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Abstract
This study establishes a novel nonexistence result for a strongly coupled viscoelastic system with Balakrishnan-Taylor

damping and a nonlinear source in the whole space. Sufficient conditions ensuring the nonexistence of solutions are established
using the test function method.
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1. Introduction

The question of non-solvability of evolution equations has been treated and discussed from different
angles using different methods and techniques. The basic idea in most of these works is to compare
solutions with sub-solutions that blow-up in finite time. Our concern in this paper is a strongly coupled
system with Balakrishnan-Taylor damping and a power-type source acting as an external force on the
whole RN space with N > 1. Although, we study the special case where the kernels g and h decay
polynomially, the results of the study remain valid for a range of other kernel types such as exponentially
decaying functions. We consider the system described by{

utt −M (t)∆u+
∫t

0 g (t− s)∆uds = |v|p , in (0,+∞)×RN,

vtt −M (t)∆v+
∫t

0 h (t− s)∆vds = |u|q , in (0,+∞)×RN,
(1.1)

where p,q > 1. We assume continuous and bounded initial data{
u (0, x) = u0 (x) , ut (0, x) = u1 (x) , in RN,

v (0, x) = v0 (x) , vt (0, x) = v1 (x) , in RN,
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and

M(t) = ξ0 + ξ1 ‖∇u (t)‖2
2 + ξ2 ‖∇v (t)‖2

2 + ξ3 (∇u (t) ,∇ut (t)) + ξ4 (∇v (t) ,∇vt (t)) ,

where ξi, i = 0, 1, 2, 3, 4, are positive constants. The relaxation functions g and h describe the properties
of two different viscoelastic materials.

Model (1.1) was initially proposed by Balakrishnan and Taylor in 1989 [1] and further examined by
Bass and Zes [2] within a bounded domain Ω of RN for the case of a single equation with Balakrishnan-
Taylor damping (ξ3 > 0) and g = 0. This class of nonlinear models was proposed for energy conservations
systems to account for the experimental damping effects observed in the SCOLE configuration at NASA.
It is related to the panel flutter equation and to the spillover problem. So far, the one-dimensional model
has been studied by You [12], Clark [3] and Tatar and Zaraı̈ [9, 10, 13]. Several results on the exponential
decay and blow up in finite time have been achieved.

For coupled wave systems with Balakrishnan-Taylor dampings defined in a bounded domain, Mu and
Ma [7] proved that the decay rate of the solution energy is similar to that of relaxation functions which
is not necessarily of exponential or polynomial type under suitable assumptions on relaxation functions
and source terms. For more results concerning a wave equation with Balakrishnan-Taylor damping, one
can refer to [8, 11, 15].

In this paper, we are interested in establishing sufficient conditions for the non-solvability of (1.1). In
order to achieve our goal, we make use of the test function method developed by Mitidieri and Pohozaev
[6]. We present a proof by contradiction involving apriori estimates of the weak solutions of (1.1) and
carefull choices of a special test function and a scaling argument. The main goal of the study is to find a
range of values for p and q for which we have nonexistence under minimal assumptions on g and h. The
results obtained in this paper extend previous results by Zaraı̈ and Tatar [14].

The remaining parts of this paper are arranged as follows. The next section sets the necessary notation
and defines the concept of a (weak) solution to our problem. Section 3 contains the main result concerning
the nonexistence of solutions. In Section 4, we present some necessary conditions for the local and global
existence of solutions.

2. Preliminaries

We start our paper by making some necessary definitions. Throughout the paper, we shall denote by
QT the set QT := (0, T)×RN and by Q the set Q∞ := (0,∞)×RN. The following definition explains
what is meant by a weak solution of (1.1).

Definition 2.1. The pair (u, v) is said to be a local weak solution of (1.1) on (0, T) if u ∈ L
q
loc(QT ),

v ∈ Lqloc(QT ), and the equalities∫
QT

|v|pϕdxdt+

∫
RN
u1 (x)ϕ (0, x)dx

=

∫
QT

uϕttdxdt−

∫
QT

M(t)u∆ϕdxdt+

∫
QT

u(s, x)

(∫T
s

g(t− s)∆ϕ(t)dt

)
dsdx,

(2.1)

and ∫
QT

|u|qϕdxdt+

∫
RN
v1 (x)ϕ (0, x)dx

=

∫
QT

vϕttdxdt−

∫
QT

M(t)v∆ϕdxdt+

∫
QT

v(s, x)

(∫T
s

h(t− s)∆ϕ(t)dt

)
dsdx,

(2.2)

hold for any ϕ ∈ C2
0(QT ) satisfying ϕ > 0 and

ϕ(T , x) = ϕt(T , x) = ϕt(0, x) = 0.
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Note that by ϕ ∈ C2
0(QT ) we refer to ϕ being a function in C2,2

t,x with compact support. We are now
ready to state the hypothesis.

Hypothesis 2.2. Let g,h be some bounded C1-functions from R+ to R+ satisfying

g(t),h(t) 6
K

(1 + t)ρ
, (2.3)

for t > 0 and the constants K > 0 and ρ ∈ (2,∞).

3. Nonexistence result

In this section, we extend the results of Zaraı̈ and Tatar [14] regarding the nonexistence of solutions
for the coupled system (1.1). We establish a range of values for parameters p and q over which no weak
solutions can exist globally in time. The following theorem presents our result.

Theorem 3.1. Suppose that ∫
RN
u1 (x)dx > 0,

∫
RN
v1 (x)dx > 0,

and (2.3) holds. Assume that N > 1 and

1 < p,q < 1 + min
{

1
N+ θ− 1

,
2θ
N− θ

}
. (3.1)

Then, Problem (1.1) does not admit global nontrivial weak solutions in time.

Proof. We aim to prove Theorem 3.1 by contradiction. Assume that a weak solution of (1.1) exists globally
in time. We introduce the test functions

ϕi(t, x) := φ
(
|x|

R

)
µ

(
t

Rθi

)
, i = 1, 2,

with φ ∈ C∞0 (RN), φ > 0, µ ∈ C2(R+), and µ > 0 such that

φ(w),µ(w) =
{

1, |w| 6 1,
0, |w| > 2,

and µ satisfies −C 6 µ′(t) 6 0, µ′(2Rθi) = 0 for R � 1. The functions ϕi(t, x) are supposed to have
bounded second order partial derivatives. Moreover, we assume without loss of generality that∫

U1

|ϕ1tt|
q′ (ϕ2)

1−q′dxdt+

∫
U2

M(t) |∆ϕ1|
q′ (ϕ2)

1−q′dxdt <∞, (3.2)

and ∫
V1

|ϕ2tt|
p′ (ϕ1)

1−p′dxdt+

∫
V2

M(t) |∆ϕ2|
p′ (ϕ1)

1−p′dxdt <∞, (3.3)

where U1 := suppϕ1tt ∩ suppϕ2, U2 := supp∆ϕ1 ∩ suppϕ2, V1 := suppϕ2tt ∩ suppϕ1 and V2 :=
supp∆ϕ2 ∩ suppϕ1. We denote by p′ and q′, respectively, the conjugate exponents of p and q. If these
conditions are not satisfied for our functions ϕi(t, x), i = 1, 2, then we pick ϕλi (t, x), i = 1, 2, with some
sufficiently large λ > 0.

Next, we estimate the different terms on the right hand side of (2.1) and (2.2) in terms of the expres-
sions in the left hand sides. By multiplying and dividing by ϕ1/p

2 and then applying Hölder’s inequality,
we see that ∫

U1

uϕ1ttdtdx 6
∫
U1

uϕ
1/q
2 ϕ

−1/q
2 ϕ1ttdtdx

6

(∫
U1

|u|qϕ2dtdx

)1/q(∫
U1

ϕ
−q′/q
2 |ϕ1tt|

q′ dtdx

)1/q′

.
(3.4)
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Similarly, we have

−

∫
U2

M(t)u∆ϕ1dxdt 6

(∫
U2

|u|qϕ2dxdt

)1/q(∫
U2

|M(t)|q
′
ϕ

−q′/q
2 |∆ϕ1|

q′ dxdt

)1/q′

, (3.5)

and ∫
U2

u

(∫+∞
s

g(t− s)∆ϕ1(t)dt

)
dsdx 6

(∫
U2

|u|qϕ2dxdt

)1/q

×

(∫
U2

ϕ
−q′/q
2

∣∣∣∣∫+∞
s

g(t− s)∆ϕ1(t)dt

∣∣∣∣q′ dsdx
)1/q′

.

(3.6)

Using the three estimates (3.4), (3.5), (3.6) with (2.1) we obtain∫
W

|v|pϕ1dxdt+

∫
RN
u1 (x)ϕ1 (0, x)dx 6 A

(∫
U1∪U2

|u|qϕ2dxdt

)1/q

, (3.7)

where

A =

{(∫
U1

ϕ
−q′/q
2 |ϕ1tt|

q′ dtdx

)1/q′

+

(∫
U2

|M(t)|q
′
ϕ

−q′/q
2 |∆ϕ1|

q′ dxdt

)1/q′

+

(∫
U2

ϕ
−q′/q
2

∣∣∣∣∫+∞
s

g(t− s)∆ϕ1(t)dt

∣∣∣∣q′ dsdx
)1/q′

 ,

and W := suppϕ1 ∩ suppϕ2.
Likewise, it is easy to see that∫

W

|u|qϕ2dxdt+

∫
RN
v1 (x)ϕ2 (0, x)dx 6 B

(∫
V1∪V2

|v|pϕ1dxdt

)1/p

, (3.8)

where

B =

{(∫
V1

ϕ
−p′/p
1 |ϕ2tt|

p′ dtdx

)1/p′

+

(∫
V2

|M(t)|p
′
ϕ

−p′/p
1 |∆ϕ2|

p′ dxdt

)1/p′

+

(∫
V2

ϕ
−p′/p
1

∣∣∣∣∫+∞
s

h(t− s)∆ϕ2(t)dt

∣∣∣∣p′ dsdx
)1/p′

 .

The combinition of (3.7) and (3.8) yields∫
V1∪V2

|v|pϕ1dxdt 6 −

∫
RN
u1 (x)ϕ1 (0, x)dx

×A

[
B

(∫
V1∪V2

|v|pϕ1dxdt

)1/p

−

∫
RN
v1 (x)ϕ2 (0, x)dx

]1/q

,
(3.9)

and ∫
U1∪U2

|u|qϕ2dxdt 6 −

∫
RN
v1 (x)ϕ2 (0, x)dx

×B

[
A

(∫
U1∪U2

|u|qϕ2dxdt

)1/q

−

∫
RN
u1 (x)ϕ1 (0, x)dx

]1/p

.
(3.10)
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From our assumptions on the initial data we deduce that∫
RN
u1 (x)ϕ1 (0, x)dx > 0 and

∫
RN
v1 (x)ϕ2 (0, x)dx > 0.

Hence, relations (3.9) and (3.10) imply that(∫
V1∪V2

|v|pϕ1dxdt

)1−1/pq

6 AB1/q and
(∫
U1∪U2

|u|qϕ2dxdt

)1−1/pq

6 BA1/p.

Next, we used the scaled variables t = Rθτ and x = Ry where θ = θ1 = θ2 to obtain(∫
U1

ϕ
−q′/q
2 |ϕ1tt|

q′ dtdx

)1/q′

= R
N+θ
q′ −2θ

(∫
U1

ϕ
−q′/q
2 |ϕ1ττ|

q′ dτdy

)1/q′

, (3.11)

and (∫
U2

|M(t)|q
′
ϕ

−q′/q
2 |∆ϕ1|

q′ dxdt

)1/q′

6 R
N+θ
q′ −1

(∫
U2

∣∣M̃(τ)
∣∣q′ ϕ−q′/q

2 |∆ϕ1|
q′ dτdy

)1/q′

, (3.12)

where

M̃(τ) = ξ0 + ξ1

∫
RN

|∇u|2 dy+ ξ2

∫
RN

|∇v|2 dy+ d

2dτ
(ξ3

∫
RN

|∇u|2 dy+ ξ4

∫
RN

|∇v|2 dy).

We may rewrite the term containing the memory in the form∫
U2

ϕ
−q′/q
2

∣∣∣∣∫+∞
t

g(ν− t)∆ϕ1(ν)dν

∣∣∣∣q′ dtdx,

and use the scaling to get

∫
U2

(ϕ2)
−q′/q

∣∣∣∣∫+∞
t

g(ν− t)∆ϕ(ν)dν

∣∣∣∣q′ dtdx = ∫
DR

|∆φ|q
′
φ−q′/q

∫2R

0
(µ)−q

′/q

∣∣∣∣∫+∞
t

g(ν− t)µ(ν)dν

∣∣∣∣q′ dtdx
6 CRN+θ−2q′

∫
Ω

|∆φ|q
′
ϕ

−q′
q

∣∣∣∣∫+∞
Rθτ

g(ν− Rθτ)µ(ν)dν

∣∣∣∣q′ dτdy,

where Ω := {(τ,y) : 1 6 τ, |y| 6 2} and DR := {x ∈ RN : R < |x| < 2R}.
In light of Hypothesis 2.2 and by using the change of variable 1 + ν− Rθτ = η and the fact that µ is

non increasing we see that ∫+∞
Rθτ

g(ν− Rθτ)µ(ν)dν 6 K
∫+∞

1

µ(η+ Rθτ− 1)
ηρ

dη.

As Rθτ > 1, µ(η) = 0 for η > 2, and µ(η) 6 1, we have∫+∞
Rθτ

g(ν− Rθτ)µ(ν)dν 6 K
∫ 2

1

1
ηρ
dη 6 C,

and, therefore,(∫
U2

ϕ
−q′/q
2

∣∣∣∣∫+∞
s

g(t− s)∆ϕ1(t)dt

∣∣∣∣q′ dsdx
)1/q′

6 CR
N+θ
q′ −2

(∫
U2

ϕ
−q′/q
2 |∆ϕ1|

q′ dτdy

)1/q′

. (3.13)
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By virtue of (3.12), (3.13), (3.2), and (3.3), we find that

A 6 C
(
R
N+θ
q′ −2θ

+ R
N+θ
q′ −1

+ R
N+θ
q′ −2

)
and B 6 C

(
R
N+θ
p′ −2θ

+ R
N+θ
p′ −1

+ R
N+θ
p′ −2

)
.

Relations (3.8) and (3.11) imply that for a sufficiently large R, we have∫
W

|u|qϕ2dxdt 6 B

(∫
V1∪V2

|v|pϕ1dxdt

)1/p

6 C (ABp)
q

pq−1 . (3.14)

By imposing condition (3.1) and passing to the limit as R→∞ in (3.14), we obtain

lim
∫
W

|u|qϕ2dxdt 6 0.

This contradicts our assumption that u is a nontrivial solution. Likewise, using the other estimations, we
will reach v = 0, which is again a contradiction. This completes the proof.

4. Necessary conditions for local and global solutions

Now that we have established a range of p and q values that guarantee the nonexistence of solutions
to the proposed model (1.1), we move to examine the conditions of the existence of solutions both locally
and globally. The following theorem and corrollary convey our results.

Theorem 4.1. Let the pair (u, v) be a local solution to (1.1) where T < +∞ and p,q > 1. Then, there exist
constants α and β such that

lim
|x|→∞ inf (u1(x) + v1(x)) 6 C1/4T

1−2p′
(
αT 2(p′−q′) +β

)
.

Proof. By the definition of a weak solution, for any ϕ ∈ C∞0 (QT ) > 0, we have∫
QT

|v|pϕdxdt+

∫
RN
u1(x)ϕ (0, x)dx

6
∫
QT

|u| |ϕtt|dxdt

∫
QT

|M(t)| |u| |∆ϕ|dxdt+

∫
QT

|u(s, x)|

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣dsdx,
(4.1)

and ∫
QT

|u|qϕdxdt+

∫
RN
v1(x)ϕ (0, x)dx

6
∫
QT

|u| |ϕtt|dxdt+

∫
QT

|M(t)| |u| |∆ϕ|dxdt+

∫
QT

|u(s, x)|

∣∣∣∣∣
∫T
s

h(t− s)∆ϕ(t)dt

∣∣∣∣∣dsdx.

Using the ε-Young inequality we can estimate all the terms on the right hand side of (4.1). In fact by
writing |u| |ϕtt| = |u|ϕ1/qϕ−1/q |ϕtt|, we find that for ε > 0,∫

QT

|u| |ϕtt|dtdx 6 ε
∫
QT

|u|qϕdtdx+Cε

∫
QT

ϕ−q′/q |ϕtt|
q′ dtdx, (4.2)

and similarly∫
QT

|M(t)| |u| |∆ϕ|dtdx 6 ε
∫
QT

|u|qϕdxdt+Cε

∫
QT

|M(t)|q
′
ϕ−q′/q |∆ϕ|q

′
dxdt, (4.3)
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and ∫
QT

|u(s, x)|

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣dsdx 6 ε
∫
QT

|u|qϕdsdx

+Cε

∫
QT

ϕ−q′/q

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣
q′

dsdx.

(4.4)

Using (4.1) along with (4.2), (4.3), and (4.4), we can obtain∫
QT

|v|pϕdxdt+

∫
RN
u1(x)ϕ (0, x)dx

6 ε
∫
QT

|u|qϕdtdx+Cε

∫
QT

|ϕtt|
q′ + |M(t)|q

′
|∆ϕ|q

′
+

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣
q′
ϕ−q′/q.

(4.5)

Following the same steps, we also have∫
QT

|u|qϕdxdt+

∫
RN
v1(x)ϕ (0, x)dx

6 ε
∫
QT

|v|pϕdtdx+Cε

∫
QT

|ϕtt|
p′ + |M(t)|p

′
|∆ϕ|p

′
+

∣∣∣∣∣
∫T
s

h(t− s)∆ϕ(t)dt

∣∣∣∣∣
p′
ϕ−p′/p.

(4.6)

By selecting ε 6 1/4 and in light of (4.5) and (4.6), we deduce that∫
RN

(u1(x) + v1(x))ϕ (0, x)dx

6 Cε

∫
QT

|ϕtt|
q′ + |M(t)|q

′
|∆ϕ|q

′
+

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣
q′
ϕ−q′/q

+Cε

∫
QT

|ϕtt|
p′ + |M(t)|p

′
|∆ϕ|p

′
+

∣∣∣∣∣
∫T
s

h(t− s)∆ϕ(t)dt

∣∣∣∣∣
p′
ϕ−p′/p.

(4.7)

We choose the test function

ϕ(t, x) := φ
(
|x|

R

)
µ

(
t

T

)
,

where φ ∈ C∞0 (RN), φ > 0, suppφ ⊂
{
x ∈ RN : 1 < |x| < 2

}
, |∆φ| 6 kφ, and

µ

(
t

T

)
:=


1, 0 6 t 6 T/2,
1 −

(t−T/2)3

(T/2)3 , T/2 6 t 6 T ,
0, t > T .

Next, we estimate the six terms on the right hand side of (4.7). By making the change of variable t = τT

and making use of the assumptions on ϕ, we obtain the following inequalities∫
QT

ϕ−q′/q |ϕtt|
q′ 6 αT 1−2q′

∫
RN
φ,∫

QT

|M(t)|q
′
ϕ−q′/q |∆ϕ|q

′
6 TM̃(T)q

′
kq
′
R−2q′

∫
RN
φ,

∫
QT

ϕ−q′/q

∣∣∣∣∣
∫T
s

g(t− s)∆ϕ(t)dt

∣∣∣∣∣
q′

6 Ckq
′
R−2q′T 2

(∫∞
0
g(t)dt

)q′ ∫
RN
φ,
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QT

ϕ−p′/p |ϕtt|
p′ 6 βT 1−2p′

∫
RN
φ,∫

QT

|M(t)|p
′
ϕ−p′/p |∆ϕ|p

′
6 TM̃(T)p

′
kp
′
R−2p′

∫
RN
φ,

∫
QT

ϕ−p′/p

∣∣∣∣∣
∫T
s

h(t− s)∆ϕ(t)dt

∣∣∣∣∣
p′

6 Ckp
′
R−2p′T 2

(∫∞
0
h(t)dt

)p′ ∫
RN
φ.

Substituting these estimates leads to

inf
|x|>R

(u1(x) + v1(x))

∫
RN
φ 6 C1/4

[
αT 1−2q′ + TM̃(T)q

′
kq
′
R−2q′ +Ckq

′
R−2q′T 2

] ∫
RN
φ

+C1/4

[
βT 1−2p′ + TM̃(T)p

′
kp
′
R−2p′ +Ckp

′
R−2p′T 2

] ∫
RN
φ.

By letting R→ +∞, we obtain

lim inf
|x|→∞ (u1(x) + v1(x)) 6 C1/4

[
αT 1−2q′ +βT 1−2p′

]
. (4.8)

Hence the theorem is proved.

We can immediately deduce the following result.

Corollary 4.2. Suppose that p,q > 1 and u1(x) + v1(x) > 0. If (1.1) admits a global weak solution, then

lim inf
|x|→∞ (u1(x) + v1(x)) = 0.

Proof. Suppose that (1.1) has a global weak solution and

S := lim inf
|x|→∞ (u1(x) + v1(x)) > 0.

Then, from (4.8), it appears that

T 6 max

{(
α+β

S
C1/4

)1/(p′−1)

,
(
α+β

S
C1/4

)1/(q′−1)
}

,

which is a contradiction.

References

[1] A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, Proceedings
”Damping 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, (1989). 1

[2] R. W. Bass, D. Zes, Spillover, nonlinearity, and flexible structures, 4th NASA Workshop on Computational Control of
Flexible Aerospace Systems, 1991 (1991), 1–14. 1

[3] H. R. Clark, Elastic membrane equation in a bounded and unbounded domains, Electron. J. Qualit. Theor. Differ. Equ.,
2002 (2002), 1–21. 1

[4] T. G. Ha, General decay rate estimates for viscoelastic wave equation with Balakrishnan–Taylor damping, Z. Angew. Math.
Phys., 67 (2016), 13 pages.

[5] T. G. Ha, Stabilization for the wave equation with variable coefficients and Balakrishnan–Taylor damping, Taiwanese J.
Math., 21 (2017), 807–817.

[6] E. Mitidieri, S. I. Pohozaev, Apriori estimates and blow–up of solutions to nonlinear partial differential equations and
inequalities, Proc. Steklov Inst. Math., 234 (2001), 1–383. 1

[7] C. Mu, J. Ma, On a system of nonlinear wave equations with Balakrishnan–Taylor damping, Z. Angew. Math. Phys., 65
(2014), 91–113. 1

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Distributed+parameter+nonlinear+damping+models+for+flight+structures&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Distributed+parameter+nonlinear+damping+models+for+flight+structures&btnG=
https://ntrs.nasa.gov/search.jsp?R=19910012995
https://ntrs.nasa.gov/search.jsp?R=19910012995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Elastic+membrane+equation+in+a+bounded+and+unbounded+domains&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Elastic+membrane+equation+in+a+bounded+and+unbounded+domains&btnG=
https://doi.org/10.1007/s00033-016-0625-3
https://doi.org/10.1007/s00033-016-0625-3
https://www.jstor.org/stable/90011732
https://www.jstor.org/stable/90011732
http://www.mathnet.ru/eng/tm230
http://www.mathnet.ru/eng/tm230
https://link.springer.com/article/10.1007/s00033-013-0324-2
https://link.springer.com/article/10.1007/s00033-013-0324-2


M. Benzahi, A. Zaraı̈, S. Abdelmalek, S. Bendoukha, J. Math. Computer Sci., 22 (2021), 110–118 118

[8] S. H. Park, Arbitrary decay of energy for a viscoelastic problem with BalakrishnanTaylor damping, Taiwanese J. Math., 20
(2016), 129–141. 1

[9] N. E. Tatar, A. Zaraı̈, Exponential stability and blow up for a problem with Balakrishnan-Taylor damping, Demonstratio
Math., 44 (2011), 67–90. 1

[10] N. E. Tatar, A. Zaraı̈, On a Kirchhoff equation with Balakrishnan–Taylor damping and source term, Dyn. Contin. Discrete
Impuls. Syst. Ser. A Math. Anal., 18 (2011), 615–627. 1

[11] S. T. Wu, General decay of solutions for a viscoelastic equation with Balakrishnan–Taylor damping and nonlinear boundary
damping–source interactions, Acta Math. Sci., 35 (2015), 981–994. 1

[12] Y. You, Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan–Taylor damping, Abst. Appl.
Anal., 1 (1996), 83–102. 1

[13] A. Zaraı̈, N. E. Tatar, Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping, Arch. Math.
(Brno), 46 (2010), 157–176. 1

[14] A. Zaraı̈, N. E. Tatar, Non–solvability of Balakrishnan–Taylor equation with memory term in RN, Adv. Appl. Math.
Approx. Theory, 41 (2013), 411–419. 1, 3

[15] A. Zaraı̈, N. E. Tatar, S. Abdelmalek, Elastic membrance equation with memory term and nonlinear boundary damping:
global existence, decay and blowup of the solution, Acta Math. Sci., 33 (2013), 84–106. 1

https://projecteuclid.org/euclid.twjm/1498874425
https://projecteuclid.org/euclid.twjm/1498874425
https://www.degruyter.com/view/journals/dema/44/1/article-p67.xml
https://www.degruyter.com/view/journals/dema/44/1/article-p67.xml
http://online.watsci.org/abstract_pdf/2011v18/v18n5a-pdf/5.pdf
http://online.watsci.org/abstract_pdf/2011v18/v18n5a-pdf/5.pdf
https://www.sciencedirect.com/science/article/pii/S0252960215300321
https://www.sciencedirect.com/science/article/pii/S0252960215300321
https://www.hindawi.com/journals/aaa/1996/428790/abs/
https://www.hindawi.com/journals/aaa/1996/428790/abs/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Global+existence+and+polynomial+decay+for+a+problem+with+Balakrishnan-Taylor+damping&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Global+existence+and+polynomial+decay+for+a+problem+with+Balakrishnan-Taylor+damping&btnG=
https://link.springer.com/chapter/10.1007/978-1-4614-6393-1_27
https://link.springer.com/chapter/10.1007/978-1-4614-6393-1_27
https://www.sciencedirect.com/science/article/pii/S0252960212601969
https://www.sciencedirect.com/science/article/pii/S0252960212601969

	Introduction
	Preliminaries
	Nonexistence result
	Necessary conditions for local and global solutions

