Now, using inequality (1.3) for f(x) = x, Vx € (0, c0) we have
(3.4)

n
1
“yn Wk < X1 +Xn — E Wi Xk,
k=1 x k=1
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and under condition (3.2), inequality (3.4) becomes

n
1 241

y < (3.5)
m n+1

m=1

Hence, by combining inequalities (3.3) and (3.5), we get

LI | n2
— 3.6
Zm n+1 (3.6)

m=1

Next, since f(x) = Inx,Vx € (0,00) is harmonically convex function and concave function, so from in-
equality (1.2) and classical Jensen’s inequality and variant of classical Jensen’s inequality, we get

< Xy (3.7)
s <1
and
n n
H X ¥ < Z WiXk, (3.8)
= k=1
n n
X1Xn H X < Xq 4 X — Z Wi X (3.9)
k=1 k=1

Now, using inequality (1.3) for f(x) = Inx, Vx € (0, 00) we have

n n
w
H Xy * < (X1 4 Xn) — X1Xn X—k (3.10)
k=1 K—1 K
or
n -1 n
(xl_l +x;1— Z wkx;1> < X1Xn H X K. (3.11)
k=1 k=1
Here, we conjecture a result and left its proof for researcher, as follows
o
Z Wixk < (X1 +Xn) — X1Xn —k (3.12)
k=1 xic”

and hence, from inequalities (3.1), (3.7), (3.8), (3.10), and (3.12), we conclude that

w
=1 wp S HX < Z KXk < (X1 +Xn) —X1Xn Z =k
Zk 1 = k=1 =1 ‘K
However, if the conjecture (3.12) is not true, even then we have given the simple proof of
n
=y S H Xy Z wixk, weighted HGA inequality. (3.13)
Zk Ixie  x=1 k=1
In particularly, for wy as given in condition (3.2), the inequality (3.13) becomes
n Xn+Xn+--+X . .
T 1 . < Yxixg - X < & L o T HGA inequality. (3.14)
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1 < k < n, we get from (3.14),

&=

For xy =

2n n LI |
< —. 3.15
S o

< <
n+l S oyMk S e

Also from inequalities (3.9) and (3.11), we get

n —1 n n
—1 —1 —1 < Wk
XXy — WicXy < X1 Xn X < X1+ Xn — Wi XK.
k=1 k=1 k=1

Now, if I = [a,b] and xx € I, (1 < k < n) then by the virtue of inequality (1.3), the above inequality
becomes

n —1 n n
(a_l +b! —Zwkx?) < abHXEWk < a—i—b—Zwkxk,
k=1 k=1 k=1

since the above inequality holds for arbitrary value of n, infinite convex combination Zle Wi X con-
verges in I and then affine combination a +b — > . ; wixy converges in I, see for example [33], so it
must be true as n tends to oo, i.e.,

(o] —1 (o] 00
(al +b 11— Z wkxk1> < ab H xgwk <a+b-— Z Wi Xk.
k=1 k=1 k=1

Now, first use (1.2) for harmonically convex function f(x) = % and then by assuming condition (3.2), we
have

(3.16)

2 <n2+1‘
n+1 n+1

4. Conclusion

The harmonically convexity of a function is the basis for many inequalities in mathematics as you
may see in ([9, 11-14, 20, 21]) and references therein. Furthermore, harmonically convexity provides an

analytic tool to estimate several known definite integrals like [° €rdt, [° et’dt, [° sitdt and [° ©stdt,

vn € N, where a,b € (0,00), see [10]. In this article, we have given the improvements and generalizations
of some results from [14, 17] and moreover, we used these results for the particular functions to get the
improvements of results already exist in literature. Further, we found sharp bounds for Y I _, % and
gave a simple proof of weighted HGA-means inequality. We hope techniques and consequences of this
article will inspire the researcher to explore more interesting sequel in this area.
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