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Abstract
Sufficient conditions are obtained for the global attractivity of the positive equilibrium and boundary equilibria of the

following two-species competitive system with nonlinear inter-inhibition terms

dy1(t)

dt
= y1(t)

[
r1 − a1y1 −

b1

∫t
−∞ K2(t− s)y2(s)ds

1 +

∫t
−∞ K2(t− s)y2(s)ds

]
,
dy2(t)

dt
= y2(t)

[
r2 − a2y2 −

b2

∫t
−∞ K1(t− s)y1(s)ds

1 +

∫t
−∞ K1(t− s)y1(s)ds

]
,

where ri,ai,bi, i = 1, 2 are all positive constants. The results not only improve but also complement the main results of [B. G.
Chen, J. Math. Computer Sci., 16 (2016), 481–494].
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1. Introduction

The aim of this paper is to investigate the global dynamic behaviors of the following two-species
competitive system with nonlinear inter-inhibition terms and infinite delay

dy1(t)

dt
= y1(t)

[
r1 − a1y1 −

b1

∫t
−∞ K2(t− s)y2(s)ds

1 +

∫t
−∞ K2(t− s)y2(s)ds

]
,

dy2(t)

dt
= y2(t)

[
r2 − a2y2 −

b2

∫t
−∞ K1(t− s)y1(s)ds

1 +

∫t
−∞ K1(t− s)y1(s)ds

]
,

(1.1)
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where ri,ai,bi, i = 1, 2 are all positive constants. The delay kernels Ki : [0,+∞) → (0,+∞), i = 1, 2 are
continuous functions such that ∫+∞

0
Ki(s)ds = 1.

We shall consider (1.1) together with the initial conditions

yi(s) = φi(s), s ∈ (−∞, 0], i = 1, 2, (1.2)

where φi ∈ BC+, i = 1, 2 and

BC+ =
{
φ ∈ C((−∞, 0], [0,+∞)) : φ(0) > 0 and φ isbounded

}
.

It is well known that by the fundamental theory of functional differential equations [12], system (1.1) has
a unique solution (y1(t),y2(t)) satisfying the initial condition (1.2).

Traditional two species Lotka-Volterra competition model takes the form

dy1(t)

dt
= y1(t)

[
r1 − a1y1 − b1y2

]
,

dy2(t)

dt
= y2(t)

[
r2 − a2y2 − b2y1

]
.

The system may exhibits the coexists, partial survival or bistable dynamic behaviors, see [20]. Based on
this model, many scholars ([1, 3–34]) proposed more complicated competition model, and investigated
the dynamic behaviors of the system.

Stimulated by the functional response of the predator prey system, Gopalsamy [11] proposed the
following two species competitive system with nonlinear inter-inhibition terms

dy1(t)

dt
= y1(t)

[
r1 − a1y1 −

b1y2

1 + y2

]
,
dy2(t)

dt
= y2(t)

[
r2 − a2y2 −

b2y1

1 + y1

]
, (1.3)

where ri,ai,bi, i = 1, 2 are all positive constants. Recently, Wang et al. [24] studied the dynamic behaviors
of the nonautonomous case of system (1.3), i.e, the following modelling

dy1(t)

dt
= y1(t)

[
r1(t) − a1(t)y1 −

b1(t)y2

1 + y2

]
,
dy2(t)

dt
= y2(t)

[
r2(t) − a2(t)y2 −

b2(t)y1

1 + y1

]
, (1.4)

where yi (i = 1, 2) are the population densities of two competing species at time t; ri(t) (i = 1, 2) are
the intrinsic growth rates of species i; ai (i = 1, 2) are the rates of intraspecific competition of the first
and second species, respectively; bi(t) (i = 1, 2) are the rates of interspecific competition of the first and
second species, respectively. For the almost periodic case, the authors investigated the existence and global
asymptotic stability of positive almost periodic solutions of the system (1.4). However, in their prove of
the stability, the authors had investigated the stability property of the system (1.4) by constructing some
suitable Lyapunov function, this, as was pointed out by Baoguo Chen[2], generally speaking, may lead to
the the conditions become very complicated, the additional condition, to some extent, is necessary. In [2],
by using the iterative method and the theory of differential inequality, Baoguo Chen obtained sufficient
conditions which ensure the global attractivity of the positive equilibrium and boundary equilibrium of
the system (1.3), respectively. Also, at the end of the paper, he pointed out: “ We mention here that a
suitable population model should incorporate some past state of the species, and this will lead to a system
with delay. Whether the delay has positive or negative influence on the dynamic behaviors of the system
is still unknown, we leave this for future investigation.” However, to the best of the authors knowledge,
to this day, still no scholars propose the competition system with nonlinear inter-inhibition terms and
infinite delay, this motivate us to propose the system (1.1).

The aim of this paper is, by further developing the analysis technique of [1–3, 5, 6, 8, 9] and using
the differential inequality theory, to investigate the global dynamic behaviors of the system (1.1). More
precisely, we will prove the following results.
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Theorem 1.1. Assume that the following inequalities

r1(a2 + r2) > b1r2, r2(a1 + r1) > b2r1 (1.5)

hold, then system (1.1) admits a unique positive equilibrium (y∗1 ,y∗2), which is globally attractive, that is, for any
positive solution (y1(t),y2(t)) of system (1.1) with the initial condition (1.2), one has:

lim
t→+∞yi(t) = y∗i , i = 1, 2. (1.6)

Remark 1.2. In addition to (1.5), Baoguo Chen [2] further assume that one of the following conditions
holds,

a2 − b2 + r2 6= 0; (1.7)
a2 − b2 + r2 = 0,a1r2 − a2r1 > 0, (1.8)

then system (1.4) admit a unique positive equilibrium (y∗1 ,y∗2), which is globally attractive. Obviously,
our result not only generalize the main result of Baoguo Chen [2] to the infinite delay case, but also
supplement and complement the main result of Baoguo Chen, by dropping off the unnecessary condition.

As a direct corollary of Theorem 1.1, we have following.

Corollary 1.3. Assume that the following inequalities

r1 > b1, r2 > b2

hold, then system (1.1) admit a unique positive equilibrium (y∗1 ,y∗2), which is globally attractive, that is, for any
positive solution (y1(t),y2(t)) of system (1.1) with the initial condition (1.5), one has:

lim
t→+∞yi(t) = y∗i , i = 1, 2.

Theorem 1.4. Assume that the following inequalities

r1(a2 + r2) > b1r2, r2 −
b2m1

1 +m1
< 0

hold, where

m1 =
r1 −

b1M2
1+M2

a1
, M2 =

r2

a2
,

then

lim
t→+∞y1(t) =

r1

a1
, lim

t→+∞y2(t) = 0.

Theorem 1.5. Assume that the following inequalities

r1 −
b1m2

1 +m2
< 0, r2(a1 + r1) > b2r1

hold, where

m2 =
r2 −

b2M1
1+M1

a2
, M1 =

r1

a1
,

then
lim

t→+∞y1(t) = 0, lim
t→+∞y2(t) =

r2

a2
.

Remark 1.6. Theorems 1.4 and 1.5 are the same as that of the conclusions of Baoguo Chen [2]. Compared
with the corresponding results of Baoguo Chen [2], we can draw the conclusion: In system (1.1), delay has
no influence to the dynamic behaviors of the system. Delay is profitless and harmless to the persistent or
extinction of the species.

The rest rest of the paper is arranged as follows. We will introduce some useful Lemmas in the next
section, and then prove the main results in Section 3.
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2. Lemmas

Now let’s state several lemmas which will be useful in the proving of main results.

Lemma 2.1. Assume that (1.5) holds, then system (1.1) admits a unique positive equilibrium (y∗1 ,y∗2).

Proof. Chen [2] had showed that under the assumption (1.6) and (1.7) or (1.8) hold, then system (1.1)
admits a unique positive equilibrium (y∗1 ,y∗2).

We only mention here that one of the condition (1.7) or (1.8) always holds. Indeed, if (1.7) holds, then
the conclusion holds. Assume that (1.7) do not hold, then a2 − b2 + r2 = 0, thus, by using the second
inequality in (1.5), we have

a1r2 − a2r1 = a1r2 − (b2 − r2)r1 = r2(a1 + r1) − b2r1 > 0,

that is, (1.8) holds. This ends the proof of Lemma 2.1.

As a direct corollary of Lemma 2.2 of Chen cite13, we have the following lemma.

Lemma 2.2. If a > 0,b > 0 and ẋ > x(b− ax), when t > 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) > b

a
.

If a > 0,b > 0 and ẋ 6 x(b− ax), when t > 0 and x(0) > 0, we have

lim sup
t→+∞ x(t) 6

b

a
.

Following Lemma 2.3 is Lemma 3 of Francisco Montes de Oca and Miguel Vivas [10].

Lemma 2.3. Let x : R → R be a bounded nonnegative continuous function, and let k : [0,+∞) → (0,+∞) be a
continuous kernel such that

∫∞
0 k(s)ds = 1. Then

lim inf
t→+∞ x(t) 6 lim inf

t→+∞
∫t
−∞ k(t− s)x(s)ds 6 lim sup

t→+∞
∫t
−∞ k(t− s)x(s)ds 6 lim sup

t→+∞ x(t).

Lemma 2.4. Let (y1(t),y2(t)) be any solution of (1.1)-(1.2), then yi(t) > 0 for all i = 1, 2 in maximal interval of
existence of the solution.

Proof. We note that from (1.1), one has

dy1(t)

dt
= P1(t)y1(t),

dy2(t)

dt
= P2(t)y2(t),

where

P1(t) = r1 − a1y1 −

b1

∫t
−∞ K2(t− s)y2(s)ds

1 +

∫t
−∞ K2(t− s)y2(s)ds

, P2(t) = r2 − a2y2 −

b2

∫t
−∞ K1(t− s)y1(s)ds

1 +

∫t
−∞ K1(t− s)y1(s)ds

.

Hence,

y1(t) = y1(0) exp
{ ∫t

0
P1(s)ds

}
> 0, y2(t) = y2(0) exp

{ ∫t
0
P2(s)ds

}
> 0. (2.1)

This ends the proof of Lemma 2.4.

Lemma 2.4 shows that xi(t) > 0,ui(t) > 0 for all i = 1, 2 in maximal interval of existence of the
solution. For the rest of the paper, the solution of system (1.1) satisfying the initial conditions (1.2) is said
to be positive.
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3. Proof of the main results

Now we are in the position of proving the main results of this paper.

Proof of Theorem 1.1. It follows from (1.5) that there exists a ε > 0 enough small such that

r1 >
b1(

r2
a2

+ ε)

1 + ( r2
a2

+ ε)
+ a1ε, r2 >

b2(
r1
a1

+ ε)

1 + ( r1
a1

+ ε)
+ a2ε. (3.1)

Let (y1(t),y2(t)) be any positive solution of system (1.1) with initial condition (1.5). From system (1.1) it
follows that

dyi(t)

dt
6 yi(t)

[
ri − aiyi

]
. (3.2)

Thus, as a direct corollary of Lemma 2.2, according to (3.1), one has

lim sup
t→+∞ yi(t) 6

ri
ai

. (3.3)

It follows from Lemma 2.3 that

lim sup
t→+∞

∫t
−∞ Ki(t− s)yi(s)ds 6 lim sup

t→+∞ yi(t) 6
ri
ai

. (3.4)

Hence, for enough small ε > 0, which satisfies (3.1), it follows from (3.3) and (3.4) that there exists a T1 > 0
such that for all t > T1

yi(t) <
ri
ai

+ ε
def
= M

(1)
i , i = 1, 2, (3.5)∫t

−∞ Ki(t− s)yi(s)ds <
ri
ai

+ ε
def
= M

(1)
i , i = 1, 2. (3.6)

One could easily see that the function fi(x) =
bix

1 + x
, i = 1, 2 are the increasing function, and so, for t > T1,

it follows from the first equation of system (1.1) and (3.6) that

dy1(t)

dt
> y1(t)

[
r1 − a1y1 −

b1M
(1)
2

1 +M
(1)
2

]
. (3.7)

Thus, as a direct corollary of Lemma 2.2, according to (3.7), one has

lim inf
t→+∞ y1(t) >

r1 −
b1M

(1)
2

1 +M
(1)
2

a1
.

(3.8)

It follows from (2.1) and (3.8) that

lim inf
t→+∞

∫t
−∞ K1(t− s)y1(s)ds > lim inf

t→+∞ y1(t) >

r1 −
b1M

(1)
2

1 +M
(1)
2

a1
.

Hence, for enough small ε > 0, which satisfies (3.1), it follows from (3.1) and (3.6) that there exists a T
′
2 > 0



R. Wu, Z. Gao, F. Chen, J. Math. Computer Sci., 21 (2020), 45–56 50

such that for all t > T2,

y1(t) >

r1 −
b1M

(1)
2

1 +M
(1)
2

a1
− ε

def
= m

(1)
1 for t > T

′
2 ,

∫t
−∞ K1(t− s)y1(s)ds >

r1 −
b1M

(1)
2

1 +M
(1)
2

a1
− ε

def
= m

(1)
1 for t > T

′
2 .

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a T2 > T
′

2
such that

y2(t) >

r2 −
b2M

(1)
1

1 +M
(1)
1

a2
− ε

def
= m

(1)
2 for t > T2,

∫t
−∞ K2(t− s)y2(s)ds >

r2 −
b2M

(1)
1

1 +M
(1)
1

a2
− ε

def
= m

(1)
2 for t > T2. (3.9)

For t > T2, it follows from the first equation of system (1.1), the strict increasing of function fi(x) =
bix

1 + x
, i = 1, 2 and (3.9) that

dy1(t)

dt
6 y1(t)

[
r1 − a1y1 −

b1m
(1)
2

1 +m
(1)
2

]
. (3.10)

Thus, as a direct corollary of Lemma 2.2, according to (3.10), one has

lim sup
t→+∞ y1(t) 6

r1 −
b1m

(1)
2

1 +m
(1)
2

a1
.

(3.11)

It follows from Lemma 2.3 that

lim sup
t→+∞

∫t
−∞ K1(t− s)y1(s)ds 6 lim sup

t→+∞ y1(t) 6

r1 −
b1m

(1)
2

1 +m
(1)
2

a1
.

(3.12)

Hence, for ε > 0 which satisfies (3.1), it follows from (3.11)-(3.12) that there exists a T
′
3 > 0 such that

y1(t) <

r1 −
b1m

(1)
2

1 +m
(1)
2

a1
+
ε

2
def
= M

(2)
1 for t > T

′
3 ,

∫t
−∞ K1(t− s)y1(s)ds <

r1 −
b1m

(1)
2

1 +m
(1)
2

a1
+
ε

2
def
= M

(2)
1 for t > T

′
3 . (3.13)
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Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a T3 > T
′

3
such that

y2(t) <

r2 −
b2m

(1)
1

1 +m
(1)
1

a2
+
ε

2
def
= M

(2)
2 for t > T3,

∫t
−∞ K2(t− s)y2(s)ds <

r2 −
b2m

(1)
1

1 +m
(1)
1

a2
+
ε

2
def
= M

(2)
2 for t > T3. (3.14)

For t > T3, it follows from the first equation of system (1.1), the strict increasing of function fi(x) =
bix

1 + x
, i = 1, 2 and (3.14) that

dy1(t)

dt
> y1(t)

[
r1 − a1y1 −

b1M
(2)
2

1 +M
(2)
2

]
. (3.15)

Thus, as a direct corollary of Lemma 2.2, according to (3.15), one has

lim inf
t→+∞ y1(t) >

r1 −
b1M

(2)
2

1 +M
(2)
2

a1
. (3.16)

It follows from Lemma 2.3 that

lim inf
t→+∞

∫t
−∞ K1(t− s)y1(s)ds > lim sup

t→+∞ y1(t) >

r1 −
b1M

(2)
2

1 +M
(2)
2

a1
.

(3.17)

Hence, for ε > 0 which satisfies (3.1), it follows from (3.16) and (3.17) that there exists a T
′
4 > 0 such that

y1(t) >

r1 −
b1M

(2)
2

1 +M
(2)
2

a1
−
ε

2
def
= m

(2)
1 for t > T

′
4 ,

∫t
−∞ K1(t− s)y1(s)ds >

r1 −
b1M

(2)
2

1 +M
(2)
2

a1
−
ε

2
def
= m

(2)
1 for t > T

′
4 .

Similarly, for above ε > 0, it follows from the second equation of system (1.1) that there exists a T4 > T
′

4
such that

y2(t) >

r2 −
b2M

(2)
1

1 +M
(2)
1

a2
−
ε

2
def
= m

(2)
2 for t > T4,

∫t
−∞ K2(t− s)y2(s)ds >

r2 −
b2M

(2)
1

1 +M
(2)
1

a2
−
ε

2
def
= m

(2)
2 for t > T4.
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One could easily see that

M
(2)
1 =

r1 −
b1m

(1)
2

1 +m
(1)
2

a1
+
ε

2
<
r1

a1
+ ε =M

(1)
1 ,

M
(2)
2 =

r2 −
b2m

(1)
1

1 +m
(1)
1

a2
+
ε

2
<
r2

a2
+ ε =M

(1)
2 ,

m
(2)
1 =

r1 −
b1M

(2)
2

1 +M
(2)
2

a1
−
ε

2
>

r1 −
b1M

(1)
2

1 +M
(1)
2

a1
− ε = m

(1)
1 ,

m
(2)
2 =

r2 −
b2M

(2)
1

1 +M
(2)
1

a2
−
ε

2
>

r2 −
b2M

(1)
1

1 +M
(1)
1

a2
− ε = m

(1)
2 .

Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1, 2,n = 1, 2, . . ., such that for
n > 2

M
(n)
1 =

r1 −
b1m

(n−1)
2

1 +m
(n−1)
2

a1
+
ε

n
, M

(n)
2 =

r2 −
b2m

(n−1)
1

1 +m
(n−1)
1

a2
+
ε

n
,

m
(n)
1 =

r1 −
b1M

(n)
2

1 +M
(n)
2

a1
−
ε

n
, m

(n)
2 =

r2 −
b2M

(n)
1

1 +M
(n)
1

a2
−
ε

n
.

Obviously,

m
(n)
i < Ni(t) < M

(n)
i , for t > T2n, i = 1, 2.

By induction, similarly to the analysis of Chen [2], we could prove that sequences M(n)
i , i = 1, 2 are

non-increasing, and sequences m(n)
i , i = 1, 2 are non-decreasing. Therefore,

lim
t→+∞M(n)

i = yi, lim
t→+∞m(n)

i = y
i
, i = 1, 2.

Letting n→ +∞ in (3.13), we obtain

a1y1 = r1 −
b1y2

1 + y2
, a2y2 = r2 −

b2y1

1 + y1
, a1y1 = r1 −

b1y2

1 + y2
, a2y2 = r2 −

b2y1
1 + y1

,

(3.16) shows that (y1,y2) and (y1,y2) are solutions of the equation

r1 − a1y1 −
b1y2

1 + y2
= 0, r2 − a2y2 −

b2y1

1 + y1
= 0. (3.18)

By Lemma 2.1, (3.18) has a unique positive solution E∗(y∗1 ,y∗2). Hence, we conclude that

yi = yi = y
∗
i , i = 1, 2,

that is
lim

t→+∞yi(t) = y∗i i = 1, 2.

Thus, the unique interior equilibrium E∗(y∗1 ,y∗2) is globally attractive. This completes the proof of Theo-
rem 1.1.
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Proof of Theorem 1.4. Condition

r1(a2 + r2) > b1r2, r2 −
b2m1

1 +m1
< 0

implies that there exists an enough small ε such that

r1 >
b1(

r2
a2

+ ε)

1 + ( r2
a2

+ ε)
+ a1ε, r2 −

b2m
ε
1

1 +mε
1
< 0 (3.19)

holds, where

mε
1 =

r1 −
b1M

ε
2

1+Mε
2

a1
, Mε

2 =
r2

a2
+ ε.

Similarly to the analysis of (3.2)-(3.6), there exists a T1 > 0 such that

yi(t) <
ri
ai

+ ε =Mε
i , i = 1, 2, (3.20)∫t

−∞ Ki(t− s)yi(s)ds <
ri
ai

+ ε
def
= Mε

i , i = 1, 2. (3.21)

Now, for t > T1, it follows from the first equation of system (1.1) and (3.21) that

dy1(t)

dt
> y1(t)

[
r1 − a1y1 −

b1M
ε
2

1 +Mε
2

]
. (3.22)

Thus, as a direct corollary of Lemma 2.2, according to (3.22), one has

lim inf
t→+∞ y1(t) >

r1 −
b1M

ε
2

1 +Mε
2

a1
.

(3.23)

It follows from Lemma 2.3 and (3.23) that

lim inf
t→+∞

∫t
−∞ K1(t− s)y1(s)ds >

r1 −
b1M

ε
2

1 +Mε
2

a1
.

(3.24)

Hence, for enough small ε > 0, which satisfies (3.19), it follows from (3.24) that there exists a T2 > T1 such
that for all t > T2,

∫t
−∞ K1(t− s)y1(s)ds >

r1 −
b1M

ε
2

1 +Mε
2

a1
− ε

def
= mε

1 for t > T2.
(3.25)

From the second equation of system (1.1) and (3.25), for t > T2, we have

dy2(t)

dt
< y2(t)

[
r2 −

b2m
ε
1

1 +mε
1

]
.

Hence,

y2(t) = y2(T2) exp
{ ∫t

T2

[
r2 −

b2m
ε
1

1 +mε
1

]
dt
}
→ 0 as t→ +∞. (3.26)
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Equation (3.26) means that

0 6 lim inf
t→+∞ y2(t) 6 lim sup

t→+∞ y2(t) 6 0.

Hence, by applying Lemma 2.3, we have

lim sup
t→+∞

∫t
−∞ K2(t− s)y2(s)ds 6 lim sup

t→+∞ y2(t) 6 0. (3.27)

For ε1 > 0 enough small, it follows from (3.27) that there exists a T3 > T2 such that

0 <
∫t
−∞ K2(t− s)y2(s)ds < ε1 for all t > T3. (3.28)

It follows from (3.28), the strict increasing of function f1(x) =
b1x

1 + x
, and the first equation of (1.1) that

dy1(t)

dt
> y1(t)

[
r1 − a1y1 −

b1ε1

1 + ε1

]
. (3.29)

Applying Lemma 2.2 to (3.29), it follows that

lim
t→+∞y1(t) >

r1 −
b1ε1

1 + ε1
a1

.

Setting ε→ 0 leads to

lim
t→+∞y1(t) >

r1

a1
.

This together with (3.20) shows that

lim
t→+∞y1(t) =

r1

a1
.

This ends the proof of Theorem 1.1.

Proof of Theorem 1.5. Since the proof of Theorem 1.5 is similar to that of the proof of Theorem 1.4, we omit
the detail here.

4. Discussion

In this paper, we propose a two-species competitive system with nonlinear inter-inhibition terms and
infinite delay, which can be seen as the generalization of the model (1.3), by means of considering the
past state of the species. By using the iterative method, we are able to obtain a set of sufficient conditions
which ensure the global stability of the system. We also investigate the extinction property of the system
(1.1). Our study indicates that the delay is both profitless and harmless.
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