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Abstract

In this paper we discuss generalized essential maps. By establishing a very simple result we are able to present a variety of
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1. Introduction

The topological transversality theorem [4] for continuous compact maps states that for continuous
compact maps F and G with F = G then F is essential if and only if G is essential. The essential map theory
was extended to set valued maps and to d-essential maps [6-8]. In this paper we consider admissible
maps (see below) and we establish a very general topological transversality theorem. To do this we first
present a very simple result which we will then use to establish topological transversality theorems in a
variety of settings.

Let X, Y be metric spaces and I" paracompact. A continuous single valued map p : ' — X is called a
Vietoris map (written p : I’ = X) if the following two conditions are satisfied:

(i). for each x € X, the set p~*(x) is acyclic (with respect to the Cech cohomology functor),
(ii). p is a perfect map i.e., p is closed and for every x € X the set p~!(x) is nonempty and compact.

Let D(X,Y) be the set of all admissible pairs X & T % Y where p is a Vietoris map and q is
continuous. We will denote every such diagram by (p, q). Given two diagrams (p,q) and (p’,q’), where

XE 9 Y, we write (p,q) ~ (p’,q’) if there a homeomorphism f: " — I'" such that p’of = p and
q’ o f = q. The equivalence class of a diagram (p, q) € D(X,Y) with respect to ~ is denoted by

dp=XET3v:X>Y
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or ¢ =[(p,q)] and is called a morphism from X to Y. We let M(X,Y) be the set of all such morphisms.
Note if (p,q), (p1,91) € D(X,Y) (where X Zrd vyand x 2% Y) and (p,q) ~ (p1,q1) then
it is easy to see that for x € X we have q; (pfl(x)) = q(p~'(x)). Forany ¢ € M(X,Y) a set p(x) =
qp~!(x) where ¢ = [(p,q)] is called an image of x under a morphism ¢. Let ¢ € M(X,Y) and (p, q)
a representative of ¢. We define ¢p(X) C Y by ¢(X) = q (p~(X)). Note ¢p(X) does not depend on the
representative of . Now ¢ € M(X,Y) is called compact provided the set ¢(X) is relatively compact in
Y. We say a map ¢ is admissible or determined by a morphism {X Zrs Y} provided ¢(x) = q P H(x)
for any x € X and we write ¢ € Adm(X,Y) (note ¢ is upper semicontinuous) i.e., Adm(X,Y) denotes
the class of all admissible set-valued maps ¢ : X — 2Y (note a set-valued map ¢ : X — 2Y is admissible
if it is represented by an admissible pair). Let U be open in X and let F, G € Admoy (U, X) (e, F, G €
Adm(U,X) with x ¢ F(x), x ¢ G(x) for x € dU) be compact maps. We say F = G (compactly) in
Admpy (U, X) if there exists a (compact) admissible ¥ : U x [0,1] — 2X with x ¢ W(x) for any x € 9 U
and t € (0,1), Yo = Fand ¥; = G (here Y¢(x) = ¥(x,t)). Note = (compactly) in Admay (U, X) is an
equivalence relation; see [3, Section 46], [5, Section 5]. Suppose F € Admay (U, X) is a compact map and
f: U — X is a single valued continuous compact map with x # f(x) for x € dU. For a condition (clearly
satisfied if f is the zero map) to guarantee that F = f (compactly) in Admau (U, X) see [3, (Section 46),
Proposition 46.3].

2. Topological Transversality Theorem

We will consider classes A and B of maps. Let E be a completely regular space and U an open subset
of E.

Definition 2.1. We say F € A(U,E) if F € A(U,E) and F : U — K(E) is a upper semicontinuous (u.s.c.)
compact map; here U denotes the closure of U in E and K(E) denotes the family of nonempty compact
subsets of E.

Remark 2.2. Examples of F € A(U, E) might be that F has convex values or F has acyclic values or F is
admissible (as described in Section 1).

In this paper we fixa ® € B(U, E) (i.e., ® € B(U,E) and ® : U — K(E) is a u.s.c. map).

Definition 2.3. We say F € Aay (U, E) if F € A(U,E) and ®(x)NF(x) =0 for x € dU; here dU denotes
the boundary of U in E.

Definition 2.4. Let F, G € Apu(U,E). Wesay F = G in Ay (U, E) if there exists a u.s.c. compact map
Y:Ux[0,1 — K(E) with ¥ € A(Ux [0,1],E), ®(x) NW¢(x) =0 for any x € dU and t € (0,1) (here
Yi(x) = ¥(x,t)), Yo =Fand ¥; = G. In addition here we always assume for any map ® € A(U x [0,1], E)
and any maps g € C(U,U x [0,1]) and f € C(U x [0,1],U x [0,1]) then Oog € A(U,E) and Ooc f €
A(U x [0,1], E); here C denotes the class of single valued continuous functions.

Remark 2.5.

(a). In our results below alternatively we could use the following definition for = in Aay (U, E): F = G
in Aau (U, E) if there exists a u.s.c. compact map ¥: U x [0,1] — K(E) with ¥(.,n(.)) € A(U, E) for any
continuous function 1 : U — [0,1] with n(dU) = 0, ®(x) N WY¢(x) =0 for any x € dU and t € (0,1) (here
Yi(x) = ¥(x, 1), Yo = Fand ¥; = G. [Note the additional assumption in Definition 2.4 is not needed
here].

(b). Throughout the paper we assume = in Ay (U, E) is a reflexive, symmetric relation.

Remark 2.6. Let F € Agu(U, E). We say F is ®—essential in Ay (U, E) if for every map J € Apu(U, E)
with Jlau = Flou and J=F in Ay (U, E) there exists a x € U with ®(x) N ] (x) # 0.

We now present a simple result which will more or less immediately yield a very general topological
transversality theorem.
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Theorem 2.7. Let E be a completely regular topological space, U an open subset of E, F € Apu(U,E) and
G € Apu (U, E) is ®—essential in Ayu (U, E). Also suppose
for any map | eﬁAau(U,E) with Jlou = Flou and @.1)
J=F in Agu(W,E) wehave G =] in Ayu(U,E). )

Then F is essential in Aay (U, E).

Proof. Without loss of generality assume = in Asu(U, E) is as in Definition 2.4. Consider any map | €
Asu(l, E) with Jlau = Flou and ] = F in Apyu(U,E). From (2.1) there exists a u.s.c. compact map
H) : U x [0,1] — K(E) with H € A(U x[0,1],E), ®(x) NH](x) =0 for any x € dU and t € (0,1) (here
Hl(x) = H/(x,1)), H) = G and H] =]. Let

K={xelU: d(x)NH/(x,t) #0 for some t € [0,1]}

and
D={(x,t)eUx[01]: ®(x)NH (x,t) £0}.

Now D # () (note G is ®—essential in Ay (U, E)) and D is closed (note ® and HJ are u.s.c.) and so
D is compact (note H is a compact map). Let 7t : U x [0,1] — U be the projection. Now K = 7t(D) is
closed (see Kuratowski’s theorem [2, pp 126]) and so in fact compact (recall projections are continuous).
Also note KNoU = § (since ®(x) N H{(x) = () for any x € 0U and t € [0,1]) so since E is Tychonoff
there exists a continuous map p : U — [0,1] with p(dU) = 0 and p(K) = 1. Define the map R by
R(x) = HI(x,u(x)). Now R € Ayy(U,E) (note HI(x,u(x)) = Hl o g(x) where g : U — U x [0,1] is
given by g(x) = (x, u(x))) with Rlau = Glau (note if x € oU then R(x) = HJ(x,0) = G(x) and so
R(x) ND(x) = G(x) N D(x)). We now show R = G in Ay (U, E). To see this let Q : U x [0,1] — K(E) be
given by Q(x,t) = H/(x,t u(x)) = H) o f(x, t) where f : U x [0,1] — U x [0, 1] is given by f(x,t) = (x, t n(x)).
NoteQeAUx [0,1,E), Qo = G, Q1 = Rand ®(x) N Q¢(x) =0 for any x € oU and t € (0,1) (since if
€ (0,1) and x € 6Uthen O(x)NH (x, tpu(x)) = O(x )ﬁH] w(x )( x) so x € K and as a result u(x) = 11i.e.,

q)(x) NH (x,tu(x)) = ©(x) NHI(x,t)). Thus R = G in Aay(U,E). Since G is ®—essential in Ay (U, E)
there exists a x € U with ®(x) NR(x) # 0 (i.e., O(x )ﬁHL (x) # 0). Thus x € K, u(x) = 1 and so

0 #@(x)NH](x) = @(x) N](x). O

Remark 2.8.

(i). In the proof of Theorem 2.7 it is simple to adjust the proof if we use = in Ay (U, E) from Remark 2.5
if we note R(.) = Hl(lu(.)) and Q(.,v(.)) = H](.,v(.Lu(.)) =H(.,w(.)) (withw(.) =v(.)u(.))
for any continuous v : U — [0, 1] with v(oU) = 0 (note w : U — [0, 1] is continuous and w(oU) = 0).

(ii). One could replace u.s.c. in the definition of A(U, E), B(U, E), Definition 2.4 and Remark 2.5 with any
condition that guarantees that K in the proof of Theorem 2.7 is closed; this is all that is needed if E is
normal. If E is Tychonoff and not normal the one can also replace the compactness of the map in A(U, E),
Definition 2.4 and Remark 2.5 with any condition that guarantees that K in the proof of Theorem 2.7 is
compact.

Example 2.9. Theorem 2.7 immediately yields a general Leray-Schauder type alternative for coincidences.
Let E be a completely metrizable locally convex space, U an open subset of E, F € Apu(U,E), G €
Asu (U, E) is ®—essential in Aay (U, E) and @ (x)N[tF(x)+ (1—t)G(x)] = 0 for x € dU and t € (0,1).
For any map ] € Ay (U, E) with Jlau = Flou suppose H) € A(U x [0,1], E) where HJ (x,t) = tJ(x) + (1 —
t) G(x) [Also here we assume for any map ® € A(U x [0,1],E) and any maps g € C(U, U x [0,1]) and
f € C(Ux[0,1],U x [0,1]) then ®og € A(U,E) and O of € A(U x [0,1],E)]. Then F is ®-essential in
Asu(l,E).
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The proof follows from Theorem 2.7 since topological vector spaces are completely regular and note
if ] € Apu(U,E) with Jlou = Flou then with HJ(x,t) = tJ(x) + (1 —1)G(x) note H} = G, H] =],
HJ : U x [0,1] — K(E) is a u.s.c. compact (see [1, Theorem 4.18]) map, H! € A(U x [0,1],E) and @ (x) N
Hl(x) = 0 for x € U and t € (0,1) (if x € dU and t € (0,1) then since Jlou = Flou we note that
D(x)N H{(x) =O(x)N[tF(x)+ (1 —1) G(x)]) so as a result G = | (Definition 2.4) in Ayy (U, E) (i.e., (2.1)
holds). [Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff)
topological vector space E which has the property that the closed convex hull of a compact set in E
is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a
topological vector space].

We now present the topological transversality theorem in a general setting. Assume

=~ in Asu(U,E) isan equivalence relation. (2.2)

Theorem 2.10. Let E be a completely regular topological space, U an open subset of £ and assume (2.2) holds.
Suppose F and G are two maps in Ay (U, E) with F = G in Agy (U, E). Then F is ®—essential in Asy (U, E) if
and only if G is ®—-essential in Aay (U, E).

Proof. Assume G is ®-essential in Aay (U, E). To show F is ®@—essential in Apy (U, E) let ] € Aau (U, E)
with Jlau = Flou and ] = Fin Aau(U, E). Now since F = G in Ayu(U, E) then (2.2) guarantees that
G =] in Apu(U,E) ie, (2.1) holds. Then Theorem 2.7 guarantees that F is ®—essential in Aay (U, E). A
similar argument shows that if F is ®-essential in Ay (U, E) then G is ®—essential in Aay (U, E). O

Assume (2.2) holds. If F and G are maps in Aay (U, E) with Flou = Gloy is F= G in Au(U, E)? We
will discuss this now.
We assume the following conditions:

E is a (Hausdorff) topological vector space and U is convex (2.3)

there exists a retraction r: U — oU (2.4)

and

{ for any map © € A(U,E) and fe C(Ux [0,1],U) (2.5)

then ®of e A(U x [0,1],E).

Remark 2.11. Note topological vector spaces are completely regular. Also if E is an infinite dimensional
Banach space and U is convex then (2.4) holds. Also note if A is closed under composition then (2.5)
holds.

Let r be in (2.4) and let F and G be maps in Aay (U, E) with Floy = Glau. Consider the map F* given
by F*(x) = F(r(x)) for x € U. Note F*(x) = G(r(x)) for x € U since Flay = Glou. Let
H(x,A) = G2AT(x) + (1 —=2A)x) = Goj (x,A) for (x,A) € U x [O, ;]

(here j : U x [0 1] — U (note U is convex) is given by j(x,A) =2A1(x)+ (1—2A)x). Now H: U x [0 1] —

72 ’2
K(E) is a u.s.c. compact map. Also from (2.5) note H € A(U x [0, 3] , E) with ®@(x) NHa(x) =0 for x € dU
and A € [0, %] (note if x € U and A € [0, %] then since r(x) = x we have @ (x) N H)(x) = ©(x) N G(x)).

Thus G = F* in Aay (U, E) (Definition 2.4). Similarly with
Q(x,A\) =D((2—2A)r(x) +(2A—1)x) for (x,A) € U x B,l}

we see that F* = F in Ay (U, E) (Definition 2.4). Combining gives F = G in Aay (U, E) (Definition 2.4).
In this situation we could replace Definition 2.6 with:
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Definition 2.12. Let F € Apu(U, E). We say F is essential in Aay (U, E) if for every map | € Apu(U, E)
with Jlau = Flou there exists a x € U with ®(x) N7 (x) # 0.

Now from Theorem 2.7 (in fact here the argument would be shorter since the map Q is not needed
and the assumption @ o f € A(U x [0, 1], E) is not needed in Definition 2.4) and Theorem 2.10 we have:

Theorem 2.13. Let E be a topological vector space, U an open convex subset of € and assume (2.2), (2.4) and
(2.5) hold. Suppose F and G are two maps in Agu(U, E) with F = G in Agu(U, E) (as in Definition 2.4). Then F
is ®—essential (Definition 2.12) in Aau (U, E) if and only if G is ®—essential (Definition 2.12) in Asy (U, E).

Remark 2.14.
(i). Suppose (2.4) and (2.5) hold and in addition assume

for any map © € A(U,E) then O(.,n(.))=0of(.,n(.)) € A(U,E)
{ for any continuous function n: U — [0,1] with n(dU) =0 where (2.6)
f(x,t) =tr(x)+(1—t)x, t € [0,1], x € U.
Let F and G be maps in Apy (U, E) with Flau = Glou. It is simple to adjust the proof above (use (2.6)
instead of (2.5)) to establish F = G in Aay (U, E) (as in Remark 2.5). As a result we get immediately
Theorem 2.13 (with (2.5) replaced by (2.6) and = in Ay (U, E) (Definition 2.4) replaced by = in Ayy (U, E)
(Remark 2.5)).

(ii). Let F and G be maps in Aay (U, E) with Flay = Glau. Assume the following conditions:
E is a completely metrizable locally convex space (2.7)

O(x)N[tFx)+(1—t)G(x)] =0 for x € dU and t e (0,1) (2.8)
and

{ n()F()+(1—-n(.))G(.) € A(U,E) forany 2.9)

continuous function n: U — [0,1] with n(dU) =0.

Let H(x,A) = AF(x) + (1 —A) G(x) for (x,A) € U x [0,1]. Note H : U x [0,1] — K(E) is a u.s.c. compact
(see [1, Theorem 4.18]) map and by (2.9) note H(.,n(.)) € A(U, E) for any continuous function n : U —
[0,1], and from (2.8) note ®(x) N H¢(x) =0 for x € dU and t € (0,1) so as a result F = G in Ayu(U,E)
(Remark 2.5). [Note (2.7) can be replaced by any topological vector space E which has the property that
the closed convex hull of a compact set in E is compact]. As a result in this setting we get immediately
Theorem 2.13 (with (2.3), (2.4), (2.5) replaced by (2.7), (2.8), (2.9) and = in Aay(U, E) (Definition 2.4)
replaced by = in Aay (U, E) (Remark 2.5)).

Now we present an example of a ®—essential (Definition 2.12) map.

Example 2.15. Let E be a (Hausdorff) topological space, U an open subset of E, ® € B(EE) (ie,
® € B(E,E) and @ : E — K(E) is a u.s.c. map) and F € Ajy (U, E). Assume the following conditions hold:

there exists a x € U with ®(x)N{0} # () (2.10)
there exists a retraction v:E — U (2.11)
O(x)NAF(x) =0 for xeoU and A€ (0,1) (2.12)
for any continuous map p:E — [0,1] with p(E\U) =0
and any map ] € Apu(U, E) with Jlau = Flau (2.13)
there existsa w € E with ®(w)Nnpu(w) J(r(w)) #0

and
thereisno z € E\U with ®(z) N{0} # 0. (2.14)
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Then F is ®-essential (Definition 2.12) in Asu(U, E).
To see this let | € Asu (U, E) with J|au = Flau. Now let

K={xelU: ®(x)NAJ(x) #0 forsome A€ [0,1]}.

Now K # ) (see (2.10)) is compact and K C U. In fact K € U from (2.12) (note if x € dU and x € K
then for some A € [0,1] we have () # ®@(x) NAJ(x) = @(x) NAF(x), a contradiction). Then there exists a
continuous map p:E — [0,1] with p(E\U) =0 and p(K) =1. Let r be as in (2.11) and (2.13) guarantees
that there exists a x € E with ®(x) Nu(x)J(r(x)) # 0. If x € E\U then pu(x) = 0 so ®(x) N{0} # 0,
and this contradicts (2.14). Thus x € U so ®©(x)Nu(x)]J(x) # 0, so x € K, pu(x) = 1 and consequently

)N J(x) #0.
Remark 2.16. It is very easy to extend the above ideas to the (L, T) ®-essential maps in [6].

Now we consider a generalization of ®—essential maps, namely the d—®-essential maps. Let E be
a completely regular topological space and U an open subset of E. For any map F € A(U,E) write
FF=IxF:U—K(UxE),with I: U — U given by I(x) =x, and let

d: {(F*)*l (B)} Ul = O (2.15)

be any map with values in the nonempty set QO where B = {(x, ®(x)) : x € U}.

Definition 2.17. Let F € Agu(U, E) and write F* = I x F. We say F* : U — K(U x E) is d-®—essential if
for every map | € Agu (U, E) (write J* =1xJ) with Jlou = Flou and ] = F in Aju(U, E) we have that
a((F)7 ) =a (Um0 (B) #a).

Remark 2.18. If F* is d—®-essential then

0+ (F) (B)={xeU: (x,Fx)n(x O(x)) 0}
so there exists a x € U with (x, ®(x)) N (x,F(x)) #0 (i.e., O(x) x) # ().

Theorem 2.19. Let E be a completely regular topological space, U an open subset of €, B = {(x, ®(x)): x € U}
d is defined in (2.15), F € Apu(U,E) and G € Apy (U, E) (write F* = I x Fand G* = 1 x G). Suppose G* is

d—O—essential and .
for any map ] € Apqu(U,E) with Jlou = Flou and
J=F in Agu(U,E) wehave G =7 in Ayu(U,E) (2.16)

and d ((F)7" (B)) =d (617" (B)).
Then F* is d—®—essential.
Proof. Without loss of generality assume = in Apy (U, E) is as in Definition 2.4. Consider any map | €

Asu (U, E) (write J* = I x J) with Jlau = Flou and | = F in Agy (U, E). From (2.16) there exists a u.s.c.
compact map H/ - Ux[0,1] — K(E) with H € A(U x [0,1],E), ®(x) ﬁH{(x) = { for any x € oU

and t € (0,1) (here H](x) = H/(x,1)), H} = G, H] = J and d((F*)*l (B)> - d((G*r1 (B)). Let
(H))*: U x [0,1] = K(U x E) be given by (H)*(x,t) = (x, H/(x, t)) and let

K={xelU: (x,®x))N(H)*(xt)#0 forsome te [0,1]}.

Now K # 0 is closed, compact and KN oU = ) so since E is Tychonoff there exists a continuous map
w: U — [0,1] with u(dU) =0 and p(K) = 1. Let R(x) = H/(x, u(x)) and write R* = I x R. Now as in
Theorem 2.7, R € Ayu (U, E) with Rlagy = Glau and R = G in Ay (U, E). Since G* is d-®—-essential then

a(@)7 ) =a (R (B)) # (). (2.17)
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Now since u(K) =1 we have

(R (B)={xeU: (x,®(x)N(xH(x ux)) #0}
={xel: (x,®x)NxH(x1))#0}=07")"(B),

so from (2.17) we have d ((G*)_1 (B)) =d ((]*)_1 (B)) # d(0). Now combine with the above and we
have d((F*)_l (B)) - d((]*)_l (B)) £ d(0). 0

Note again it is simple to adjust the proof in Theorem 2.19 if we use = in Aay (U, E) from Remark 2.5.

Theorem 2.20. Let E be a completely regular topological space, U an open subset of E, B = {(x,®(x)): x e U},
d is defined in (2.15) and assume (2.2) holds. Suppose F and G are two maps in Ay (U, E) (write F* =1 x F and
G*=1xG)and F = G in Agu(U, E). Then F* is d-D—-essential if and only if G* is d—D—essential.

Proof. Without loss of generality assume = in Asu(U, E) is as in Definition 2.4. Assume G* is d-®—
essential. Let ] € Ay (U, E) (write J* = I x J) with Jlou = Flou and | = F in Apy (U, E). Iflve show
(2.16) then F* is d—®-essential from Theorem 2.19. Now (2.2) implies that G = ] in Ajyu(U,E). To

complete (2.16) we need to show d <(F*)_1 (B)) =d ((G*)_1 (B)). We will follow the argument in
Theorem 2.19. Note since G = Fin Ay (U, E) let H: U x [0,1] — K(E) be a u.s.c. compact map with
He A(Ux[0,1],E), ®(x)NH(x) =0 for any x € dU and t € (0,1) (here H¢(x) = H(x,t)), Hp = G and
H; =F. Let H*: U x [0,1] — K(U x E) be given by H*(x, t) = (x, H(x,t)) and let

K={xel: (x,®(x))NH*(x,t) #0 forsome t e [0,1]}.

Now K # ) and there exists a continuous map p : U7—> (0,1] with p(dU) = 0 and p(K) = 1. Let
R(x) = H(x, u(x)) and write R* = I x R. Now R € Ay (U, E) with Rlgu = Glau and R = G in Ay (U, E)

so since G* is d—®-essential then d ((G*)*1 (B)) =d ((R*)*1 (B)) # d(0). Now since p(K) =1 we have

(R (B)={xeU: (x,®(x))N(x Hix, nx))) #0}
={xelU: (x,®(x)N(xHx1)#0}=(F)" (B),

s0 d ((F*)_l (B)) —d <(G*)_1 (B)). 0

Note again it is simple to adjust the proof in Theorem 2.20 if we use = in Aay (U, E) from Remark 2.5.

Remark 2.21. It is very easy to extend the above ideas to the (L, T) d—®—essential maps in [7].

References

[1] C. D. Aliprantis, K. C. Border, Infinite-Dimensional Analysis, Studies in Economic Theory, Springer—Verlag, Berlin,
(1994). 2,2.14

2] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa, (1977). 2

3] L. Gérniewicz, Topological fixed point theory of multivalued mappings, Kluwer Academic Publ., Dordrecht, (1999). 1

4] A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 983-985. 1

5] W. Kryszewski, Topological and approximation methods of degree theory of set—valued maps, Dissertationes Math.
(Rozprawy Mat.), 336 (1994), 101 pages. 1

[6] D. O’'Regan, Generalized coincidence theory for set—valued maps, J. Nonlinear Sci. Appl., 10 (2017), 855-864. 1, 2.16

[7] D. O'Regan, Topological transversality principles and general coincidence theory, An. tiin. Univ. “Ovidius” Constana
Ser. Mat., 25 (2017), 159-170. 2.21

[8] R. Precup, On the topological transversality principle, Nonlinear Anal., 20 (1993), 1-9. 1


https://doi.org/10.1007/978-3-662-03004-2
https://doi.org/10.1007/978-3-662-03004-2
https://scholar.google.com/scholar?as_q=&as_epq=General+Topology&as_oq=&as_eq=&as_occt=title&as_sauthors=Engelking&as_publication=&as_ylo=1977&as_yhi=1977&hl=en&as_sdt=0%2C5
https://doi.org/10.1007/1-4020-4666-9
https://scholar.google.com/scholar?hl=nl&as_sdt=0%2C5&q=Sur+la+methode+de+continuite+de+Poincare&btnG=
http://eudml.org/doc/268505
http://eudml.org/doc/268505
https://doi.org/10.22436/jnsa.010.03.01
https://doi.org/10.1515/auom-2017-0027
https://doi.org/10.1515/auom-2017-0027
https://doi.org/10.1016/0362-546X(93)90181-Q

	Introduction
	Topological Transversality Theorem

