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Abstract

In this paper we introduce a notion of density in posets in a more general fashion. We also
introduce completeness in posets and study compact generation in posets based on such completeness
and density. (©2016 All rights reserved.

Keywords: U-density, U-complete poset, U-compactly generated poset, U-regular interval.

1. Introduction

We begin with the necessary definitions and terminologies in a poset P. An element z of a poset
P is an upper bound of A C P if a < x for all a € A. A lower bound is defined dually. The set
of all upper bounds of A is denoted by A" (read as, A upper cone), where A* = {x € P:x <
a for every a € A} and dually, we have the concept of a lower cone A’ of A. If P contains a finite
number of elements, it is called a finite poset. A subset A of a poset P is called a chain if all the
elements of A are comparable. A poset P is said to be of length n, where n is a natural number, if
there is a chain in P of length n and all chains in P are of length n. A poset P is of finite length if
it is of length n for some natural number n. A poset P is said to be bounded if it has the greatest
(top) and the least (bottom) element denoted by 1 and 0, respectively. By [z,y](z < y;x,y € P)
we denote an interval, that is, set of all z € P for which z < z < y. In a poset P we say that x
is covered by y and write z < y, if x < 2z < y implies ¢ = z or z = y. An element p of a poset P
with 0 is called an atom if 0 < p. The set of atoms of P is denoted by A(P). For a non-zero element
a € P,w(a) denotes the set of atoms contained in a, that is, w(a) = {p € A(P) : p < a}. For the
subsets A, B of a poset P, we denote the followings:
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e {A B}t ={x € P: ris a maximal element in{A, B}'},
e {A, B}V = {x € P:xis a minimal element in{A, B}"}.

A poset P is called weakly atomic if for every pair of elements a,b € P with a < b, there exist
elements u,v € P such that a < u < v < b. A poset P is called strongly atomic if every interval
[z,y] of P has an atom. Equivalently, for every interval [z, y] with z < y, there exists a € P such
that x < a <.

Erne [6] studied compact generation in posets. A subset D C P is called directed subset if for
every z,y € D, (x,y)" is non-empty in D and in this case every finite subset of D has an upper
bound in D (in particular D is non-empty). A poset P is called up-complete if every directed subset
D C P has a join denoted by \/ D. A poset P is called chain-complete or Dedekind complete if
every non-empty chain of P has a join and meet; in other words, if P and its dual are up-complete.
An element x of an up-complete poset P is called compact if for every directed subset D of P with
x < \/ D there exists an element y € D with x < y. A poset P is called compactly generated if each
element of P is a join of compact elements. The set of all compact elements of a poset P is denoted
by K(P). For more details see Gierz et al. [7].

In general, a subset S of a poset P is called join-dense in P, if each element of P is a join of
elements from S. Equivalently, for any two elements a,b € P with a £ b, there is some s € S with
s <a, s % b. We also have the concept of meet-density which is defined dually.

Join-density plays a crucial role in poset theory to construct some important classes of posets. We
mention some of these classes. Let P be a poset;

(i) if the set of all atoms is join-dense in P then P is atomistic,
(ii) if the set of all compact elements is join-dense in P then P is compactly generated.
However, Shewale [9] has given the following definition of an atomistic poset. A Poset P with 0 is
called atomistic if every a € P is such that a € {p € A(P) : p < a}Y.
2. Complete posets
We introduce a more general concept of density in posets as follows:

Definition 2.1. Let P be a poset. A subset S C P is called U-dense in P, if each element of P
belongs to SV for some S; C S. We also have the concept of L-density which is defined dually.

We note that every join-dense subset of a poset P is U-dense but the converse neednot be true.
For instance, in the poset depicted in Figure P; the set of atoms is U-dense but not join-dense.



A. Vaezi, V. Kharat, J. Math. Computer Sci. 16 (2016), 69-76 71

We observe that in a poset P if A(P) is U-dense then P is atomistic in the sense of Shewale [9].
Henceforth, atomistic posets in the sense of Shewale is termed as U-atomistic posets.

Remark 2.2. We observe that if a subset S of a poset P is U-dense in P then for any two elements
a,b € P with a < b, there is some s € S with s <b, s € a. Indeed, consider {si: si <b;i €I} CS.
Then b € {si:si <bjie [}V. If si <afor everyithen b ¢ {si:si <b;ie€ I}V a contradiction.
We apply U-density to the set of all atoms and compact elements of a given poset to obtain and
study classes of posets, namely, atomistic and compactly generated posets, respectively.
For a given pair of elements a,b of a poset we may have the set (a,b)" is nonempty but the set
(a,b)V is an empty set; see the poset P,. This observation along with U-density lead us to define
completeness and further compactness and compact generation in posets.

Definition 2.3. A poset P is called conditionally U-complete if for every subset H C P and for
every u € H", there exists an element v € HY such that v < u. A poset P is called conditionally
L-complete if for every subset H C P and for every | € H', there exists an element ¢t € H” such
that [ < t. A poset P is called conditionally complete if it is both conditionally U-complete and
conditionally L-complete.

We observe that every U-complete poset has the top element 1 and every L-completeposet has
the bottom element 0. Consequently, every complete poset is a bounded poset. We also observe that
a bounded conditionally complete poset is a complete poset. If a complete poset P happens to be a
lattice then our completeness coincides with the lattice completeness. There exist posets which are
complete but not up-complete nor chain-complete and vice versa. The poset depicted in Figure Ps is
a complete poset which is not chain-complete. The poset P is up-complete but it is not U-complete
nor chain-complete. The poset P; is U-complete but not chain-complete nor L-complete. The poset
P, is up-complete as well as chain-complete but it is not U-complete nor L-complete and hence it is
not complete. The poset depicted in the Figure P is conditionally complete. The poset depicted in
Figure P; is conditionally L-complete but not conditionally U-complete.

Remark 2.4. We assert that the converse part of Remark holds in U-complete posets. In fact,
consider two elements a,b € P with a < b such that there exists an element s of a subset S of P
with s < b, s £ a. We claim that S is U-dense in P, that is, for every x € P there exists a subset
S; of S such that z € SY. U-completeness assures that SU is non-empty. On the contrary, assume
that z ¢ SV for some x € P. Then there exists an element y € SV such that y < z. By assumption,
there exists an element s; € Sy such that s; < x, s; £ y. However, s; £ y contradicts the fact that
s1 % y since y € SY.
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Consequently, a subset S of a U-complete poset P is U-dense in P if and only if for any two
elements a,b € P with a < b, there is some s € S with s <b, s £ a.

3. Compact generation in posets

In this section first we define the notion of compactness in posets and then we study compact
generation.

Definition 3.1. An element ¢ of a conditionally complete poset P is called U-compact if ¢ < u for
some u € XY, where X C P implies that ¢ < u; for some u; € XV | where X is a finite subset of
X. The set of all U-compact elements of a poset P is denoted by C(P).

Definition 3.2. A complete poset P is said to be U-compactly generated if the set of all U-compact
elements is U-dense in P. A poset P is said to be U-compactly atomistic if every atom of P is
U-compact and the set of all atoms is U-dense in P.

Evidently, if a poset P is finite then every element is U-compact. If a poset P is both up-complete
and complete then U-compactness implies compactness. Let ¢ be a U-compact element of P and
c < \/ D, where D is a directed subset of P. As ¢ is U-compact and \/ D = DY there exists a finite
subset Dy of D such that ¢ < u for some v € DY. But u € D and so ¢ is compact. The poset P is
complete as well as up-complete. The element ¢ is not U-compact (nor compact) and it is not the
join of compact elements contained in it. In fact, t € (a, b)Y, where both a andb are U-compact. The
poset Py is a U-compactly generated poset which is not compactly generated.

We investigate properties of U-compactly generated posets and its relationships with other known
concepts in posets. One of the concepts which is well studied in the class of atomistic lattices is the
concept of a finite element. An element a in a lattice L with 0 is called finite if either a = 0 or
a is a join of finite number of atoms. Shewale [9] introduced the concept of a finite element in
posets as follows. An element a of a poset P with 0 is called a finite element if either a = 0 or
a € {finitely many atoms}Y.

Remark 3.3. In every U-compactly generated poset the atoms are U-compact. For, let P be a U-
compactly generated poset and let p be an atom of P. Then p € SY, where S C {c € P:c € C(P)}.
Note that ¢ < p for every ¢ € S and we must have at least one non-zero ¢ € S. Otherwise, we get
p € SY = {0} which is not possible. Consequently, such ¢ is p and so p is U-compact.

Birkhoff [I] proved that in an atomistic compactly generated lattice, every compact element is a
finite element. The similar fact we state for posets in the following sense.
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Lemma 3.4. In a U-atomistic U-compactly generated poset (U-compactly atomistic poset), every
U-compact element is a finite element.

Proof. Let P be a poset as described in the statement and let ¢ be a U-compact element of P. Since
P is U-atomistic, ¢ € {w(c)}V. Now, by U-compactness of ¢, there exists a finite subset S of w(c)
such that ¢ € SY. Since S essentially contains finite number of atoms, c is finite. O]

Crawley and Dilworth [5] essentially proved that every compactly generated lattice is weakly
atomic and here we extend this result to posets in the following sense.

Theorem 3.5. Every U-compactly generated poset is weakly atomic.

Proof. Let P be a U-compactly generated poset and b < a in P. Then there exists a U-compact
element ¢ such that ¢ < a, ¢ € b. Asb < a, ¢ < a and P is complete, there exists u € (b, )V such
that b < w < a. Consider Q = {z € P : b < x < u;x # ¢} which is non-empty since b € Q. Note
that for every chain C in @, CY is non-empty and so let d € OV. Clearly b < d < u. Also, d # u
and d # c. Indeed, if d = u then d € (b,c)V and we get ¢ < d. Now, as ¢ is U-compact, there exists
a finite subset (finite chain) T of C such that ¢ < \/T = TV and since T is a finite chain, if = is
the largest element of 7', then we have ¢ < z and consequently = ¢ @, a contradiction. If ¢ < d, by
the similar arguments we get a contradiction. In nutshell, b < d < u with d # ¢ and consequently
d € Q. Tt means that every chain in () has an upper bound in ) and by Zorn’s Lemma, () contains
a maximal element, say v. Now, b < v < u < a and maximality of v ensures that there does not
exist z € P with v < z < u. Indeed, otherwise we get z € (b; ¢)* with z < u, a contradiction to the
fact that u € (b,c)V. Therefore b < v < u < a and P is weakly atomic. O

Next, we extend some results from Stern [10] known for lattices; see also Kalman [8]. The concept
of a complement of an element in a poset is well known and studied in the literature; for more details,
see Chajda [3] and Chajda and Moravkova [4].

Let P be a poset with 0 and 1. A complement of an element ¢ € P is an element a € P if
(a,a)* = {1} and (a,a’)! = {0}. A poset P with 0 and 1 is called complemented when every element
of P has a complement. Let P be a poset. Let z € [a,b] C P. An element y € [a,b] is called a weak
relativecomplement of z in [a, b] if (z,y)" N [a,b] = {b} and (x,y)' N [a,b] = {a}. A poset P is called
weakly relatively complemented if for every interval [a,b] of P, each = in [a,b] has a weak relative
complement in [a, b].

Proposition 3.6. Let P be a U-compactly generated poset. If an atom p € P has a complement p',
then there exists a dual atom m(> p') which is also a complement of p.

Proof. Let P be a U-compactly generated poset, p be an atom and consider the set QQ = {z € P :
(p,2)! = {0};2 > p'} which is non-empty since p € Q. Note that for everychain C' in Q, CV is
non-empty and so let d € CV. We claim that d € Q. Indeed, if d ¢ @Q then (d,p’)' # {0} and so
p < d. Now, P is U-compactly generated so p is U-compact and hence p < {d;} = CV for some finite
subset C; C C. But () is a finite chain, therefore CV = \/ C} and hence d; € C and consequently
(p,d)! = {0}, a contradiction to the fact that p < d;. Thus, d is an upper bound for C' and by Zorn’s
Lemma, there exists a maximal element in ), say m. O

Claim 1: m is the complement of p. As m € Q, (m,p)' = {0}. As p' < m, we must have
(m, p)* = {1}, otherwise (p,p)* # {1} which is not possible.
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Claim 2: m is a dual atom. If m is not a dual atom then there exists an element n which is not
in Q such that m <n < 1. Asn ¢ Q, (n,p)! # {0} sop <nandn € (p,m)* = {1}, that is,
n = 1, a contradiction.

Theorem 3.7. In an atomic U-compactly generated poset P, each atom has a complement if and
only if S' = {0}, where S is the set of all dual atoms of P.

Proof. Let P be an atomic U-compactly generated and S be the set of all dual atoms of P. Suppose
that S' = {0}, and there exists an atom p € P which has no complement. This means p < m for
every dual atom m € P and consequently p € S', a contradiction. Conversely, suppose that each
atom has a complement. If S! # {0} then there exists a non-zero element in S!, say a. Let p be an
atom contained in a. As every dual atom d contains p, there is no dual atom which is a complement
of p, a contradiction to Proposition [3.6] O]

Next, we generalize some definitions and results due to Bjorner [2] and Stern [10] for lattices.

Definition 3.8. We say that an interval [z,y| of a poset of finite length is U-regular, if y €
{atoms of]z,y]}Y. Dually, we have the concept of L-regular intervals. An interval [z,y] is called
an upperinterval if y = 1. It is called a lowerinterval if x = 0.

For every element a € P, [0, a] is U-regular if and only if a € {w(a)}V and so we have the following.

Proposition 3.9. Every lower interval of a poset P of finite length is U-reqular if and only if P is
U-atomistic.

Bjorner [2] essentially proved that if L is a lattice of finite length such that all upper intervals
are join-regular then L is complemented. By the following example we show that this fact fails in
posets. Consider the poset depicted in Figure P; of which every interval is U-regular, how ever the

I

poset is not complemented. Also, it is known that if all upper intervals of a lattice of finite length
are join-regular, then they are meet-regular too (see Stern [I0]). The poset depicted in the Figure
P; shows that although all upper intervals of this poset are U-regular but the interval [0, 1] is not
L-regular.

Remark 3.10. The statement of Theorem can be rephrased as: in a bounded poset P of finite
length, the upper interval [0, 1] is L-regular if and only if each atom of P has a complement.
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Corollary 3.11. An interval [z,y] of a bounded poset of finite length is L-regular if and only if each
atom of [x,y] has a complement in this interval.

Proof. The statement follows immediately by applying Theorem to the interval [z, y]. O

Theorem 3.12. Let P with 0 and 1 be a poset of finite length. Consider the following statements.

1) P is relatively complemented.

2) All intervals of P are L-regular.

4) P is dually U-atomistic.

5

P is U-atomistic.

6

P has no 3-element interval.

(1)
(2)
(3) All intervals of P are U-regular.
(4)
(5)
(6)

Then (— indicates implication)

Proof. Let P be weakly relatively complemented. Then each interval [z,y] is complemented for
z,y € P and in particular, each atom of [z, y] has a complement in [z,y]. Corollary yields now
that each interval is L-regular. In particular, every upper interval [a, 1], @ € P is L-regular and hence
P is dually U-atomistic, proving (1) — (2) — (4). (1) — (3) — (5) follows dually. (5) — (6) and
(4) — (6) are evident. O

We now take a look at the definition of upper semimodular posets introduced by Shewale [9].

Definition 3.13. A poset P is called upper semimodular, briefly USM, if [ < a for some [ € (a, b)*
implies that b < u for all u € (a,b)V. A lower semimodular (LSM) poset is defined dually.

Proposition 3.14. In a complete USM poset P the interval [0,1] is U-reqular if and only if each
upper interval of P is U-regular.

Proof. Let P = [0, 1] be U-regular and consider an arbitrary upper interval [z, 1]. Since 1 = \/{A(P)}
and x < 1, there exists an atom p such that p £ x. By upper semimodularity all the elements of
(p,x)Y are atoms of [z,1]. It follows that the join of all atoms of [z, 1], which can be written in the
form of (¢,z)Y for every atom ¢ £ z, must be 1 since otherwise it contradicts U-regularity of [0, 1].
Hence [z, 1] is U-regular. Converse is true as [0, 1] itself is an upper interval. ]
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Remark 3.15. In every bounded complemented poset P of finite length, 1 = \/{A(P)} (dually, meet
of dual atoms is 0). In fact, since P is complemented then in particular, each dual atom of P has a
complement. The dual of Theorem now implies that the greatest element 1 is the join of atoms.

Evidently, every strongly atomic poset is weakly atomic. The converse need not be true in general.
We obtain a class of posets in which weakly atomicity and strongly atomicity are equivalent.

Proposition 3.16. Let P be a weakly relatively complemented lower semimodular poset. Then P s
strongly atomic if and only if P is weakly atomic.

Proof. Let P be such a given poset and b < a in P. Since P is U-compactly generated, P is weakly
atomic. Therefore, there exist u,v € P such that b < v < u < a. As P is relatively complemented,
v has a complement in [b,u], say v". Since v’ %« v and v < u, by lowersemimodularity, | < v’ for all
I (v,0)r. Asb € (v,v)* we have b < v and consequently P is strongly atomic. ]
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