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Abstract

This paper proposes and analyzes a CTL-mediated HIV infection model. The susceptible CD4" T cells can be infected when
they are contacted by one of the following: (i) free HIV particles, (ii) silent infected cells, and (iii) actively infected cells. The effect
of saturation infection has been incorporated in the second model. The model is an improvement of an existing HIV infection
models which have neglected the infection due to incidence between the silently infected cells and susceptible CD4" T cells. We
first show that the models are well-posed. Each of our proposed models has three equilibria, namely: HIV-free equilibrium,
Dy, chronic HIV infection equilibrium with inactive CTL-mediated immune response, D;, chronic HIV infection equilibrium
with active CTL-mediated immune response, D;. We derive two threshold parameters, the basic HIV reproduction number, Ry,
and the CTL-mediated immunity reproduction number, 9i;. These parameters determine the existence and global stability of
the equilibria of the model. We prove the global asymptotic stability of all equilibria by utilizing the Lyapunov function and
LaSalle’s invariance principle. We have proven the following: (i) if Ry < 1, then Dy is globally asymptotically stable (G.A.S),
(ii) if |/ < 1 < Ry, then Py is G.A.S, and (iii) if Ry > 1, then D, is G.A.S. We have illustrated the theoretical results via
numerical simulations. We have studied the effects of cell-to-cell (CTC) transmission and saturation on the dynamical behaviour
of the system. We have shown that inclusion of CTC transmission decreases the concentration of susceptible CD4* T cells and
increases the concentrations of infected cells and free HIV particles. While the inclusion of saturation increases the concentration
of susceptible CD4™ T cells and reduces the concentrations of infected cells and free HIV particles.

Keywords: HIV infection, viral and cellular infections, global stability, silent infected cells, CTL-mediated immune response,
Lyapunov function.
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1. Introduction

Acquired immunodeficiency syndrome (AIDS) is one of the dangerous human diseases which is
caused by human immunodeficiency virus (HIV). The main target of the HIV is the susceptible CD4*T
cells which play an important role in the immune system. Cytotoxic T lymphocyte (CTL) and antibody
immune responses can control the HIV infection for long period up to 10 years [5]. However, during this
period of time the concentration of susceptible CD4*T cells is declined. When the concentration of the
CDA™T cells reaches below 200 cells/mm?, the patient is said to have progressed to AIDS. During the
last decades, mathematical modeling of a within-host HIV infection has witnessed a significant devel-
opment. Stability analysis has also become one of the most important and fundamental approaches for
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understanding the within-host HIV dynamics. The basic mathematical model of a within-host HIV infec-
tion with CTL-mediated immunity has been introduced in [34]. The model contains four compartments,
susceptible CD4™T cells (W), active HIV-infected cells (M), free HIV particles (N), and HIV-specific CTLs
(P).

W(t) = W(t) —mWI(t)N(t),

M(t) = ( )N( ) —aM(t) — uP(t)M(t),

N(t) = ( ) —eN(t),

P(t) = ch( IM(t ) 7P (t).

The susceptible CD4 " T cells are produced at specific constant rate p and die at rate xW. The term 1; WN
refers to the rate at which new infectious appears by virus-cell contact between free HIV particles and
susceptible CD4" T cells. The active HIV-infected cells die at rate aM. The term pPM is the killing rate
of active HIV-infected cells due to their HIV-specific CTL-mediated immunity. The free HIV particles
are generated at rate bM and cleared from the plasma at rate eN. The proliferation rate of the effective
HIV-specific CTLs is given by cPM. The term 7P represents the decay rate of the CTLs. HIV infection
models with CTL-mediated immune response have been investigated in many papers (see, e.g., [17, 18,
24, 31, 32, 35, 37, 38, 41, 43, 47]). In model (1.1), it was assumed that the infection occurs due to virus-
cell contact known as virus-to-cell (VTC) transmission. Several works have reported that the susceptible
CD4"T cells can also be infected due to cell-cell contact known as cell-to-cell (CTC) transmission (see
e.g. [25-27, 36]). Therefore, CTC transmission plays an important role in the HIV infection process even
during the antiviral treatment [39]. The CTC transmission has been incorporated into viral infection
models with [6, 14, 15, 21, 42] or without [1, 8, 16, 19, 29, 30, 46] CTL-mediated immune response.

It is known that highly active anti-retroviral therapy can suppress HIV replication to a low level but
cannot enucleate the HIV from the body. One of the main reasons of this fact is the presence of silent
(latent) CD4" T infected cells where the HIV provirus can reside [7, 45]. Silent infected cells live long, but it
can be activated to produce new HIV particles. In a recent interesting discovery [2], it has been shown that
both silent and active infected cells can infect the susceptible CD4" T cells through CTC mechanism. In a
very recent work, Wang et al. [44] have formulated a viral infection model by assuming that both silent
and active infected cells can participate in CTC infection. However, in [44], the CTL immune response has
not been considered.

In the present paper, we first formulate an HIV infection model with CTL-mediated immune response
and both VTC and CTC transmissions. The CTC transmission is due to the contact of susceptible CD4" T
cells with silent or active HIV-infected cells. The effect of saturation infection has been incorporated into
the second model. The well-posedness of each model is investigated by establishing that the solutions
of the model are nonnegative and bounded. We derive two threshold parameters which determine the
existence and stability of the three equilibria. Global stability of all equilibria is proven by formulating
Lyapunov functions and utilizing LaSalle’s invariance principle. We perform some numerical simulations
to illustrate the strength of our theoretical results.

(1.1)

2. Model formulation

We formulate an HIV infection model by assuming that the HIV virions can replicate by two mecha-
nisms, VTC and CTC transmissions. The CTC infection has two sources, (i) the contact between suscep-
tible CD4™ T cells and silent HIV-infected cells, and (ii) the contact between susceptible CD4" T cells and
active HIV-infected cells. Under these assumptions we propose the following model:

W(t) = p— aW(t) —mW(tN(t) —mW(t)U(t) —nsW(t)M(t),

U(t) = mW(EHN() +n2W(U() +nsW(t)M(t) — AU(t) —yU(t),

M(t) = AU(t) — aM(t) — uP(t)M (1), (2.1)
N(t) = bM(t) — eN(t),

P(t) = oP(t)M(t) — 7tP(t),
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where U is the concentration of silent HIV-infected cells. The susceptible CD4" T cells are contacted with
silent HIV-infected cells and active HIV-infected cells and become infected due to CTC transmission at
rates (WU and n3WM, respectively. The terms AU and yU are the rates of silent HIV-infected cells that
become active and the natural death of the silent HIV-infected cells, respectively. All remaining variables
and parameters have the same biological meaning as explained in Section 1. Table 1 summarizes all
parameters and their definitions.

Table 1: Parameters of model (2.1) and their interpretations.
Parameter Biological meaning

p Recruitment rate for the susceptible CD4" T cells

o« Natural death rate constant for the susceptible CD4* T cells

utt Virus-cell incidence rate constant between free HIV particles and susceptible CD4™ T cells

M2 Cell-cell incidence rate constant between silent HIV-infected cells and susceptible CD4" T cells

Cell-cell incidence rate constant between active HIV-infected cells and susceptible CD4* T cells
Death rate constant of silent HIV-infected cells

Death rate constant of active HIV-infected cells

Killing rate constant of active HIV-infected cells due to their specific CTL-mediated immunity
Transmission rate constant of silent HIV-infected cells that become active HIV-infected cells
Generation rate constant of new HIV particles

Death rate constant of free HIV particles

Proliferation rate constant of HIV-specific CTLs

Decay rate constant of HIV-specific CTLs

A9 e o> a3

2.1. Well-posedness of solutions
Let Q; > 0,j =1,2,3 and define the compact set

Q= {(W,U,MN,P) e RZ;:0 < W(t), U(t), M(t) < Q1,0 < N(t) < Qz, 0 < P(t) < Q3}. (2.2)

Proposition 2.1. The compact set Q is positively invariant for system (2.1).
Proof. We have

W lw=o=p >0,

U Jju—o=mWN +113WM > 0 for all W,N,M > 0,

M |m—o=AU>0forall U >0,

N [n—o=bM >0 for all M > 0,

P lp—o=0.
This ensures that (W(t), U(t), M(t), N(t), P(t)) € 1R5>0 for all t > 0 when (W(0), U(0), M(0), N(0),P(0)) €
]R5>0. To show the boundedness of all state variables, we let

W(t) = W(t) 4+ U(t) + M(t) + —N(t) + %P(t).

2b
Then
W(t) = p— aW(t) —yU(t) — %M(t) _ %N(t) _ %‘p(t)
< o= (W) + U + M() + 5 NI + EP(0) = p— $¥(1),

where ¢ = min{a, v, 5, ¢, 7t}. It follows that,

— bt _PY\L P
Y(t) < e (‘1’(0) ¢> o

Hence, 0 < Y(t) < Q7 if ¥(0) < Q4 for t > 0, where Q; = %. Since W, U, M, N and P are all nonnegative
then 0 < W(t), U(t), M(t) < Q1,0 < N(t) < Qp, 0 < P(t) < Qs if W(0) +U(0) + M(0) + 55 N(0) + EP(0) <

2bQ Q
Q1, where Q; = L and Q3 = G—ul. O
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2.2. Equilibria
Let (W, U, M, N, P) be any equilibrium of system (2.1) satisfying the following equations:

0=p—aW—-—1WN —mWU—-n3WM,
0 =mWN +mWUuU+nsWM - (A+v) 1,
0=AU—aM — uPM,

0=bM —¢N,

0= (oM —m)P.

The straightforward calculation finds that system (2.1) admits three equilibria.

(1) HIV-free equilibrium, Dy = (W, 0,0,0,0), where Wy = p/«. This case describes the situation of
healthy state where the HIV infection is absent.

(2) Chronic HIV infection equilibrium with inactive CTL-mediated immune response, D; = (W, Uy,
M1, N¢,0), where

B ae (Y +A)
aenz + A (bng +eng)’
_ aco [Wo{aena +A (bny +eng)} 1_
aenz +A (bng +ens) | ae(y+2) ]’
M, — g0\ [ Wo{aenz +A (bng +eng)} 1
aeny + A (bny +ens) | ae (y+A) |’
Ny — obA [Wo {aena +A (bny +ens)} 1_ '
aenz + A (bng +ens) | ae (y+A) ]

Therefore, D; exists when
W [aenz + A (bng + ens)]

ae (y+A)

At the equilibrium D; the chronic HIV infection persists while the CTL-mediated is unstimulated. The
basic HIV reproduction number for system (2.1) is defined as:

> 1.

W [aenz + A (bng + ens)]

Ro = = Ro1 + R + Ros, 2.3
0 ae [y + A 01 02 03 (2.3)
where
_ WoAbm _ Wome _ _Wohns
= qe(y +A) V) N BT Ay A

The parameter Ry determines whether or not the infection will be chronic. In fact, $ip; measures the
average number of secondary HIV-infected cells caused by an existing free HIV particle due to VIC
transmission, while 92 and PR3 measure the average numbers of secondary HIV-infected cells caused by
living silent and active HIV-infected cell, respectively, due to CTC transmission. In terms of %Ry, we can
write

Wy aex
W= —, U, = Ro—1),
' R ! asnz+?\(bn1+£n3)( 0—1)

e obA
asnz+7\(bn1+en3)( 0—1) ! asnz+?\(bn1+£n3)( 0—1)

(3) Chronic HIV infection equilibrium with active CTL-mediated immune response,

D; = (W, Uy, My, Ny, Pa),
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where

W2 = Abmmy + € (Tmp;j: oo + onply)’ Mz = g’ N2 = %’ P2 = g <}‘Z:2 _1> ’
and U, satisfies the quadratic equation
AU +BU+C =0, (2.4)
where
A=emo(y+A), B=mn(bni+ens)(y+A) +eola(y+A)—mzpl, C=—mp(bng+en). (2.5)

Since A > 0 and C < 0, then B2 —4AC > 0 and there are two distinct real roots of Eq. (2.4). The positive

root is given by
—B+4++/B2—4AC
U, = il .
2A
It follows that W, > 0 and P, > 0 only when % > 1. We define the HIV-specific CTL-mediated
immunity reproduction number as follows:

Aol
Ry = 02
a7t

Therefore, D, exists when 37 > 1. The parameter R; determines whether or not the HIV-specific CTL-
mediated immune response is stimulated.

2.3. Global stability analysis

The global stability of the equilibria will be investigated by constructing Lyapunov functional using the
method presented in [9, 13, 23, 28]. Let us define the function F : (0,00) — [0,00) as F (V) =v—1—Inv.
Denote (W, U, M, N, P) = (W(t), U(t), M(t), N(t), P(t)).

Theorem 2.2. If Ry < 1, then Dy is G.A.S.

Proof. Constructing a Lyapunov functional candidate:

P.

W, (b W, W, (b
o ﬂ1+€ﬂ3)M+ﬂ1 (NI 0 (bnq + ens)

ae £ oac

w
(W, U, M, N, P) =WyF <W> +U+
0

It is seen that, ©y(W, U, M, N,P) > 0 for all W,U, M, N,P > 0, and Oy has a global minimum at Dy. We

calculate dd—?“ along the solutions of model (2.1) as:
d©g W
Tk 1— W (p— oW —1iWN —1moWU —nsWM) +niWN + WU +nsWM — (A +vy) U
Wy (b W, W (b
1 Wolbm +ens) Tj M) AU — aM — uPM) + ”18 0 (oM — eny 4 MWV 011; M) (5pM — 7P
W, AW, (b Wy (b
— <1_0> (p— W) + Wl — (A +v) U + o (bni +ens), | uWo (b +ems)

\%% ae oae

Using Wy = p/«, we obtain

d©, (W —W;)? W {aen, + A (bng + enz)} urtW (bng + ens)
— A —1jUu- P
dt * w +(A+Y) ac (A+v) oae
W —W,;)? W, (b
_ gl 0) A y) (PR —1) U M o (bm +en3)

w oac
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Therefore, % < 0forall W, U, M, N, P > 0 with equality holding when W = W and U = P = 0. The so-
lutions of system (2.1) are confined to Yé) the largest invariant subset of Yo = {(W U, M,N,P): d—@O = 0}

[22]. The set YE) is invariant and contains elements which satisfy W(t) = Wy and U(t) = P(t) = 0. Accord-
ing to the LaSalle’s invariance principle tlirn W(t) =W, and tlirn ut) = tlim P(t) = 0. Then, W(t) =0
—00 —00 —00

and U(t) = P(t) = 0. From the third and fourth equations of system (2.1), we have
M(t) = —aM(t), N(t) =bM(t) —eN(t). (2.6)

Let us define a Lyapunov function as follows:

Qo = ()+2bN()

Therefore, the time derivative of @y along the solutions of system (2.6) can be calculated as follows:

W

&
M(t) + 6N(t)) <0.

Clearly % = 0 when M(t) = N(t) = 0 for all t. Let Ty = { (W, 1, M,N,P) € T( : 42 = 0}. Thus ¥, =

{(W, U,M,N,P) e YE] W=Wy,U=M=N=P= O} = {Dy}. Hence, all solution trajectories approach
by and this means that Dy is G.A.S [22]. O

Lemma 2.3. If R; < 1, then M; < M.
Proof. Let % < 1, then 222 < 1 and hence

arn —B++VB2—4AC an

U < — = _ < — B2 —4AC
Y 2A oo ¢
= ~ = <2
<2Aa7'c—i—7\ch 2Aam+ AoB +4AC—I§2>O.
AC Ao

Using Eq. (2.5), we obtain
4aren,o(y +A)* [aen, + A (b + eng))]
A2
Hence, M1 < M. O

(My —My) > 0.

Theorem 2.4. If Ry <1 < %Ry, then Dy is G.A.S.
Proof. Let us define a function ©; (W, U, M, N, P) as

1% u Wi (b M 1% N Wi (b
o, W1F< >+U1F (>+ 1 ( n1+€ﬂ3)MlF <)+n1 Ny <>+H 1 (b +en)
W, ae € oae

Calculating =3 d@1 as:

de; 1_ Wi
dt

= W)(p oW —miWN —maWU —nzWM)

u
+ (1 — U1> (MWN +mWU +n3sWM — (A +v) U)

W (b M
+w <1_1> (AU — aM — pPM)
ae M

LW (1 - Nl) (bM — eN) +

2.7)

uWj (bng + ens)
oac

S (6PM — 7tP)..
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Collecting terms of Eq. (2.7), we derive

de W. u
Ttlz <1 w1> (p— W) +mWiU — (A +7v) U— (mWN + WU +1nzWM) ul
AW; (bng +¢ AW; (bng + ¢ M; Wi (bng+e
Ay Ut 1 (bni +ens) | AW (b ”3)u—1+ 1 (bm 113)M1
ae ae M
Wi (b1 + ¢ bM N Wy (bng + ¢
s 1 (bm n3)PM1—mW1——1+n1W1N1—H 1 (b +ems)
ae e N oae
Using the equilibrium conditions for Dy, we get
p = oaWi +mWiNy +mWily +nsWiMy,
MW1INy +maWily +msWiMy = (A +v) Uy,
AU bM
oMy, Np=—
a €
In addition,
Wi (bn + AW; (bng +
MWiN; + WM, = 1 ( ni )y, = AW 22 M)y
Then, we obtain
de; W, w,
T <1 W) (W1 — aW) + (M1 W1 N1 +maWilUy +13WiMy) (1 W
WNU, w WMU,
—mWiN —meWiu —nsWiM WiN wiu
1 Wi 1W1N1U n2Wi 1W n3Wi 1WMU+T11 1N +mWilhy
Uum;,
+M3WiM1 — (MiWiN7 +1n3WiMy) UM +mWiNy +3W1My
pWi (bng + ens) MN; ptWy (bng + ens)
PM; —n1WiN WiN; — P .
+ > mwW 1MN+H1 1N1 p— (2.8)
(W —W;)? W, WNU, UM; MN;
= a1 WiNy (4 2 — - -
wo T W wiNiU IGM MGN
W, w Wy WMU;, umy
Wil (2— —1 - 2= WiM, (3— 1 — -
+mW 1< W W1> +m3Wi 1<3 W WiM U U1M>
W (b
| MW (b + ens) (Ml_§>P.
ae o
Therefore, Eq. (2.8) becomes
e, (W —W;)2 Wi WNUp  UM;  MN
=lo_ U Y o WiNg (41—
dt (ot malhy) ===+ mWilNy W wWiNiU - WM MGN 29
W WMU; UMy uWi (bng + eng) ‘
WiM; |3—— — - M;—My) P.
+n3W1q 1< W Wivhu LllM) s (My 2)
Since the arithmetical mean is greater than or equal to the geometrical mean, then
W- WNU M MN WM M
714_ 1 1 u 1 n 1 4 nd % ul u 1 > 3.
W TWiN U UM T MyN T w Twivpu T UM

Thus, the second and third terms of Eq. (2.9) are less than or equal to zero. Using Lemma 2.3 and

since Ry > 1, R < 1 then My < My and % < 0 for all W,U,M,N,P > 0 with equality holding

when W = W;, U = U;, M = Mj, N = N; and P = 0. Let Y} be the largest invariant subset of
Y= {(W U M,N,P): d—el = 0} It can be seen that Y| = {D;} and D, is G.A.S using LaSalle’s invariance
principle. O
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Theorem 2.5. For system (2.1), suppose that Ry > 1, then D, is G.A.S.
Proof. Define a function @,(W, U, M, N, P) as

wW u W, (b1 + eng) < M >
O, =W +Uu 4+ 2L T BN [ ——
2 (W ) 2 (U2> e (a+ puP2) M,

% N W, (b P
erE 2 Nof ()+u 2 ( n1+sn3)P2F <)

N> oe(a+ uPy) Ps
We calculate d®2 as
de, W,
—=1(1- W — N —n,W M
T < W)(p oW —miWN —maWU —nzWM)
u
+ (1 — U2> (1’]1WN +mWU +1n3WM — (A —‘r’Y) u)
(2.10)
W, (bng + eng) M,
22 B (122 ) AU — aM — pPM
e(a+ uP2) M ( ¢ HPM)
mW, N> uW, (bnq + ens) P>
1——2) (bM—¢N 1—-2) (6PM —7P).
+ < N>( eN) + oe (a+ uPp) P (o mP)
Collecting terms of Eq. (2.10), we derive
e, W, U, Uy
- (1 W> (p — W) +1mWol +n3sWoM — (A +v) U —miWN U —nWU; —m3sWM U
AW, (bng + eng) aW; (bng + eng) AW, (bng + enz), Mo
+A+vy)Uy + — M — —=
A+v)U € (a+ uP;) e (a+ uP;) (a~|—uP2) M
aW, (bng + eng) uWa (bng + ens) sz mWs
PM, + bM — bM— + WL N
e (a+ uP;) 2 e (a+ uP;) 2 I3 N M2
urtWa (bng + eng) p uWa (bng + eng) PM erz (bny + en3)
— — ML+ Ps.
oe (a+ uPy) e (a+ uP;) oe (a+ uPy)

Using the equilibrium conditions for D;:

p = aWr + mW2oNy +maWolly +13WaM,,
MWoN2 +mWally +13WoMo = (A4 v) Uy,

T b
AUy = (a+pP)Ma,  Mp = py Ny = ;Mz-
Further,
W, (bng + ¢ AW, (bng + ¢
NWaNa + s WMy — > (bm 113)M2: > (bm ﬂ3)u
13 e (a+ uPs)
Therefore, we obtain
d@z W2 W2
_ 2 _ N 2
a <1 W> (cWp — aW) 4 (N1 W2 N2 +1aWa Uy +13WaMs) <1 W>
WNU, w WMU,
—niW)LN —nmWolly — —nayWH M W>N WwW,u W-oM
mWa 2W2N2U n2Wo 2W2 n2Wo ZWM U+T11 2N2 + M Wolly +-13Wh Vi)
UM, MN,
— (MmW>,N W-rM
(MW2N3z +13WHoMo) LM n VRN

=X T T]1\/\/2]\12

(W—W,)? g W2 WNU; UM MN,
% W WoNoU UbM MpN
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w, W
4+ Wsh U, <2 “wW W> +1n3sWoM, <3 =
(W—Wwy)?
w

W, WMLU, UM,

WoM, (3— 22 — .
T2 2< W WaM,U u2M>

W, WMU, UM,
w  WwW,Mpu UM

W. WNU um MN
— (a+m2lUy) 2 2 2 2)

WoN, (4 22
LM 2< W WoNoU  WbM MoN

Hence, if ?R; > 1, then dT@tZ < 0 for all W, U,M,N,P > 0. Similar to the previous Theorems one can

show that d@2 =0when W =W,, U= Uy, M = M; and N = Ny. The solutions of system (2.1) tend
to Y, the largest invariant subset of Y, = {(W U, M,N,P): d®2 = O} For each element of Y, we have

W(t) = W,, U(t) = Uy, M(t) = My, N(t) = Ny, then M(t) = O and from the third equation of system
(2.1) we have 0 = M(t) = AUy — aM, — uP(t)M,, which gives P(t) = P, for all t. Therefore, Y’Z = {b,}.
Applying LaSalle’s invariance principle we get D; is G.A.S. O

3. Model with saturated infection rates

It is well known that model with saturated infection rates is much more accurate to describe the VIC
and CTC transmissions in case of the high concentration of virus particles, silent HIV-infected cells or
active HIV-infected cells. Thus, in this section we focus on the following system of ordinary differential
equations:

: mWEIN(E) WU  nsW(tM(t)

W(t) =p—aW(t — ,

X pW(ﬁf)lﬁ%»“h mwlomy MY

. MmMW(HEIN(t) 12 U(t)  msWit)M(t

U(t) = —AU(t) —yUu(t),

WZT NG T pum T 1remy oo Y @)
M(t) = AU(t) — aM(t) — wP(IM(t),

N(t) = bM(t) —eN(t),

P(t) = oP(t)M(t) — P(t),

where 3;, i = 1,2,3 are the saturation constants. All other variables and parameters have the same
biological interpretations that described in the previous sections. Similar to the proof of Proposition 2.1
one can easily show that Q defined in (2.2) is positively invariant for system (3.1).

3.1. Equilibria
Let (W, U, M, N, P) be any equilibrium of system (3.1) satisfying the following equations:
- mWN  mpwld WM
O=p—aW— = — — — —, 3.2
POV T BN T80 1+ psM (3:2)
mWN WU = WM

0= 1+p1N  1+pU 1+63M_(7\+Y)U/ (33)
0=AU—aM —uPM, (3.4)
0=bM —eN, (3.5)
0= (oM —m)P. (3.6)

From Eq. (3.6) we have two possibilities P =0 and M =
(i) When P = 0, then from Egs. (3.2), (3.4), and (3.5) we get

- M2 bAn, A3 - -
W= _ _ Nu|, m
o/ [‘H <1+[32U+as+b?\[51u+a+?\[33u> ]

Q\:l

A=
g
=
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Substituting the above values in Eq. (3.3), we get
U (A +BU+ CU+D) =0, (3.7)
where

A =bN (v +]) («B1B2Bs + BaBsny + B1Bsnz + B1Bam3),
B = bAB B [ace (v +A) —m3Apl + AR, B3 [acte (v +A) — bryAp] + bA®B1 B3 (ocy —myp)
+A (v +A) {ab (Bang + Bimy) + ae (Bany + Bana) + bA (Bang + Bima)}+ baBiBsA?],
C = aB, [ean (v +A) —Ap (bng + en3)] + bByA lax (v +A) — p (anp + 1))
+B3A [acxe (v +A) — p (aeny +bnyA)l + a (v +A) [aen, + A (bny + eng)],

W {aenz + A (bng + en3)}
ae (y+A)

D =—d?ac(y+A) —1].

Eq. (3.7) has two solutions U = 0 which gives the HIV-free equilibrium, By = (W), 0,0,0,0), where
Wy = p/«. This case describes the situation of healthy state where the HIV infection is absent. The other
solution of Eq. (3.7) is
AP +BU?+CU+D =0.

Let us define

P() =AW +BU2+CU+D =0.
W laena + A (b + ens)] > 1. Moreover, we have lim P(U) = oo.
ac [y +) L
The intermediate value property of continuous functions implies that there exists U; € (0, 00) such that
P(Uy) = 0. Therefore,

— T]2 b)\T]l )\T]3 — — }\Ul _ b)\ul
Wi — _ _ )yl >0, My=""Ls0, Ny = 0.
1=p/ {‘” <1+62ul*ae+bmlul+a+wgul> 1]> 1= > 1= 7

Clearly, P(0) = D < 0 if and only if

Hence, a chronic HIV infection equilibrium with inactive CTL-mediated immune response, D; = (W, U,
My, Ny, 0) exists when )
W laenp + A (bng + ens)]

> 1.
ae (y+A)

At the equilibrium D; the chronic HIV infection persists while the CTL-mediated immune response is
unstimulated. The basic HIV reproduction number for system (3.1) is defined as:

o _ Wolaens + A (bng + eng))]

R = Ro1 + Roz + Ros,
0 ac [y N 01 02 +Ros
where _ _ _
T WoAbn, n _ W Fon WoAns
N de(y+A) LV N B Ay +A)

Note that since Wy = W), then Ry = 9o, where Ry is given by Eq. (2.3). Therefore, the saturation does
not change the parameter Ry.

(il) When P # 0, the system has a chronic HIV infection equilibrium with active CTL-mediated immune
response, Dy = (W;, Uy, My, Na, P2), where

7 Mo, T3 brm, - T - bt _ a [ Aol,
W = — , M = -, N> = —, P, = — — 1 ,
2=0/ <“+1+[32U2+ﬂ[53+0+b7[[51+80> 276 2T e 2 I
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and U, satisfies the quadratic equation
AU +BU+C =0, (3.8)
where

A = (y+A7) [br® (aB1B2B3 + B2B3my + B1Bamn, + B1B2n3)

+7ec (aB2Ps + Bz + Bany) + bro (Bany + Bimy + aB1By) + e0” (aPy + 1)),
B = 7B [oc (v +A) —mzp] (b7 + €0) + by [(v + A) (73 + o) —1pp0]

+b72 [Bany (Y +A) — B2p (B3ny + Bins)] — 7tBop0 (bng + emg)

+0 (Y +A) [t (b + eng) + xeol — en,p0?,
C = —mp [bre (Bsny + Bina) + 0 (bny + eng)] .

Since A > 0 and C < 0, then B2 —4AC > 0 and there are two distinct real roots of Eq. (3.8). The positive
root is given by
—B+vB2—4AC

2A

oll,

U, =

_ _ A
It follows that W, > 0 and P, > 0 only when

immunity reproduction number as follows:

> 1. We define the HIV specific CTL-mediated

_ Aol
Ry = 202
a7t

Therefore, D, exists when R > 1. The parameter fR; determines whether or not the HIV-specific CTL-
mediated immune response is stimulated.

3.2. Global stability analysis

The global stability of the equilibria will be investigated by constructing Lyapunov functional using
the method presented in Subsection 2.3.
Theorem 3.1. If Ry < 1, then Dy is G.A.S.

Proof. Constructing a Lyapunov function candidate:

W, A W, (b
o(bn1+€ns)M+n1WoN+u 0 (bnq + ens)
ae £ oae

P.

- - w
®0(W/u/ M,N,P) :WOF (W) +u+
0

We calculate dd—(?co as:

1+BN 1+pU 1+ psM

d©y _< Wo> (p_aw_ mWN  mWu  n3WM ) mWN  mWu
dt

1— 2
w 1+pN ' 1+pU

WM W (bn1 + en3)

mWo
— — (A u AU —aM — uPM bM — eN
11 BsM A+y)U+ " ( a uPM) + . ( eN)
W, (b
. MWo [bng + ens) (6PM. — 7tP)
oae
Wo mWoN — mWou  nsWoM
—(1-29) (p—aw) + + —(A+y)U
< w>(p MW T BN T Tipu 1rpM Y

P.

A A A _ W (b
4+ WMo (bzl +ems) - Wo (bn; +ens) n ml/\/obM — W — HWo (Gzi + €ns)
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After some calculation and using Wy = p/a, we get

d6 _ (X(W—V_Vo) BimiWo, 2 BamWo. .  BansWo

dt W 1+ B1N 1+ BU _1+f53M
W, A(b W, (b
L (A+y) olaemy +A(bm +ens)y ], wWo (b +ens)
ae(A+7v) oae (39)
_ 7O((W*WO)2 . B1mWo N2 62ﬂ2W0u2 B BsnsWo
w 1+B4N 1+ B2U 1+ BsM
urtWo (bny + en3)

+A+y) (Fo—1)U— P,

oae

Therefore, & dt < 0 forall W,U,M,N,P > 0. Let Vg = {(W U,M,N,P): d—®0 = 0} and YE) be the largest

invariant subset of Y. The solutions of system (3.1) are converged to YO It is clear from Eq. (3.9) that

d®° =0 when W =W, and U= M = N = P = 0. Thus, LaSalle’s invariance principle implies that Dy is
G A S.

O
Theorem 3.2. Suppose that Ry < 1 < Ry, then Dy is G.A.S.
Proof. Let us define a function ©;(W, U, M, N, P) a
- _ w _ u Wi [bnl (1 + 637\_/[1) + en3 (1 + BlNl)} _ ( M )
0 = F | = +WF =)+ — = MiF | =
o <W1> ! <U1> ae (1+ B1N1) (1+ BsMy) A
W N < N ) pWi [brg (14 B3My) + ens (14 B1Ny)]
e(1+piNy) ' \Ny oae (14 B1Ny) (1+ p3My)
Calculating “g;* as
d@l < Wl) < 111WN 1’]2WU 1’]3WM )
o (1-22 ) (p—aw— - -
dt w 1+B:N 1+pBU 1+p33M
U\ f mWN | mWU | sWM
+<1 u)<1+[51N T+ poU T+ paM U‘H)U)
Wi [bng (14 BsMy) +ens (1+ B1Ng)] ( Ml)
_ _ 1— 221} AU — aM — uPM) .
ac (1+ B1Ny) (1+ BsMy) M " (3.10)

W ( N
I3 (1+61N1) N
HW1 [bn1 (14 B3My) + ens (1+ B1Nq)]

) (bM —eN)

(o0PM — 7tP) .
oae (l + [31N1) (1 + B3M1)
Collecting terms of Eq. (3.10), we derive
do Wi mWIN - mWwil  nisWiM mWN U,
(1) (p—aw C(AEy)U— =1
dt ( w)(p JPTTBN T 14U T 1apm AMTYUT TN
wu u wM U _ AW (b (T4 B3My) +ens (1+ BN
M2 U n3 Wy s 1 [bm ( 53_1) 113(_ B1N1)]
T+BU U 1+BsM U ae (1+ B1Np) (1+ BaMy)
~ mWIML AW, [bn1 (14 B3My) +ens (14 B1Ny) ] M;
14+ psMy ae (1+ﬁ1N1) (1—|—[53M1) M

Wi [bng (14 B3sMy) 4 ens (1+ B1Nq)] Wi [bng (14 B3My) +ens (14 B1Ny)]
e (14 B1Ny) (1+B3My) ae (1+B1N1) (14 BsMy)

C mWIN WM Ny nWiNy pWg [bnl (14 B3My) +enz (14 B1Ny)]
1+ 31Ny ¢ (1+[51N1) N 1+[31N1 oac (1+[31N1) (1+63M1)

T\_/ll—l-

PM;
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Using the equilibrium conditions for D;, we get

mVV1N_1 ﬂzwlt_ll 13Wg T\_fll
1+ pB1N; 1+ BoUy 1+B3M1,
111\/‘/1N_1 ﬂzwltﬁ 113\/_\/17\211 — (A+v) Uy,
1+ B1Ny 1+ BoU4 14+ B3My
AU, - bM;

= Ml/ Nl = .
a £

p=oW;+

In addition,
mWiNy  maWiMy - W [bng (14 B3My) +ens (14 B1Ny)]
1+B1Ny  1+BsM; e (1+B1Ny) (14 BsMy) !
_ AW, [bng (14 B3My) +ens (1+ B1Ny)] a
ae (1+B1N7) (14 BsMy)

Then, we obtain
a6, \]
dt

_ Wi N ATl WM %
1) (@ —ew) + (REER B eee) (1w )
mWiNy N (1+B81N1)  mpWily U (1+Boly) | nsWiMy M (14 BsMy)
14BNy Ny (1+B1N) 148Uy Uy (T4 B2W) 1+ B3Mg My (1+B3M)
mWill; U ;WiNg WNU; (1T+B1Ny)  mpWly W (1+ B2lly)
14U Uy T4 BINy WINGU (T4 B1N) 1+ Boly Wy (1+ Bol)

~ msWiMy WM, (14 B3M1) | mWiN, N Wil n nWiMy  nsWiMy; M
14+ BzM1 WiM U (1 + B3M) 14+B1N7  1+pBU;  1+B3M; 1+ B3M; My

~ mWiNg UMy msWiMp UM g WING - isWiMy - ;i WiNg N

1+B1N1 HlM_lJng,l\_/ll UlM 1+B1N1 1+B3M1 _1+B1N1 Nl

mWiNy MN; - myWiNp W [bng (T4 B3My) +ens (1+ B1Ny)] (]\7[1 _ E) p

1+ BNy MUN T 1+ BNy ae (1+B1Ny) (1+B3My)

(W—-Wp)2  mWiN; [N(1+B81N;) N MWl | U (1+ B2Uy)

- w 1+[31N1 B 1+62U1

Ny (1+p1N) Ny

1’]1W1N1

u
Uy (14 pU) Uy

Wi WNUO (T+B1N) UMy MNg

3sWiM;y M(1+53M1)_M
1+B3My | My (14 BsM) My

1+ B]Nl
W1 W(1+[32L_ll)

+

W WNU(1T+pBN) U4tM MyN

umy

mWilly | W, nsWiMy 3_ Wi WM (1+BsMy)
1+ BoUy W W (14 B,U) 1+ BsMy

uWi [ong (14 B3My) +enz (1+B1Ny)] (7\_41 B g) p

ae (14 B1Ny) (1+ p3My) o

Adding and subtracting terms of above equation, we derive

de; (W—w;)? 1 WiN; mW; 13WiM;y
—_— = — + N = Ay = Aj =

dt w 1+ BNy 1+ B2y 1+ BsMy

mWiN; Wi WNU (T+B1Ng) UMy MN; 14BN

W WM U (1+BsM)

1+61N1 _W_ V_V1N1U(1+[51N) UlM ]\_/llN 1—|—B1N1

Wy W (1+BU) 148U

W W (1+pU)  1+Bo0

Wy My [4 Wi WMOL (1+B3M1) UMy 1—&—(331\/[]

1+83My | W WiMU(1+B3M)  hM 1+ BsMy

uWi (b (14 B3My) +eng (1+B1Nq)] / T
T e (1 i) (15 BsMy) (=3)7

112W1U1
1+ (5201

M

(3.11)
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where
A NO+BN) N TN B (N—N;)?
TN RN N 1+ BNt (14 BN) (1+B1Ny) Ny
Uty U 1epl_ Pa(U-W)
WU O 1+ B2y (1+B2W) (14 B2U4) Uy
Ao MO4BM) M 1EpM Bs (M —M,)?
TT M1+ BM) My 1+ BsMy (1+BsM) (1+ BsMy1) My
Therefore, Eq. (3.11) becomes
e, (W —Wy)? _ B1m Wi (N _Nl)z
dt w (1+B1N) (1+[31N1)2
BamaWs (U — 1_11)2 _ BansWq (M — 7\7[1)2

S BW) (14 Bal)? (14 BsM) (1+ By )

i WiNy 5_ Wi WNU (14 B1Nq) S UM; MN; T4+ B4N

1+B1N1 1% W1N1U(1+B1N) U]M MlN 1+[31N1 (3.12)
Wil 3 Wi W(1+B2U1)  1+poU

1+ 62U1 w W, (1+pBoU) 1 + (52111

w W1M1u (1+[53M) l]lM 1+B3M1

N PLWI [bnl (1 -+ [33]\_/[1) + ens (1 + Blﬂl)]
ae (14 B1N1) (14 BsMy)

nsWiM; 4 W, wMl, (14 B3My) UMy 14+BsM
1—1-[?)3]\7[1

(M; —M,) P

Since the arithmetical mean is greater than or equal to the geometrical mean, then

W | WNU (1+p1N7)  UM;  MN; N L+BIN s
W WNJU(T+pN) TIhM - MUN - 1T+ pN; —
Wy W (1+BU1)  1+4poU -
w W, (1—1—[321,1) 1+ BoU, -
Wy | WMU (1+B5M) | UM, L 1+BsM
W WMU(+BsM) UM 14 B3M; ~

Thus, the fifth, sixth and seventh terms of Eq. (3.12) are less than or equal to zero. We note that if
M, < 1, then D, does not exist since P, = m (R1—1) < 0. This implies that, P(t) = ¢(M—Z)P < 0

for all P > 0. Thus, M; < £ = M;. Therefore, dd—(?l < 0 for all W,U,M,N,P > 0 with equality

holding when W = Wj, U = U;, M = M3, N = N;j and P = 0. Let Y] be the largest invariant subset
of VY1 = {(W U, M,N,P): d—gl = 0} It can be seen that Y| = {P;} and D, is G.A.S using LaSalle’s

invariance principle. O
Theorem 3.3. For system (3.1), suppose that Ry > 1, then D5 is G.A.S.
Proof. Define a function (W, U, M, N, P) as

L W u W; [bng (14 B3Ma) +ens (14 B1N2)] M
Oz = W2k (w) s (u> e (a P (15 PiNg) (11 paMa) ( >
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mWe g r (N) N uWs [bny (1+ BsMz) + ens (14 B1N2)] P ( P >
€ (1+B1N2) 2 NQ (of 3 (a—i—ul_’z) (1+B1N2) (1—1—[33]\_/12) 2 P> '

We calculate % as:

d@z . (1_\/‘/2)( W — T]lWN . T]zWU . T]3WM)
a P T+pN 148U 1+ psM

W

U, nWN mwu  nsWM >
(122 n + —(A+y)U
( u><1+B1N 1+ poU 1+ psM (A+y)

W; [bny (1+ BasMz) + ens (1+ B1N2)] ( Mz)
— = = 1—— | (AU—aM — uPM
e (a+uP2) (1+ B1N2) (1+ BsMy) A HPM) (3.13)
1 Wa Nz)
b2 (2 (pM —eN
€(1+51N2)< N ( N
e o, ) e 0B ()
oe (a4 puP2) (14 B1N2) (1+B3Mz) P
Collecting terms of Eq. (3.13), we derive
de; _& B mWaN - Wi n3WoM B ~ mWN Uy
a <1 W) =W+ N T 1rgu T irgm MY Y TN
( ( AW, by (1 M 1 N
WU U, WM E+(7\+Y)U2+ 5 [bn (1+ B3Ma) +enz (1+ B1N2)]

1+pUU 1+BsM U e (a+uPy) (1+B1N2) (14 B3M2)
_aWs [om (14 BsMa) +ens (1+B1No)]  AW4 [bmy (14 BsMa) +ens (1+B1N2)] - My
e (a+uPy) (14 B1N2) (1+ B3My) e (a+uPy) (14 B1N2) (1+ B3My) M
aW, [bng (14 BsMy) +enz (14 B1N2)] _ W, [bng (14 B3Mz) + enz (1+ B1Ny)] PR
e(at+uPy) (1+B1Ny) (1+BsMa) - e (a+uPy) (1+B1N2) (1+BsMy) ?
mWoM - g WaN - WM Ny miWa N,
8(1+[31N2) 1+ BN, 8(1+61N2) N 1+ BN,
W, [bn1 (14 B3My) +enz (14 B1N2) ] W [bn1 (14 B3My) +enz (14 B1N2)] p-M
oe (a+uPy) (1+ B1N2) (1+ B3My) e(a+uPy) (1+PBNy) (1+BsMy)  °
utWs [bng (14 BsMa) + enz (14 B1N2) ] -
oe (a+pP2) (14 B1N2) (1+ B3My)

Using the equilibrium conditions for D;:
ﬂlszz ﬂzwzuz ﬂ3W27\712
1+ BNy 1+BUy 1+ BsMy’
T]1W2N2 112W2U2 113W27\_/l2 _
1+ BNy 148U 1+ B3M;

_ o - _ T - b -
AU, = (a+ |,LP2) M,, M, = g, Ny = EMZ'

p=aW, +

Further,

mWaN, nsWoM, _ W, [b1’]1 (1 + B3M2) + ens (1 + 61N2)] -
14BNz 1+B3Mp e (1+ B1N2) (14 BsMy)
AW, [bnyg (14 B3Ma) 4 ens (14 B1N2)] a
 e(a+pPy) (14 B1N2) (1+ BsM,)

2

2.
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Therefore, we obtain
doe W, _ W>N Wor Ul WoM W
= (1) e (PR P ) ()
mWaNy N (1481N2)  mWallp U (1+B2Uz)  nzWaMy M (1+ B3My)
T+B1N2 Np (14 B1N) 1+ BoUy Up (14 B2U) 14 B3Ma My (14 p3M)
mWall, U miWoNy WNU, (14 B1N2)  maWally W (1+ BoUy)
S 1+pala Uy 14BNy WoNoU (14 BiN) 1+ Bally W (1+ Boll)
~ mWaMy WM, (14 B3M2)  mWaNp | mpWall, | msWaM,  maWaM, M
1+ B3My; WoMLU (1 + B3M) 1+pB1N2  14+poU  14+p3My 14 p3Moy My
1 WaN, UM, 3V_V27\_{lz L_”\_/lz 111\/_\/21?2 113\/_\/27\_{[2 1 W2N, N
1+61N2 UzM 1+ pBsMp UpM 14 B1N>p 1+ pBsMy 1+(51N2 Nz
~_ mWaN, MN, - m;;WaN,
14+ B1N> MoN 14 31N,
(W—=Wy)2  mWoNy [N(1+B1Np) N
w T+B1N2 [ N2 (1+B1N)  No

T]3V_V2M2 [M (1 + ‘331\_/[2) B M

mWall, |U(1+B0) U
1+B2Uy | Up (T+B2U) Uy

T'|1V_V2N2 B % WNUz (1 + Blmz) UM2 MNZ

1+[51N2 w WoN,U (14 B1N) UzM M,N

T]3W27\_/l2 [3 W2 WMUZ (1 + BgMz) UMZ

1+ [337\_/lz W WoMoU (1 4 BsM) B U,M |-

1+ BsMa | My (1+BsM) My
WZ (1+[52112)

W W, (1+B,U)

T]ZWZHZ

R
1+ BoUy

Adding and subtracting terms of above equation, we derive

3 2 o o o
dOy (X(W W) A mW2N; A mWsl, A NsW2M;

dt w 1+ BN, °1+ Bally 1+ psM,

n mWaNy | W, WNU, (14 B1Ny) UM, MN; 143N

1—|—B1N2 w WQN2U(1+B]_N) UQM MZN 1+ [31N2
o _ _ 3.14

L Wl W, W(1+4Bp) 14U (.14)
1+ B2Us W W, (14 B2U)  1+B2Us
n3W2]\_/[2 4 & B WMHZ (1 + B3M2) U.Mz 1+ pBsM
1+ 63]\7[2 w Wz]\_/lzu (1+B3M) UQM 1+ 637\_/[2

where
A (1+51N2) N 1 1+pIN B1 (N—Nz)z
TN+ BIN) N 1+ 31Nz (1+B1N) (1+B1N2) Ny
_U(i+Blla) U 14U By (U—Ty)?
ST+ W 14 B> (1+ B2U) (14 B2ly) Uy’
— 2
A = (1+[53M2) M_1+1+[33M _ ﬁ3(M—M2)
Mz (1+BsM) M, 1+ BsM2 (14 BsM) (1+ BsMz) M
Therefore, Eq. (3.14) becomes
- - - < \2 ~ - \2 - — N2
dO, _(X(W—Wz)2 _ BmWa (N - N>) C BmWa (U-T)”  BamsWa (M —My)
= o \2 -2 — 2
dt w (14+B1N) (1+B1N2)" (14 BoU) (14 B2la)” (14 B3M) (1+ B3My)

mWoN, | W WNU, (1481N2) UM, MN; 14BN

1—|—[31N2 w V_VzNzU(l—l-f)lN) UZM MzN 1+[31N2
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In the same way of the proof of Theorem 2.5, we get that D, is G.A.S. O

4. Numerical simulations

In this section, we perform some numerical simulations to clarify the results of Theorems 2.2-2.5. We
investigate the effects of CTC transmission and saturation on the dynamics.

4.1. Stability of the equilibria
In this subsection, we choose three different initial conditions for model (2.1) as follows:

IV-1: (W(0), U(0), M(0), N(0), P(0)) = (600,8,1,3,2);
IV-2: (W(0),U(0), M(0),N(0),P(0)) = (450,12,2,5,4);
IV-3: (W(0),U(0), M(0),N(0), P(0)) = (350,20,3,6,6).

We consider the following parameters: p =10, « =0.01, a =05,y =02,A=02,b =5 1=0.1, n =0.2
and ¢ = 2. Choosing selected values of 11, 12, N3 and o under the above initial conditions leads to the
following cases.

Stability of Dy. 11 = 0.00005, 2 = 0.00006, 13 = 0.00007 and o = 0.01. For this set of parameters, we have
Mo = 0.35 < 1. Figure 1 illustrates that the solution trajectories initiating with IV-1, IV2 and IV3 reach the
equilibrium Dy = (1000, 0,0, 0,0). This ensures that Dy is G.A.S according to the outcome of Theorem 2.2.
As a result, the HIV particles can be cleared.

Stability of D;. n; = 0.0005, n; = 0.0006, n3 = 0.0007 and o = 0.1. With such choice we get 531 = 0.76 <
1 < 345 = Ry. It is clear that, the equilibrium point D; exists with D; = (289.86,17.75,7.10,17.75,0).
Figure 1 shows that the solution trajectories initiating with IV-1, IV2 and IV3 tend to D; and this validates
Theorem 2.4. This case represents the persistence of the HIV infection but with unstimulated CTL-
mediated immune response.

Stability of D;. 7 = 0.0005, n2 = 0.0006, 3 = 0.0007 and o = 0.01. Then, we calculate Rp = 3.45 > 1 and
M1 = 3.76 > 1. The numerical results plotted in Figure 1 show that D, = (523.72,11.91,1.00, 2.50,9.41) is
G.A.S. In this case, a chronic HIV infection with active CTL-mediated is reached.

4.2. Effect of CTC transmission

In this subsection, we investigate the influence of different modes of transmission on the HIV dynamics
(2.1). We select the parameter o = 0.03 with IV-1 and study the following cases.

Case (1): HIV dynamics with VTC, silent HIV-infected CTC and active HIV-infected CTC transmissions:
In this case, we choose the parameters 1; = 0.0005, 2 = 0.0006 and 13 = 0.0007. We can see from Figure
2 that the trajectories of the system tend to the equilibrium D, = (389.82,15.25,3.33, 8.33,2.08).

Case (2): HIV dynamics with both VTC and active HIV-infected CTC transmissions: In this case, we select

the values 1 = 0.0005, n2 = 0 and n3 = 0.0007. From Figure 2, we observe that the solution trajectories
converge to the equilibrium b, = (606.06,9.85,3.33,8.33,0.45).

Case (3): HIV dynamics with only VTC transmission: Here we consider the parameters n; = 0.0005 and
M2 =3 = 0. Figure 2 shows that the solutions of the system approach the equilibrium D; = (800,5,2,5,0).

From the above observations we note that the presence of silent HIV-infected CTC and/or active HIV-
infected CTC transmissions increases the infection rate. As a result, the concentration of the susceptible
cells is decreased while the concentrations of silent/active HIV-infected cells, free HIV particles and HIV-
specific CTLs are increased.
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Figure 1: The behavior of solution trajectories of system (2.1).

4.3. Effect of saturation infection
In this subsection, we study the effect of different values of saturation parameters on the HIV dynamics
(3.1). We take the values p = 10, o« = 0.01, n; = 0.0005, n» = 0.0006, n3 = 0.0007, a = 0.5,y =02, A =0.2,
b=5nm=01,u=02 ¢ =2, 0 =0.05 with initial condition:
IV-4: (W(0),U(0), M(0),N(0),P(0)) = (600,10,2,5,2).
We investigate the following scenarios:
Set 1. B1 = B2 = P3 =0, Ry = 2.73943, b, = (452.12,13.70,2.,5.,4.35) ;
Set 2. 31 =0.01, B = 0.02, B3 = 0.03, Ry = 2.44956, b, = (510.09,12.25,2.,5.,3.62);
Set3. f; = 0.1, o = 0.2, B3 = 0.3, R; = 1.51545, D, = (696.91,7.58,2.,5.,1.29);
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Set4. B1 =1, B2 =2, 3 =3, Ry = 0.394238, Dy = (935.25,1.62,0.65,1.62,0);
Set 5. 31 =10, p2 = 20, B3 = 30, Ry = 0.047932, Dy = (992.93,0.18,0.07,0.18,0).

We can see that the basic HIV reproduction number has a fixed value Ry = 3.45 in all above scenarios
which indicates to the fact that the saturation parameters has no effect on the stability of equilibria.
However, Figure 3 illustrates the influence of i, i = 1,2,3 on the solution trajectories of system (3.1).
We observe that as f; is increased, the concentration of susceptible CD4™ T cells is increased while the
concentrations of silent/active HIV-infected cells, free HIV particles and HIV-specific CTLs are decreased
as illustrated in Figure 3.
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Figure 2: The evolution of HIV dynamics (2.1) under different modes of transmission.
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Figure 3: The influence of saturation parameters 3;, i = 1,2,3 on the evolution of HIV dynamics (3.1).

5. Conclusion

In this paper, we investigated two HIV dynamics models with CTL-mediated immunity. The models
involved the concentrations of susceptible CDATT cells, silent HIV-infected cells, active HIV-infected cells,
free HIV particles and HIV-specific CTLs. We incorporated both VIC and CTC transmissions. The
CTC infection is due to the contact between susceptible CD4" T cells and silent or active HIV-infected
cells. In the second model we considered a saturated incidence rate. For each model we showed that its
solutions are nonnegative and bounded. We calculated the three equilibria of the model, the infection-free
equilibrium, Dy, the chronic HIV infection equilibrium with inactive CTL-mediated immune response,
D;, and the chronic HIV infection equilibrium with active CTL-mediated immune response, D,. We
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derived two threshold parameters, 9R¢ (the basic HIV reproduction number) and 93 (the HIV specific
CTL-mediated immunity reproduction number) which determine the existence and global stability of the
three equilibria. By means of Lyapunov functions we proved the global asymptotic stability of the three
equilibria. To illustrate the theoretical results, we performed some numerical simulations. We showed that
the inclusion of CTC transmission decreases the concentration of susceptible CD4™ T cells and increases
the concentrations of infected cells and free HIV particles.

Our proposed models (2.1) and (3.1) can be extended by incorporating age structure of the infected
cells or diffusion [3, 4, 10, 33]. Looking ahead to further developments an interesting perspective would
be introducing a stochastic internal variable, as in [20], to account for virus mutations which generally
develops by a stochastic dynamics. Moreover, since the exact analytical solutions of our proposed HIV dy-
namics models are not known, then we can only obtain approximate solutions of these models. Therefore,
the discrete-time versions of the models need to be investigated (see, e.g., [11, 12, 40]). These extensions,
indeed, require more investigations, therefore we leave it for future works.
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