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Abstract

This paper presents the notion of perfect Lucky k-colouring. Basic conditions for a perfect Lucky k-colourable graph are
presented. Application thereof is then presented by obtaining the Lucky 4-polynomials for all connected graphs G on six vertices
with ten edges. The chromatic number of these connected graphs is χ(G) = 3 or 4. For k = max{χ(G) : 3 or 4} = 4, it is possible
to find Lucky 4-polynomials for all graphs on six vertices and ten edges. The methodology improves substantially on the
fundamental methodology such that, vertex partitions begin with Lucky partition forms immediately. Finally, further problems
for research related to this study are presented.
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1. Introduction

For general notation and concepts in graphs see [1] and [4]. Unless stated otherwise, all graphs are
simple connected finite graphs. The set of vertices and the set of edges of a graph G are denoted by V(G)
and E(G), respectively. The number of vertices is called the order of G, say, n and the number of edges is
called the size of G denoted by ε(G).

In a proper colouring of G, all edges are good i.e., uv ⇔ c(u) 6= c(v). For any proper colouring ϕ(G)
of a graph G the addition of all good edges, if any, is called the chromatic completion of G in respect of
ϕ(G). The additional edges are called chromatic completion edges. The set of such chromatic completion
edges is denoted by Eϕ(G). The resultant graph Gϕ is called a chromatic completion graph of G.

The chromatic completion number of a graph G denoted by ζ(G) is the maximum number of good
edges that can be added to G over all chromatic colourings (χ-colourings). Hence, ζ(G) = max{|Eχ(G)| :
over all ϕχ(G)}.
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A χ-colouring which yields ζ(G) is called a Lucky χ-colouring or simply, a Lucky colouring1 and is
denoted by ϕL(G). The resultant graph Gζ is called a minimal chromatic completion graph of G. It is trivially
true that G ⊆ Gζ. Furthermore, the graph induced by the set of completion edges, 〈Eχ〉 is a subgraph of
the complement graph G.

A k-colouring of a graph G which yields max{|Eϕ(G)| : overall k-colourings} is called a Lucky k-
colouring.

In an improper colouring an edge uv for which, c(u) = c(v) is called a bad edge. It is observed that the
number of edges of G which are omitted from Eχ is the minimum number of bad edges in a bad chromatic
completion of a graph G.

2. Perfect Lucky Colourings

If a graph is k-colourable in accordance with Lucky’s theorem, then, in accordance with the Lucky
partition form,

{{bn
k
c− element}, {bn

k
c− element}, . . . , {bn

k
c− element}︸ ︷︷ ︸

(k−r)−subsets

,

{dn
k
e− element}, {dn

k
e− element}, . . . , {dn

k
e− element}︸ ︷︷ ︸

(r>0)−subsets

},

G is said to be perfect Lucky k-colourable.[3]
Recall that the adjacency matrix of a graph G of order n is a [n× n]-symmetrical (0, 1)-matrix with

zero’s on the diagonal and entry aij = 1, i 6= j if and only if vertices vi, vj are adjacent, else aij = 0. Let
the number of zero entries be denoted by OG. This brings the first trivial result.

Corollary 2.1. The coefficient of the Lucky k-polynomial of a graph G of order k+ 1 is, ε(G).

Proof. The Lucky partition form is given by:

{{2 − element}, {1 − element}, . . . , {1 − element}︸ ︷︷ ︸
(k−1) subsets

}.

Since an edge in G represents an independent {2-element} vertex subset of V(G), the result follows.

Corollary 2.1 can be put differently by considering the adjacency matrix of G. Consider the matrix 2.1
with aij = 0 or 1 given below 

0 a12 . . . a1n
a21 0 . . . e2n
. . . . . . . . . . . . . . . . . . . . . .
an1 an2 . . . 0

 . (2.1)

Since a non-diagonal zero entry represents an independent {2-element} subset of V(G), the coefficient of
the Lucky k-polynomial of a graph G of order k+ 1 is OG−n

2 .
Hence, we have another useful result.

Corollary 2.2. For a graph of order n > 2, all connected graphs are Kn and clusters of graphs with number of
edges given by n(n−1)

2 − i, i = 1, 2, 3, . . . , (n−1)(n−2)
2 . For each graph in a cluster the coefficient of the perfect

Lucky (n− 1)-colouring is i.

1Note that a Lucky colouring is an alias for an equitable χ-colouring. The alias is meant to associate the paper with Lucky’s
Theorem and the notion of chromatic completion.



J. Kok, J. V. Kureethara, J. Math. Computer Sci., 21 (2020), 192–197 194

Proof. Since ε(G) = i the result is immediate from Corollary 2.1.

The coefficient of the Lucky k-polynomial of a graph G of order k + 2 can be determined by the
following procedure.

Lemma 2.3. Let G be a simple connected graph with complement G, line graph L(G) and adjacency matrix of
the complement of the line graph H = L(G). Since the adjacency matrix is a [

n(n−1)
2 − ε(G)× n(n−1)

2 − ε(G)]-

symmetrical (0, 1)-matrix, the coefficient of the Lucky k-polynomial is (OH−(
n(n−1)

2 −ε(G)))

2 .

Proof. The Lucky partition form is given by:

{{2 − element}, {2 − element}, {1 − element}, . . . , {1 − element}︸ ︷︷ ︸
(k−2) subsets

}.

Each edge in G represents an independent {2-element} vertex subset of V(G). However, in the prescribed
vertex partition the two {2-element} subsets may not have a common endpoint in G. Put differently,
their intersection must be empty. Such a common endpoint is represented by an edge in the line graph
H = L(G). Therefore, a non-diagonal zero entry in the adjacency matrix of H represents two independent
{2-element} subsets of V(G). In the count of all zero entries in the adjacency matrix of H, the non-diagonal
zero entries are subject to a double count and the diagonal zero’s are irrelevant. Hence, the coefficient of

the corresponding Lucky k-polynomial is (OH−(
n(n−1)

2 −ε(G)))

2 .

If two induced subgraphs of G share no common vertex (vertices) it is said that the subgraphs are
independent or 0-overlap subgraphs. For three or more, say, t mutually independent induced subgraphs
it is said to be t-0-overlap subgraphs. For brevity, a clique Q of order n is called an n-clique and an
independent set I of size n is called an n-independent set. A result and a dual result on perfect Lucky
k-colourability of a graph are presented next.

Theorem 2.4. Let graph G of order n = mk+ r, m > 2, 2 6 k 6 n− 1 and 1 6 r 6 k. A graph G is perfect
Lucky k-colourable if and only if G has at least r, (m+ 1)-cliques which are r-0-overlap cliques and distinct from
that, it has at least (k− r), m-cliques which are (k− r)-0-overlap cliques.

Proof. Obviously, any connected graph G of order n > 2 is not Lucky 1−colourable and therefore, not
perfect Lucky 1-colourable. Also, any graph of order n is perfect Lucky n-colourable. Thus we have the
bounds 2 6 k 6 n− 1.

If at least r independent Km+1’s exist in G, then at least r (m+ 1)-independent vertex subsets exist in
G. Hence, at least r {(m+ 1)-element} subsets in a corresponding Lucky partition form exist. If distinct
from the aforesaid, at least (k− r) independent Km’s exist in G, then by similar reasoning it follows that
at least (k− r), m-independent vertex subsets exist in G. It implies that at least one Lucky partition of the
Lucky partition form given below exists

{{m− element}, {m− element}, . . . , {m− element}︸ ︷︷ ︸
(k−r)−subsets

,

{(m+ 1) − element}, {(m+ 1) − element}, . . . , {(m+ 1) − element}︸ ︷︷ ︸
(r>0)−subsets

}.

Through immediate induction it follows from similar reasoning that it holds ∀k, 2 6 k 6 n− 1. Therefore,
G is perfect Lucky k-colourable, else not.

Conversely, if G is perfect k-colourable then the definition of a proper colouring read with the defini-
tion of a perfect Lucky k-colouring unwraps the result.

Theorem 2.5. Let graph G of order n = mk+ r, m > 2, 2 6 k 6 n− 1 and 1 6 r 6 k. A graph G is perfect
Lucky k-colourable if and only if G has at least r (m+ 1)-independent sets which are pairwise disjoint and distinct
from that, it has at least (k− r) m-independent sets which are pairwise disjoint.
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Proof. The result follows by similar dual reasoning as in the proof of Theorem 2.4.

Recall the bounds for the chromatic number, χ(G), the clique number, ω(G) and the independence
number, α(G)

1. 1 6 χ(G) 6 n;
2. χ(G) 6 ω(G);
3. n 6 χ(G)α(G).

The third bound read together with Lemma 2.3 provides the following corollary.

Corollary 2.6. A graph G of order mk+ 1, m > 2 is perfect Lucky k-colourable if and only if m+ 1 6 α(G).

Proof. If G of order mk+ 1, m > 2 is perfect Lucky k-colourable then at least one independent {(m+ 1)-
element} subset of V(G) exists. Hence, α(G) > m+ 1.

For α(G) at least one of each of the independent subsets of V(G), say, Xi, i = 1, 2, 3, . . . ,α(G) exist such
that, |Xi| = i. Hence, if α(G) > m+ 1, then at least one independent {(m+ 1)-element} subset of V(G)
exists. Therefore, the result.

3. Lucky 4-Polynomials of G of Order 6 and Size 10

It is well-known that for a set of colours C, |C| = λ > χ(G) > 2, a graph G of order n can always be
coloured properly in PG(λ,n) distinct ways. The polynomial PG(λ,n) is called the chromatic polynomial
of G.

It is known that for χ(G) 6 n 6 λ colours, the number of distinct Lucky k-colourings, χ(G) 6 k 6 n is
determined by a polynomial, called the Lucky k-polynomial, LG(λ,k).

In [2, pp. 38-40], all connected graphs of order 6 are depicted. In this paper, the graph numbering,
Gi, i = 1, 2, 3, . . . , 112 in [2] as well as the clustering in equal size will be utilized. This section will
relate to graphs of order 6 and size 10, i.e., graphs G19 to G32. The chromatic number of the respective
graphs under study is either 3 or 4. We study a Lucky 4-colouring throughout to study perfect Lucky
4-colourings and to obtain Lucky 4-polynomials. Let the number of colours be λ > 4. The Lucky partition
form is:

{{2-element}, {2-element}, {1-element}, {1-element}}.

Hence, the corresponding Lucky partitions of V(G) are:

{{v1, v2}, {v3, v4}, {v5}, {v6}}, {{v1, v2}, {v3, v5}, {v4}, {v6}}, {{v1, v2}, {v3}, {v4, v5}, {v6}}, {{v1, v2}, {v3, v6}, {v4}, {v5}},
{{v1, v2}, {v3}, {v4, v6}, {v5}}, {{v1, v2}, {v3}, {v4}, {v5, v6}}, {{v1, v3}, {v2, v4}, {v5}, {v6}}, {{v1, v3}, {v2, v5}, {v4}, {v6}},
{{v1, v3}, {v2}, {v4, v5}, {v6}}, {{v1, v3}, {v2, v6}, {v4}, {v5}}, {{v1, v3}, {v2}, {v4, v6}, {v5}}, {{v1, v3}, {v2}, {v4}, {v5, v6}},
{{v1, v4}, {v2, v3}, {v5}, {v6}}, {{v1, v5}, {v2, v3}, {v4}, {v6}}, {{v1}, {v2, v3}, {v4, v5}, {v6}}, {{v1, v6}, {v2, v3}, {v4}, {v5}},
{{v1}, {v2, v3}, {v4, v6}, {v5}}, {{v1}, {v2, v3}, {v4}, {v5, v6}}, {{v1, v4}, {v2, v5}, {v3}, {v6}}, {{v1, v4}, {v2}, {v3, v5}, {v6}},
{{v1, v4}, {v2, v6}, {v3}, {v5}}, {{v1, v4}, {v2}, {v3, v6}, {v5}}, {{v1, v4}, {v2}, {v3}, {v5, v6}}, {{v1, v5}, {v2, v4}, {v3}, {v6}},
{{v1}, {v2, v4}, {v3, v5}, {v6}}, {{v1, v6}, {v2, v4}, {v3}, {v5}}, {{v1}, {v2, v4}, {v3, v6}, {v5}}, {{v1}, {v2, v4}, {v3}, {v5, v6}},
{{v1, v5}, {v2}, {v3, v4}, {v6}}, {{v1}, {v2, v5}, {v3, v4}, {v6}}, {{v1, v6}, {v2}, {v3, v4}, {v5}}, {{v1}, {v2, v6}, {v3, v4}, {v5}},
{{v1}, {v2}, {v3, v4}, {v5, v6}}, {{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v5}, {v2}, {v3, v6}, {v4}}, {{v1, v5}, {v2}, {v3}, {v4, v6}},
{{v1, v6}, {v2, v5}, {v3}, {v4}}, {{v1}, {v2, v5}, {v3, v6}, {v4}}, {{v1}, {v2, v5}, {v3}, {v4, v6}}, {{v1, v6}, {v2}, {v3, v5}, {v4}},
{{v1}, {v2, v6}, {v3, v5}, {v4}}, {{v1}, {v2}, {v3, v5}, {v4, v6}}, {{v1, v6}, {v2}, {v3}, {v4, v5}}, {{v1}, {v2, v6}, {v3}, {v4, v5}},
{{v1}, {v2}, {v3, v6}, {v4, v5}}.

For a graph Gi, the vertex labeling will, by informal convention, be: ”‘Sweep a graph with a vertical
line from left to right. If exactly one vertex is the first vertex that intersects, label it as v1. If two or
more vertices intersect simultaneously, then label consecutively from top to bottom say, v1, v2, . . . , vj then
proceed in similar fashion when the next intersecting vertex (or vertices), yields (or yield).’”

For a graph Gi, the permissible Lucky partitions are those in which adjacent vertices are not elements
of a subset of a Lucky partition. Put differently, all subsets of a Lucky partition are independent sets.
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3.1. Graphs Gi for which, χ(Gi) = 3
These graphs are G25, G27, G29, G30, G31 and G32.

(a) For graph G25, permissible Lucky partitions are,
{{v1, v4}, {v2}, {v3, v5}, {v6}}, {{v1, v5}, {v2}, {v3}, {v4, v6}}, {{v1, v6}, {v2}, {v3, v5}, {v4}}, {{v1}, {v2}, {v3, v5}, {v4, v6}}.
Therefore, LG25(6, 4) = 4λ(λ− 1)(λ− 2)(λ− 3).

(b) For graph G27, permissible Lucky partitions are,
{{v1, v5}, {v2, v4}, {v3}, {v6}}, {{v1, v6}, {v2, v4}, {v3}, {v5}}, {{v1}, {v2, v4}, {v3, v6}, {v5}}, {{v1, v5}, {v2, v6}, {v3}, {v4}},
{{v1, v5}, {v2}, {v3, v6}, {v4}}.
Therefore, LG27(6, 4) = 5λ(λ− 1)(λ− 2)(λ− 3).

(c) For graph G29, permissible Lucky partitions are,
{{v1, v5}, {v2, v4}, {v3}, {v6}}, {{v1, v6}, {v2, v4}, {v3}, {v5}}, {{v1}, {v2, v4}, {v3, v6}, {v5}}, {{v1}, {v2, v4}, {v3}, {v5, v6}},
{{v1, v5}, {v2}, {v3, v6}, {v4}}.
Therefore, LG29(6, 4) = 5λ(λ− 1)(λ− 2)(λ− 3).

(d) For graph G30, permissible Lucky partitions are,
{{v1, v4}, {v2, v5}, {v3}, {v6}}, {{v1, v4}, {v2, v6}, {v3}, {v5}}, {{v1}, {v2, v5}, {v3, v4}, {v6}}, {{v1, v6}, {v2}, {v3, v4}, {v5}},
{{v1}, {v2, v6}, {v3, v4}, {v5}}, {{v1, v6}, {v2, v5}, {v3}, {v4}}.
Therefore, LG30(6, 4) = 6λ(λ− 1)(λ− 2)(λ− 3).

(e) For graph G31, permissible Lucky partitions are,
{{v1, v5}, {v2}, {v3, v4}, {v6}}, {{v1}, {v2, v5}, {v3, v4}, {v6}}, {{v1, v6}, {v2}, {v3, v4}, {v5}}, {{v1}, {v2, v6}, {v3, v4}, {v5}},
{{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v6}, {v2, v5}, {v3}, {v4}}.
Therefore, LG31(6, 4) = 6λ(λ− 1)(λ− 2)(λ− 3).

(f) For graph G32, permissible Lucky partitions are,
{{v1, v4}, {v2, v3}, {v5}, {v6}}, {{v1, v5}, {v2, v3}, {v4}, {v6}}, {{v1}, {v2, v3}, {v4, v5}, {v6}}, {{v1, v4}, {v2}, {v3, v6}, {v5}},
{{v1, v5}, {v2}, {v3, v6}, {v4}}.
Therefore, LG32(6, 4) = 5λ(λ− 1)(λ− 2)(λ− 3).

Corollary 3.1. All graphs of order 6 and size 10 with χ(G) = 3, have equitable chromatic number at most 4.

Proof. The result is a direct consequence of the analysis given in above subsection 3.1.

3.2. Graphs Gi for which, χ(Gi) = 4
These graphs are G19, G20, G21, G22, G23, G24, G26 and G28.

(a) For graph G19, permissible Lucky partitions are,
{{v1, v3}, {v2}, {v4, v6}, {v5}}, {{v1, v5}, {v2}, {v3}, {v4, v6}}.
Therefore, LG19(6, 4) = 2λ(λ− 1)(λ− 2)(λ− 3).

(b) For graph G20, permissible Lucky partitions are,
{{v1, v6}, {v2}, {v3, v5}, {v4}}, {{v1}, {v2, v6}, {v3, v5}, {v4}}, {{v1}, {v2}, {v3, v5}, {v4, v6}}.
Therefore, LG20(6, 4) = 3λ(λ− 1)(λ− 2)(λ− 3).

(c) For graph G21, permissible Lucky partitions are,
{{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v6}, {v2, v5}, {v3}, {v4}}.
Therefore, LG21(6, 4) = 2λ(λ− 1)(λ− 2)(λ− 3).

(d) For graph G22, permissible Lucky partitions are,
{{v1, v4}, {v2, v6}, {v3}, {v5}}, {{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v5}, {v2}, {v3}, {v4, v6}}.
Therefore, LG22(6, 4) = 3λ(λ− 1)(λ− 2)(λ− 3).
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(e) For graph G23, permissible Lucky partitions are,
{{v1, v4}, {v2, v3}, {v5}, {v6}}, {{v1}, {v2, v3}, {v4, v5}, {v6}}, {{v1, v4}, {v2}, {v3, v6}, {v5}}, {{v1}, {v2}, {v3, v6}, {v4, v5}}.
Therefore, LG23(6, 4) = 4λ(λ− 1)(λ− 2)(λ− 3).

(f) For graph G24, permissible Lucky partitions are,
{{v1, v5}, {v2, v3}, {v4}, {v6}}, {{v1, v6}, {v2, v3}, {v4}, {v5}}, {{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v6}, {v2, v5}, {v3}, {v4}}.
Therefore, LG24(6, 4) = 4λ(λ− 1)(λ− 2)(λ− 3).

(g) For graph G26, permissible Lucky partitions are,
{{v1, v5}, {v2}, {v3, v6}, {v4}}, {{v1, v5}, {v2}, {v3}, {v4, v6}}, {{v1}, {v2, v5}, {v3, v6}, {v4}}, {{v1}, {v2, v5}, {v3}, {v4, v6}},
{{v1}, {v2}, {v3, v5}, {v4, v6}}. Therefore, LG26(6, 4) = 5λ(λ− 1)(λ− 2)(λ− 3).

(h) For graph G28, permissible Lucky partitions are,
{{v1, v5}, {v2, v3}, {v4}, {v6}}, {{v1, v6}, {v2, v3}, {v4}, {v5}}, {{v1, v5}, {v2, v6}, {v3}, {v4}}, {{v1, v6}, {v2}, {v3, v5}, {v4}},
{{v1}, {v2, v6}, {v3, v5}, {v4}}.
Therefore, LG28(6, 4) = 5λ(λ− 1)(λ− 2)(λ− 3).

Corollary 3.2. All graphs of order 6 and size 10 with χ(G) = 4, have equitable chromatic number equal to 4.

Proof. The result is a direct consequence of the analysis given in the above subsection 3.2.

4. Conclusion

It is important to note the difference between the Lucky partition numbers and the coefficient of the
Lucky k-polynomial of a graph. For example, for k = 1, n ∈ N all Lucky partition numbers equal 1.
However, for all connected graph of order n > 2 the corresponding Lucky 1-polynomial coefficient is
zero. Put differently, a proper 1−colouring is not possible.

The procedure in Lemma 2.3 describes the construction of two intersection graphs from firstly, sub-
graphs of G and secondly, from subgraphs of G. The result in Theorem 2.4 and 2.5 can be viewed from
the perspective of intersection graphs as well. Formalizing, results from an intersection graph perspective
is a new avenue for research.

Much research has been done to gain a better understanding of the relations between the chromatic
number and the independence number of graphs. There is a sense by the authors that research into the
relations or bounds between the independence number and the perfect Lucky k-colourability are worthy
avenues of research.

We observed in the introduction that the number of edges of G which are omitted from Eχ is the
minimum number of bad edges in a bad chromatic completion of a graph G. A natural question arises,
whether a similar result holds for bad k-colourings?
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