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Abstract
In this paper, new group iterative schemes are developed for the numerical solution of two-dimensional anomalous frac-

tional sub-diffusion equation subject to specific initial and Dirichlet boundary conditions. The new group relaxation iterative
schemes are derived from the combination of standard and rotated (skewed) five-point modified implicit finite difference ap-
proximations. The results derived from the conducted numerical experiments show that fractional explicit de-coupled group
(FEDG) iterative method has a significantly less computational cost in terms of CPU-timings as compared to the other iterative
schemes, without threatening compromising accuracies.
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1. Introduction

In recent years, there has been a growing interest in the field of fractional differential equations (FDEs).
FDEs have fascinated growing significance because they have several applications in different fields of sci-
ence and engineering [19, 27]. Many types of FDEs cannot be solved analytically, therefore a number of
mathematical methods, techniques, and approximations have been proposed for solving partial differen-
tial equation of fractional order due to their importance in representing the various physical problems
[1, 2, 7, 8, 20, 21]. However, the study of exact analytic solution of some types FDEs are also present in
literature [9, 18, 24, 25]. Fractional anomalous diffusion equations are a special type of fractional sub-
diffusion equation and are a class of important FDEs. Several mathematicians have solved such type
of research problems and their modified forms by different techniques. Li and Wang [22] suggested an
improved efficient difference method for modified anomalous sub-diffusion equation with a nonlinear
source term. They utilized shifted Grunwald-Letnikov fractional derivative instead of Riemann-Liouville
derivative and second-order interpolation formula for nonlinear source term. Zhuang et al. [28] proposed
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new solution and analytic techniques for anomalous sub-diffusion equation by using implicit difference
scheme and they proved the stability and convergence by energy method. Sokolov and Klafter [26] pro-
posed a model that differentiate procedure to become less anomalous as time growth by the addition of a
secondary time fractional derivative acting on a diffusion operator. In this paper, we assume such type of
model and will applying our grouping strategies. Consider the following two-dimensional time-fractional
anomalous fractional sub-diffusion equation together withe source term,

∂u(x,y, t)
∂t

=
∂1−α

∂t1−α
[
∂2u(x,y, t)

∂x2 +
∂2u(x,y, t)

∂y2 ] + f(x,y, t), (1.1)

where, 0 < α < 1 and ∂1−α

∂t1−α is the the Riemann-Liouville fractional derivatives of fractional order 1 − α
with the following initial and boundary conditions,

u(x,y, 0) = g(x,y), u(0,y, t) = g1(y, t),u(L,y, t) = g2(y, t), u(x, 0, t) = g3(x, t),u(x,L, t) = g4(x, t),

in the region Ω = {(x,y, t)/ 0 < x,y < L, 0 6 t 6 T }.
The Riemann-Liouville fractional derivatives are defined as follows,

∂1−α

∂t1−α
u(x,y, t) =

1
Γ(α)

∂

∂t

∫t
0

u(x,y, ξ)
(t− ξ)1−αdξ =

∂

∂t
Iα0 u(x,y, t).

Here

Iα0 u(x,y, t) =
1
Γ(α)

∫t
0

u(x,y, ξ)
(t− ξ)1−αdξ

is the Riemann-Liouville integral of fractional order α. In this paper, we use the following two Lemmas.

Lemma 1.1. If u(t) ∈ C1[0, T ], then the Riemann-Liouville fractional integral of order 0 < γ < 1 is defined as
follows,

I
γ
0 u(tk) =

τγ

Γ(γ+ 1)

k−1∑
s=0

bγsu(tk−s) + R
γ
k ,

where, bγs = (s+ 1)γ − sγ, s = 0, 1, 2 · · ·k, |R
γ
k | 6 Cτb

γ
k .

Lemma 1.2. The coefficients bγk in Lemma 1, satisfy the following properties

(a) bγ0 = 1, bγk > 0, ∀ k = 0, 1, 2, . . .;
(b) bγk−1 > b

γ
k , ∀ k = 0, 1, 2, . . .;

(c) For any positive constant C > 0 such that τ 6 Cbγkτ
γ, ∀ k = 0, 1, 2, . . .;

(d)
∑k
s=0 b

γ
s τ
γ = (k+ 1)γ 6 Tγ, ∀ 0 < γ < 1.

The discretization of our proposed research problem in terms of partial differential equation by uti-
lizing the finite difference approximations, generates a sparse system of simultaneous linear equations.
For the solution of this linear system, iterative methods are very suitable. In the literature, many iterative
methods have been suggested by various authors for solving the linear system. Moreover, several studies
on iterative methods have been proposed to speed up the convergence rate in solving sparse linear sys-
tem. One of them is the development of group iterative methods that possess the capabilities to reduce
the convergence timings of the iterative process.

Since 1980s, the group iterative schemes in combination with the finite difference have been utilized for
the numerical solution of several types of two-dimensional PDEs in literature. Evans (1985) [14] utilized
Explicit Group (EG) iterative method by designing 4-point block iterative scheme for 2D Poisson problem.
Based on this ideology, a series of EG iterative schemes have extensively been investigated by Evans and
Yousif (1986) [17], Evans and Sahimi (1988) [16], Evans and Hasan (2003) [15] and Kew and Ali (2015) [23]
for the numerical solution of various types of PDEs. Since these grouping strategies on integer derivative
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for PDEs work well, therefore the efforts are now being made to apply these techniques on FDEs. In this
case, the preliminary work has been done by Balasim and Ali (2016-17) [10–12] on two-dimensional time-
fractional diffusion and advection-diffusion PDEs, by utilizing Caputo’s fractional derivative, where the
time-fractional derivative of order α lies between 0 and 1. In addition, the most recent work by Ali and Ali
(2018-19) [3–5] on two-dimensional time-fractional wave, damped wave and hyperbolic telegraph PDEs,
by using the same definition of Caputo’s fractional derivative, where the order of time-fractional derivative
α ∈ (1, 2). In this paper, we step forward towards the numerical solution of more complicated 2D time-
fractional anomalous sub-diffusion equation by applying by Riemann-Liouville fractional derivative and
grouping methods, and results were found according to our expectation.

The origination of the paper will be as follows. We will discretize our proposed problem by applying
the implicit finite difference approximation and derive FISP iterative scheme in Section 2. In Section
3, FEG iterative scheme will be derived by applying a group of 4-points in the solution domain. FIRP
iterative scheme will be constructed by rotating the x− y axis clockwise through an angle of 45o to the
standard mesh in Section 4. In Section 5, FEDG iterative scheme will be established based on FIRP iterative
scheme. The numerical experiments and conclusion will be present in Sections 6 and 7, respectively.

2. Fractional implicit standard point (FISP) iterative scheme

Discretize the solution domain by defining the same step sizes h in both x and y directions, i.e.,
∆x = ∆y = h as h = L

n and τ = T
l , for the positive integers n and l, for the space and time respectively.

The grid points for the space interval [0, 1] are designated as xi = ih and yi = jh, i, j = 0, 1, 2, . . . ,n, and
grid points for time are chosen as tk = kτ,k = 0, 1, 2, . . . , l.

We utilize Riemann-Liouville derivative for time-fractional case and implicit difference approximation
for second-order space derivatives on the right side, while forward difference approximation with respect
to time on left side of Eq. (1.1). Riemann-Liouville integral operator defined in Lemma (1.1) will auto-
matically be utilized when we use Riemann-Liouville fractional derivative for solving the 2D anomalous
fractional sub-diffusion equation.

In this way, the following fractional implicit standard point (FISP) iterative scheme at the point
(xi,yj, tk+1) is obtained,

uk+1
i,j − uki,j = r1

k−1∑
s=0

b
(α)
s δ2

x(u
k−s+1
i,j − uk−si,j ) + r2

k−1∑
s=0

b
(α)
s δ2

y(u
k−s+1
i,j − uk−si,j ) + τfk+1

i,j + Rαi,j,k

for i, j = 1, 2, 3, . . . ,n− 1, k = 0, 1, 2, 3, . . . , l.
Here, the operators δ2

x and δ2
y are defined as,

δ2
xu
k+1
i,j = uk+1

i−1,j − 2uk+1
i,j + uk+1

i+1,j and δ2
yu
k+1
i,j = uk+1

i,j−1 − 2uk+1
i,j + uk+1

i,j+1.

Moreover, r1 = ταk1
(∆x)2Γ(1+α) , r2 = ταk2

(∆y)2Γ(1+α) ,

|Rαi,j,k| 6 Cb
(α)
k τα(τ+ τ(∆x)2).

An alternative form of the above equation is

uk+1
i,j = 1/(1 − r1δ

2
x − r2δ

2
y)[{1 + r1(b

(α)
1 − 1)δ2

x + r2(b
(α)
1 − 1)δ2

y}u
k
i,j

− {b
(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j +

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j + τfk+1

i,j ].
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Applying the operators δ2
x and δ2

y on uk+1
i,j and uki,j, we get the following expression,

(1 + 2r1 + 2r2)u
k+1
i,j = (r1)(u

k+1
i−1,j + u

k+1
i+1,j) + (r2)(u

k+1
i,j−1 + u

k+1
i,j+1)

+ {r1(b
(α)
1 − 1)}(uki−1,j + u

k
i+1,j) + {r2(b

(α)
1 − 1)}(uki,j−1 + u

k
i,j+1)

+ {1 − 2r1(b
(α)
1 − 1) − 2r2(b

(α)
1 − 1)}uki,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j + τfk+1

i,j ],

(2.1)

for all i, j = 1, 2, 3, . . . ,n− 1, k = 0, 1, 2, 3, . . . , l with initial and boundary conditions,

u0
i,j = g(xi,yj), uk0,j = g1(yj, tk),ukL,j = g2(yj, tk), uki,0 = g3(xi, tk),uki,L = g4(xi, tk),

0 < x,y < L, 0 6 t 6 T .

3. Fractional explicit group (FEG) iterative scheme

The fractional explicit group (FEG) iterative scheme can be formulated by applying Eq. (2.1) on a
group of four points of the solution domain. This will result in a 4× 4 system of equations as follows:

k1 k2 0 k3
k2 k1 k3 0
0 k3 k1 k2
k3 0 k2 k1




uk+1
i,j

uk+1
i+1,j

uk+1
i+1,j+1
uk+1
i,j+1

 =


(r1)u

k+1
i−1,j + (r2)u

k+1
i,j−1 + T1

(r1)u
k+1
i+2,j + (r2)u

k+1
i+1,j−1 + T2

(r1)u
k+1
i+2,j+1 + (r2)u

k+1
i+1,j+2 + T3

(r1)u
k+1
i−1,j+1 + (r2)u

k+1
i,j+2 + T4

 , (3.1)

where, k1 = 1 + 2r1 + 2r2, k2 = −r1, k3 = −r2,

T1 = {r1(b
(α)
1 − 1)}(uki−1,j + u

k
i+1,j) + {r2(b

(α)
1 − 1)}(uki,j−1 + u

k
i,j+1)

+ {1 − 2r1(b
(α)
1 − 1) − 2r2(b

(α)
1 − 1)}uki,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j + τfk+1

i,j ,

T2 = {r1(b
(α)
1 − 1)}(uki,j + u

k
i+2,j) + {r2(b

(α)
1 − 1)}(uki+1,j−1 + u

k
i+1,j+1)

+ {1 − 2r1(b
(α)
1 − 1) − 2r2(b

(α)
1 − 1)}uki+1,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i+1,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i+1,j + τf

k+1
i+1,j,

T3 = {r1(b
(α)
1 − 1)}(uki,j+1 + u

k
i+2,j+1) + {r2(b

(α)
1 − 1)}(uki+1,j + u

k
i+1,j+2)

+ {1 − 2r1(b
(α)
1 − 1) − 2r2(b

(α)
1 − 1)}uki+1,j+1 − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i+1,j+1

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i+1,j+1 + τf

k+1
i+1,j+1,

T4 = {r1(b
(α)
1 − 1)}(uki−1,j+1 + u

k
i+1,j+1) + {r2(b

(α)
1 − 1)}(uki,j + u

k
i,j+2)

+ {1 − 2r1(b
(α)
1 − 1) − 2r2(b

(α)
1 − 1)}uki,j+1 − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j+1

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j+1 + τf

k+1
i,j+1.
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Rewrite matrix Eq. (3.1) as,
uk+1
i,j

uk+1
i+1,j

uk+1
i+1,j+1
uk+1
i,j+1

 =
1
M


p1 p2 p3 p4
p2 p1 p4 p3
p3 p4 p1 p2
p4 p3 p2 p1




(r1)u
k+1
i−1,j + (r2)u

k+1
i,j−1 + T1

(r1)u
k+1
i+2,j + (r2)u

k+1
i+1,j−1 + T2

(r1)u
k+1
i+2,j+1 + (r2)u

k+1
i+1,j+2 + T3

(r1)u
k+1
i−1,j+1 + (r2)u

k+1
i,j+2 + T4

 , (3.2)

where,

M = (1 + 2r1 + 2r2)
4 − 2(1 + 2r1 + 2r2)

2[(r1)
2 + (r2)

2] + [(r1)
2 − (r2)

2]2,

p1 = (1 + 2r1 + 2r2)[(1 + 2r1 + 2r2)
2 − (r1)

2 − (r2)
2],

p2 = (r1)[(1 + 2r1 + 2r2)
2 − (r1)

2 + (r2)
2],

p3 = 2(1 + 2r1 + 2r2)(r1)(r2),

p4 = (r2)
2[(1 + 2r1 + 2r2)

2 + (r1)
2 − (r2)

2].

The FEG iterative method decreases the computational cost by reducing the total number of arithmetic
operations used in the iterative procedure. It earlier stored all the arithmetic operations of each 4-point
calculations in the form of a group and afterward this group treated as a single element in the entire
iterative process generated by Eq. (3.2) by reducing CPU-timings.

4. Fractional implicit rotated point (FIRP) iterative scheme

Another implicit difference scheme can be constructed by rotating Eq. (2.1) an angle 45◦ to the stan-
dard mesh [6]. We have the following fractional implicit rotated point (FIRP) iterative scheme,

(1 + r1 + r2)u
k+1
i,j =

1
2
(r1)(u

k+1
i−1,j+1 + u

k+1
i+1,j−1) +

1
2
(r2)(u

k+1
i+1,j+1 + u

k+1
i−1,j−1)

+
1
2
{r1(b

(α)
1 − 1)}(uki−1,j+1 + u

k
i+1,j−1) +

1
2
{r2(b

(α)
1 − 1)}(uki+1,j+1 + u

k
i−1,j−1)

+ {1 − r1(b
(α)
1 − 1) − r2(b

(α)
1 − 1)}uki,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j + τfk+1

i,j ],

(4.1)

for all i, j = 1, 2, 3, . . . ,n− 1, k = 0, 1, 2, 3, . . . , l with initial and boundary conditions,

u0
i,j = g(xi,yj), uk0,j = g1(yj, tk),ukL,j = g2(yj, tk), uki,0 = g3(xi, tk),uki,L = g4(xi, tk),

0 < x,y < L, 0 6 t 6 T .

5. Fractional explicit de-coupled group (FEDG) iterative scheme

Similar to FEG iterative scheme, the fractional explicit de-coupled group (FEDG) iterative scheme can
be constructed by applying Eq. (4.1) on a group of four points of the solution domain. Since FEDG
iterative scheme has the rotation factor due the involvement of Eq. (4.1), therefore, at the end, we got two
independent set of matrix equation. In this way, we have a 4× 4 system of equations of the following
form:


l1 l3 0 0
l3 l1 0 0
0 0 l1 l2
0 0 l2 l1




uk+1
i,j

uk+1
i+1,j+1
uk+1
i+1,j
uk+1
i,j+1

 =


1
2(r1)(u

k+1
i−1,j+1 + u

k+1
i+1,j−1) +

1
2(r2)(u

k+1
i−1,j−1) + T

∗
1

1
2(r1)(u

k+1
i,j+2 + u

k+1
i+2,j) +

1
2(r2)(u

k+1
i+2,j+2) + T

∗
2

1
2(r2)(u

k+1
i,j−1 + u

k+1
i+2,j+1) +

1
2(r1)(u

k+1
i+2,j−1) + T

∗
3

1
2(r2)(u

k+1
i−1,j + u

k+1
i+1,j+2) +

1
2(r1)(u

k+1
i−1,j+2) + T

∗
4

 , (5.1)
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where, l1 = 1 + r1 + r2, l2 = −1
2(r1), l3 = −1

2(r2),

T∗1 =
1
2
{r1(b

(α)
1 − 1)}(uki−1,j+1 + u

k
i+1,j−1) +

1
2
{r2(b

(α)
1 − 1)}(uki+1,j+1 + u

k
i−1,j−1)

+ {1 − r1(b
(α)
1 − 1) − r2(b

(α)
1 − 1)}uki,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j + τfk+1

i,j ,

T∗2 =
1
2
{r1(b

(α)
1 − 1)}(uki,j+2 + u

k
i+2,j) +

1
2
{r2(b

(α)
1 − 1)}(uki+2,j+2 + u

k
i,j)

+ {1 − r1(b
(α)
1 − 1) − r2(b

(α)
1 − 1)}uki+1,j+1 − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i+1,j+1

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i+1,j+1 + τf

k+1
i+1,j+1,

T∗3 =
1
2
{r1(b

(α)
1 − 1)}(uki,j+1 + u

k
i+2,j−1) +

1
2
{r2(b

(α)
1 − 1)}(uki+2,j+1 + u

k
i,j−1)

+ {1 − r1(b
(α)
1 − 1) − r2(b

(α)
1 − 1)}uki+1,j − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i+1,j

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i+1,j + τf

k+1
i+1,j,

T∗4 =
1
2
{r1(b

(α)
1 − 1)}(uki−1,j+2 + u

k
i+1,j) +

1
2
{r2(b

(α)
1 − 1)}(uki+1,j+2 + u

k
i−1,j)

+ {1 − r1(b
(α)
1 − 1) − r2(b

(α)
1 − 1)}uki,j+1 − {b

(α)
k (r1δ

2
x + r2δ

2
y)}u

1
i,j+1

+

k−1∑
s=1

(b
(α)
s−1 − b

(α)
s )(r1δ

2
x + r2δ

2
y)u

k−s
i,j+1 + τf

k+1
i,j+1.

The matrix Eq. (5.1) can be written as pair of matrix equations,(
uk+1
i,j

uk+1
i+1,j+1

)
=

1
S1

(
s1 s2
s2 s1

)( 1
2(r1)(u

k+1
i−1,j+1 + u

k+1
i+1,j−1) +

1
2(r2)(u

k+1
i−1,j−1) + T

∗
1

1
2(r1)(u

k+1
i,j+2 + u

k+1
i+2,j) +

1
2(r2)(u

k+1
i+2,j+2) + T

∗
2

)
, (5.2)

and (
uk+1
i+1,j
uk+1
i,j+1

)
=

1
S2

(
s∗1 s∗2
s∗2 s∗1

)( 1
2(r2)(u

k+1
i,j−1 + u

k+1
i+2,j+1) +

1
2(r1)(u

k+1
i+2,j−1) + T

∗
3

1
2(r2)(u

k+1
i−1,j + u

k+1
i+1,j+2) +

1
2(r1)(u

k+1
i−1,j+2) + T

∗
4

)
, (5.3)

where,

S1 = (1 + r1 + r2)
2 − 1/4(r2)

2,

S2 = (1 + r1 + r2)
2 − 1/4(r1)

2,
s∗1 = s1 = 1 + r1 + r2, s2 = 1/2(r2), s∗2 = 1/2(r1).

The iterative process can be started by either matrix Eqs. (5.2) or (5.3). Once the convergence is
attained, the values on the remaining points of the solution domain can be evaluated using FISP formula
as described in Section 2.

6. Numerical experiments and results

We perform numerical experiments in Mathematica 11 software on a PC of 2GB-RAM to test the
capability of the derived schemes FISP, FIRP, FEG, and FEDG in Sections 2, 3, 4, and 5, respectively. The
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various mesh sizes 25, 50, 75, 100 were assumed in both x and y directions such that h = ∆x = ∆y and
time step τ was chosen to be 0.010 throughout the experiment. The relaxation factor is selected as ωe = 1
(Gauss-Seidel method), while l∞ norm with tolerance factor ε = 10−5 is chosen for convergence criteria.
The maximum error of exact Uki,j and numerical uki,j solution is defined as follows:

E∞ = max
06k6l

(
max

06i,j6n
{|Uki,j − u

k
i,j|}

)
,

where, E∞ denotes the maximum error.

Example 6.1. Consider the following time-fractional two dimensional anomalous fractional sub-diffusion equation
[13],

∂u(x,y, t)
∂t

=
∂1−α

∂t1−α
[
∂2u(x,y, t)

∂x2 +
∂2u(x,y, t)

∂y2 ] + f(x,y, t), 0 6 t 6 1,

where,

f(x,y, t) = ex+y[(1 +α)tα −
2Γ(2 +α)

Γ(1 + 2α)
].

The initial and boundary conditions are given by

u(x,y, 0) = g(x,y) = 0, 0 < x,y < 1,

u(0,y, t) = g1(y, t) = t1+αey, u(1,y, t) = g2(y, t) = t1+αe1+y,

u(x, 0, t) = g3(x, t) = t1+αex, u(x, 1, t) = g4(x, t) = t1+αe1+x.

The exact analytical solution is u(x,y, t) = t1+αex+y.

Table 1: Numerical results of FISP, FIRP, FEG, and FEDG methods for different value of α of Example 6.1.
Example 1 α = 0.25 α = 0.50 α = 0.75

h−1 Method Time(s) Ite. Ave.Err Max.Err Time(s) Ite. Ave.Err Max.Err Time(s) Ite. Ave.Err Max.Err

25

FISP 119.32 69 8.8454×e−2 9.5767×e−2 98.654 58 6.3380×e−2 7.4052×e−2 77.934 46 4.7322×e−2 5.2937×e−2

FIRP 77.875 42 8.4231×e−2 9.5667×e−2 48.674 29 6.6743×e−2 7.3952×e−2 38.874 22 4.7432×e−2 5.2817×e−2

FEG 87.534 43 8.3836×e−2 9.5532×e−2 56.765 30 6.8043×e−2 7.3872×e−2 44.725 23 4.7432×e−2 5.2737×e−2

FEDG 44.987 23 8.3706×e−2 9.5405×e−2 32.193 21 6.8373×e−2 7.3752×e−2 31.953 13 4.7542×e−2 5.2637×e−2

50

FISP 166.97 111 8.7546×e−2 9.5375×e−2 143.92 88 6.8633×e−2 7.3652×e−2 133.98 76 4.7322×e−2 5.2547×e−2

FIRP 84.785 67 8.7886×e−2 9.5255×e−2 74.723 47 6.8443×e−2 7.3562×e−2 62.730 39 4.7052×e−2 5.2447×e−2

FEG 94.098 66 8.7586×e−2 9.5135×e−2 84.097 47 6.8353×e−2 7.3412×e−2 66.973 41 4.7432×e−2 5.2317×e−2

FEDG 55.765 31 8.7306×e−2 9.5055×e−2 67.923 26 6.8345×e−2 7.3302×e−2 51.849 21 4.792×e−2 5.2257×e−2

75

FISP 256.56 213 7.7056×e−3 8.5935×e−3 217.76 101 5.8433×e−3 6.9852×e−3 196.82 91 3.7742×e−3 4.3817×e−2

FIRP 133.93 97 7.7636×e−3 8.5855×e−3 104.93 53 5.8933×e−3 6.9732×e−3 75.492 47 3.7632×e−3 4.3787×e−3

FEG 145.77 98 7.7996×e−3 8.5735×e−3 117.67 54 5.8073×e−3 6.9692×e−3 79.395 48 3.7842×e−3 4.3647×e−3

FEDG 105.23 56 7.7426×e−3 8.5685×e−3 78.395 33 5.8713×e−3 6.9502×e−3 62.874 27 3.7732×e−3 4.3567×e−3

100

FISP 398.32 342 7.7006×e−2 8.5585×e−3 345.84 303 5.8883×e−3 6.5342×e−3 284.942 277 3.7042×e−3 4.3477×e−3

FIRP 207.36 166 7.7846×e−3 8.5475×e−3 174.73 145 5.8633×e−3 6.9492×e−3 147.986 142 3.7742×e−3 4.3337×e−3

FEG 218.76 166 7.7256×e−3 8.5375×e−3 185.37 145 5.8673×e−3 6.9342×e−3 156.307 143 3.7732×e−3 4.3257×e−3

FEDG 145.450 78 7.7546×e−3 8.5225×e−3 96.521 56 5.3533×e−3 6.9242×e−3 126.953 64 3.7652×e−3 4.3177×e−3

The numerical results are calculated in terms of elapsed time (in second), number of iterations (Ite.),
average absolute error (Ave. Error) and maximum absolute error (Max. Error) by FISP, FIRP, FEG and
FEDG iterative methods and these are shown in Table 1. In general, results show that the execution
timings of FEDG method is only about (15 − 24)% of FISP, (50 − 75)% of FIRP and (25 − 49)% of FEG
method. Figure 1 shows the graph of elapsed time of fractional explicit and group iterative methods
against the mesh sizes at α = 0.25, while Figures 2 and 3 illustrate the graph of numerical approximate
solution by FEDG method at α = 0.75. Moreover, since τ is fixed and as we increases the step size h, the
maximum error E∞ become significantly small as shown in Table 1. Moreover, E∞ approaches towards
zero as α varies from 0 to 1.
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Figure 1: Graph of execution time of fractional explicit point
and group methods at α = 0.25.

Figure 2: Graph of exact and approximate solution by FEDG
method at α = 0.75 when L=5.

Figure 3: Graph of approximate solution by FEDG method at α = 0.75.

7. Conclusion

In this work, we have successfully derived the point and group iterative schemes in the numerical
solution of two-dimensional time-fractional anomalous sub-diffusion equations. The numerical experi-
ment is performed to test the authenticity of the derived iterative schemes. In our findings, we observed
that the numerical results obtained from FEDG method are significantly efficient in terms of number of
iterations and execution of timings than any other method in this paper. In future, we have several open
research problems, specially 2D higher-order compact FDEs and 3D PDEs, on which grouping techniques
can be applied.
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