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Abstract
In this paper, the second order Painlevé differential equation is solved by variational iteration algorithm-I with an auxiliary

parameter (VI-I with AP), how to optimally find the auxiliary parameter and Pade approximates for the numerical solution are
explained. The effectiveness and suitability of the proposed method are shown by solving two types of second order Painlevé
differential equation and the proposed method is compared with other methods to illustrate the accuracy and efficiency of the
method.
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1. Introduction

In present time, the Painlevé equations are extensively arise in several fields of pure and applied
mathematics as well as theoretical physics. Painlevé considered wide class of second order equations and
classified them to the nature of singularities. The Painlevé equations were introduced by Painlevé [10]
and some of his partners during having under observation a non-linear second order differential equation.
Painlevé and his colleagues discovered that there are 50 such canonical equations of the form(

d2u

dt2

)
= R (t,u,

du

dt
),

where R is a holomorphic function in t and rational in the other entries. Singularities of these equations
have a unique property (called as Painlevé property) the only moveable singularities are poles. This vital
property has been occupied by all linear ODE but rarely in non-linear equations. In a study about the
classification of the singularity structure, Painlevé and Gambier found that up to certain transformations,
every second-order differential equation with polynomial coefficients can be put into one of 50 canonical
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forms. Which of these equations are irreducible and cannot be solved?, was the question arisen. Painlevé
explained that 6 of these 50 equations are irreducible and required the introduction of new special func-
tions for its solution. These six second-order nonlinear differential equations are nowadays known as the
Painlevé equations. In this paper, two types of second order Painlevé differential equation are studied.
Type I:

d2u

dt2 = 2u3 + tu+α.

Type II:
d2u

dx2 = 6u2 + x.

As the Painlevé equations were created from strictly mathematical attentions and they have the remark-
able importance of many physical problems including plasma physics, nonlinear waves, statistical me-
chanics, general relativity, quantum gravity, fibre optics and nonlinear optics [12]. This reality has become
the reason for interest in the study of these equations in nearby years. In this paper, the solution to second
order Painlevé equations of both the types have been analyzed by VI Algorithm-I, VI Algorithm-I with
AP, RK4 and RKF45 method are incorporated and comparison with other methods are shown.

2. Variational iteration algorithm-I

Consider a nonlinear differential equation.

L [u(x)] +N [u(x)] = g(x), (2.1)

where L [u(x)] and N [u(x)] denote, correspondingly, the linear and nonlinear term, while g(x) is the
source term. Constructing correction functional for (2.1), which reads

uk+1(x) = uk(x) +

∫x
0
λ (η)

[
L {uk (η)}+ ˜N {uk (η)}− g (η)

]
dη, (2.2)

where λ is known as Lagrange multiplier [23], which can be found by variation theory [14–16, 20, 21],
taking δ on both sides of the recurrence relation (2.2) w.r.t the variable uk(x),

δuk+1(x) = δuk(x) + δ

∫x
0
λ (η)

[
L {uk (η)}+ ˜N {uk (η)}− g (η)

]
dη, (2.3)

where ũk (η) is a restricted variable such that δũk (η) = 0. Utilizing optimality conditions, the estimation
of Lagrange multiplier λ(η) can be distinguished. An accurate arrangement can be acquired when k ways
to deal with limitlessness,

u(x) = lim
k→∞uk(x).

The overhead strategy for finding the exact solution is known as variational iteration algorithm-I (VIA-I)
proposed for the first time by a Chinese mathematicians Ji-Huan He [17–19]. The basic concept was taken
from the general Lagrange multiplier method of Inokuti et al. [23]. Presently this strategy has been created
to handle a vast range of problems started from different fields of sciences to obtain precise solutions of
nonlinear problems and it has been modified further [1, 3–7, 22, 24–26]. In VIA-I, an unidentified helper
parameter h will be presented which was used in HPM [27]. The ideal decision of h increases the accuracy
and efficiency of the technique. After presenting h, equation (2.3) will yield the formula

δuk+1(x) = δuk(x) + hδ

∫x
0
λ (η)

[
L {uk (η)}+ ˜N {uk (η)}− g (η)

]
dη.
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Summarizing the iterative algorithm for equation (2.1) as,
u0(η) is an appropriate initial approximation,

u1(x,h) = u0(x) + h
x∫
0
λ(η)[Nu0(η) − g(η)]dη,

uk+1(x,h) = uk(x,h) + h
x∫
0
λ(η)[Nuk(η,h) − g(η,h)]dη.

The estimated solution uk (x,h) has the helper parameter h, which guarantees the intermingling to the
precise solution. This procedure is known as variational iteration algorithm-I with an auxiliary parameter
(VIA-I with AP) [4, 11], which is extremely basic, less demanding to execute and is likewise able to
approximate the solution with high exactness and accuracy in a vast solution domain. For the convergence
of this method, see [9].

3. Type I of second order Painlevé differential equation

The second order Painlevé differential equation is formulated in the below form

d2u

dt2 = 2u3 + tu+α, (3.1)

with initial conditions: u (0) = 1, u′ (0) = 0. First, we find the solution by the use of VIA-I. Constructing
the correction functional for equation (3.1):

uk+1 (t) = uk (t) +

∫t
0
λ (η)

{
d2uk ( η)

dt2 − 2 ˜
(uk(η))

3 − t ˜(uk(η)) − (̃α)

}
dη. (3.2)

Utilizing optimality conditions, the estimation of Lagrange multiplier λ (η) is λ (η) = η− t. Utilizing this
estimation of λ(η) in equation (3.2) results in the below iterative scheme:

uk+1 (t) = uk (t) +

∫t
0
(η− t)

{
d2uk ( η)

dt2 − 2 (uk(η))
3 − t (uk(η)) − (α)

}
dη. (3.3)

Starting with the initial approximation, u0 (t) = 1+αt2

2 , one can get the below approximations by utilizing
the iterative scheme (3.3),

u0 (t) = 1 +α
t2

2
,

u1 (t) =
a3(t8)

224
+
a2(t6)

20
+
a(t5)

40
+
a(t4)

4
+
a(t2)

2
+

(t3)

6
+ t2 + 1,

...

We stop the solution procedure at u3 (t) and combined the overhead series solution with the [4/4] Padé
approximates to acquire our required approximate solution. For subtleties of Padé approximates, see [11].
Now we elucidate this second order Painlevé differential equation by VIA-I with AP. Using VIA-I with
AP, recurrence relation for (3.1) is

uk+1 (t, h) = uk (t, h) − h(η− t)
∫t

0

{
∂2uk ( η,h)

∂ t2
− 2 (uk(η,h))3 − t (uk(η,h)) − (α)

}
dη. (3.4)

Starting with the initial approximation, u0 (t) = 1 + αt2

2 , one can get the below other approximations by
utilizing the recurrence relation (3.4),

u0 (t) = 1 +α
t2

2
,
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u1 (t, h) = h

(
a3(t8)

224
+
a2(t6)

20
+
a(t5)

40
+
a(t4)

4
+

(t3)

6
+ t2

)
+
a(t2)

2
+ 1,

...

We stop the solution process of the proposed technique at u3 (t,h). Residual function for choosing optimal
value of the helper parameter:

r3 (t, h) =
∂2u3 ( t,h)

∂ t2
− 2 (u3(t,h))

3 − t (u3(t,h)) − (α) .

The square of residual function for 3rd-order approximation w.r.t. h for (x, t) ε [0, 1]× [0, 1] is

1
61

10∑
i=0

(
r3

(
i

30
,h
))2

.

Square residual function gives minimum value at h=1.12966217481889, the traditional variational iteration
method always leads to a good result as well but here this modification make it more convergent and
efficient. Now solving the second order Painlevé differential equation using RK4 method. We change
equation (3.1) into a system of first order IVP using u (t) = u (t) , v (t) = u′ (t) . The above assumptions
transform the second order Painlevé equation into the system

du

dt
= v (t) ,

dv

dt
= 2u3 + tu+α

with the initial conditions, u(0) = 1, v (0) = 0. RK4 method for a system of second order differential
equations is

f (t,u, v) = v (t) , g (t,u, v) = 2u3 + tu+α, t0 = 0, u0 = 1, v0 = 0, h = 0.1,
k1,1 = h ∗ f (ti,ui, vi) ,
k1,2 = h ∗ g (ti,ui, vi) ,

k2,1 = h ∗ f(ti +
h

2
, ui +

1
2
k1,1, vi +

1
2
k1,2),

k2,2 = h ∗ g(ti +
h

2
, ui +

1
2
k1,1, vi +

1
2
k1,2),

k3,1 = h ∗ f(ti +
h

2
, ui +

1
2
k2,1, vi +

1
2
k2,2),

k3,2 = h ∗ g(ti +
h

2
, ui +

1
2
k21, vi +

1
2
k2,2),

k4,1 = h ∗ f(ti + h, ui + k3,1, vi + k3,2),
k4,2 = h ∗ g(ti + h, ui + k3,1, vi + k3,2),

ui+1 = ui +
1
6
(k1,1 + 2k2,1 + 2k3,1 + k4,1) , i = 0, 1, 2, 3, . . . , 21.

At last, solving the second order Painlevé differential equation by using RK Fehlberg method, which is
an approach for the numerical solution of ODEs suggested by Erwin Fehlberg. Each step requires the
following coefficient equations

k1 = h ∗ f (ti,ui) ,

k2 = h ∗ f(ti +
h

4
, ui +

1
4
k1),
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k3 = h ∗ f(ti +
3h
8

, ui +
3

32
k1 +

9
32
k2),

k4 = h ∗ f(ti +
12h
13

, ui +
1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3),

k5 = h ∗ f(ti + h, ui +
439
216

k1 − 8k2 +
3680
513

k3 −
845
4104

k4),

k6 = h ∗ f(ti +
h

2
,ui −

8
27
k1 + 2k2 −

3544
2565

k3 +
1859
4104

k4 −
11
40
k5).

Runge Kutta Method of order 4 is

ui+1 = ui +
25
216

k1 +
1408
2565

k3 +
2197
4104

k4 −
1
5
k5.

Runge Kutta Method of order 5

vi+1 = ui +
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 −
9

50
k5 +

2
55
k6.

Runge Kutta Fehlberg Method (RKF45) has a built-in routine existing in Maple. The results obtained
using Maple and Matlab are displayed in Figure 1.

t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VIA-I

VIA-I AP

RKF45

RK4

Figure 1: Comparison of the approximate solutions by VIA-I with AP, VIA-I, RKF45, and RK4.

Table 1: Comparison of the results for Painlevé differential equation (3.1).
t RKF45 RK4 VIA-I VIA-I with AP

0.1 1.015 1.015 1.015 1.015
0.2 1.063 1.063 1.063 1.063
0.3 1.146 1.146 1.146 1.146
0.4 1.274 1.274 1.273 1.275
0.5 1.459 1.459 1.457 1.468
0.6 1.725 1.725 1.716 1.743
0.7 2.118 2.118 2.087 2.156
0.8 2.737 2.736 2.635 2.806
0.9 3.834 3.830 3.496 3.934
1.0 6.311 6.274 5.005 6.259
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The graphical result displays that at t=0.7, the VIA-I starts diverging while VIA-I with AP, RKF45 and
RK4 show almost similar results. Here, four methods have been analyzed to solve Painlevé II differential
equation. As there is no exact solution of the said equation, in this way, for examination VIA-I, VIA-I
with AP, RKF45 and RK4 have been utilized. The graphical and numerical outcomes demonstrate that
VIA-I with AP is a progressively precise and dependable technique for solving second order Painlevé
differential equation than VIA-I.

4. Type II of second order Painlevé differential equation

The second order Painlevé differential equation [9, 13, 22] is formulated in the below form

d2u

dx2 = 6u2 + x, (4.1)

with below initial conditions: u (0) = 0, u′ (0) = 1. First, we find the solution by the use of VIA-I.
Constructing the correction functional for equation (4.1):

uk+1 (x) = uk (x) +

∫t
0
λ (η)

{
d2uk ( η)

dx2 − 6 ˜
(uk(η))

2 − η

}
dη. (4.2)

Utilizing optimality conditions [8], the estimation of Lagrange multiplier λ (η) is λ (η) = η− t. Utilizing
this estimation of λ(η) in equation (4.2) results in the below iterative scheme:

uk+1 (x) = uk (x) +

∫t
0
(η− x)

{
d2uk ( η)

dx2 − 6 (uk(η))
2 − η

}
dη. (4.3)

Starting with the initial approximation u0 (t) = x+
1
6x

3, one can get the below approximations by utilizing
the iterative scheme (4.3),

u0 (t) = 1 +α
t2

2
,

u1 (x) = x +
(x4(5x4 + 112x2 + 840))

1680
+
x3

6
,

...

We stop the solution procedure at u3 (t) and combined the overhead series solution with the [4/4] Padé
approximates to acquire our required approximate solution. For subtleties of Padé approximates, see [11].
Now we elucidate this second order Painlevé differential equation by VIA-I with AP. Using VIA-I with
AP, recurrence relation for (4.1) is

uk+1 (x, h) = uk (x, h) − h(η− x)
∫x

0

{
∂2uk ( η,h)

∂ x2 − 6 (uk(η,h))2 − η

}
dη. (4.4)

Starting with the initial approximation u0 (t) = 1 + αt2

2 , one can get the below other approximations by
utilizing the recurrence relation (4.4),

u0 (t) = 1 +α
t2

2
,

u1 (x) = x +
(hx4(5x4 + 112x2 + 840))

1680
+
x3

6
,

...
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We stop the solution process of the proposed technique at u3 (t,h) . Residual function for choosing optimal
value of the helper parameter is

r3 (x, h) =
∂2u3 ( x,h)

∂ x2 − 6 (u3(x,h))2 − x.

The square of residual function for 3rd-order approximation w.r.t. h for (x, t) ε [0, 1]× [0, 1] is

1
11

10∑
i=0

(
r3

(
i

10
,h
))2

.

Square residual function gives minimum value at h=1.07490094963061, the traditional variational iteration
method always leads to a good result as well but here this modification make it more convergent and
efficient.

Table 2: Comparison of the approximate solution by VIA-I with AP with VIA-I, RKF45 and RK4.
x CP and CM [13] ADM [9] MADM [9] VIM [22] Present Maple Results [22]

0.1 0.1097190000 0.1002158320 0.1002601271 0.1002167477 0.1002167477 0.1002167980
0.2 0.2416430000 0.2021177613 0.2021288956 0.2021394527 0.2021394528 0.2021395810
0.3 0.3725930000 0.3086306243 0.3086306987 0.3086307490 0.3086307481 0.3086309826
0.4 0.4814830000 0.4239851458 0.4239860367 0.4239862788 0.4239862923 0.4239865878
0.5 0.5554420000 0.5543356243 0.5543370146 0.5543399110 0.5543401816 0.5543405192
0.7 0.6641910000 0.8992174326 0.8992199875 0.8992296944 0.8992421070 0.8992504369
0.9 1.2976000000 1.4812013434 1.4814889672 1.481778951 1.4819866745 1.4825252525
1.0 2.3111300000 1.9371446837 1.9416721356 1.959421042 1.9601244148 1.9631292204

5. Conclusion

In this article, the Variational iteration algorithm-I with an auxiliary parameter has been employed
for solving second order Painlevé differential equation. Furthermore, this article shows that variational
iteration algorithm-I, RK4 and RK Fehlberg method are appropriate to present Painlevé II differential
equation. Graphical and numerical outcomes demonstrate that VIA-I with AP has great precision and is
more exact and dependable approach than VIA-I for the solution of Painlevé II differential equation.
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