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Abstract

In this paper we introduce a notion of density in posets in a more general fashion. We also
introduce completeness in posets and study compact generation in posets based on such completeness
and density. c©2016 All rights reserved.
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1. Introduction

We begin with the necessary definitions and terminologies in a poset P . An element x of a poset
P is an upper bound of A ⊆ P if a ≤ x for all a ∈ A. A lower bound is defined dually. The set
of all upper bounds of A is denoted by Au (read as, A upper cone), where Au = {x ∈ P : x ≤
a for every a ∈ A} and dually, we have the concept of a lower cone Al of A. If P contains a finite
number of elements, it is called a finite poset. A subset A of a poset P is called a chain if all the
elements of A are comparable. A poset P is said to be of length n, where n is a natural number, if
there is a chain in P of length n and all chains in P are of length n. A poset P is of finite length if
it is of length n for some natural number n. A poset P is said to be bounded if it has the greatest
(top) and the least (bottom) element denoted by 1 and 0, respectively. By [x, y](x ≤ y;x, y ∈ P )
we denote an interval, that is, set of all z ∈ P for which x ≤ z ≤ y. In a poset P we say that x
is covered by y and write x ≺ y, if x ≤ z ≤ y implies x = z or z = y. An element p of a poset P
with 0 is called an atom if 0 ≺ p. The set of atoms of P is denoted by A(P ). For a non-zero element
a ∈ P, ω(a) denotes the set of atoms contained in a, that is, ω(a) = {p ∈ A(P ) : p ≺ a}. For the
subsets A, B of a poset P , we denote the followings:
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• {A,B}L = {x ∈ P : xis a maximal element in{A,B}l},

• {A,B}U = {x ∈ P : x is a minimal element in{A,B}u}.

A poset P is called weakly atomic if for every pair of elements a, b ∈ P with a < b, there exist
elements u, v ∈ P such that a ≤ u ≺ v ≤ b. A poset P is called strongly atomic if every interval
[x, y] of P has an atom. Equivalently, for every interval [x, y] with x < y, there exists a ∈ P such
that x ≺ a ≤ y.

Erne [6] studied compact generation in posets. A subset D ⊆ P is called directed subset if for
every x, y ∈ D, (x, y)u is non-empty in D and in this case every finite subset of D has an upper
bound in D (in particular D is non-empty). A poset P is called up-complete if every directed subset
D ⊆ P has a join denoted by

∨
D. A poset P is called chain-complete or Dedekind complete if

every non-empty chain of P has a join and meet; in other words, if P and its dual are up-complete.
An element x of an up-complete poset P is called compact if for every directed subset D of P with
x ≤

∨
D there exists an element y ∈ D with x ≤ y. A poset P is called compactly generated if each

element of P is a join of compact elements. The set of all compact elements of a poset P is denoted
by K(P ). For more details see Gierz et al. [7].

In general, a subset S of a poset P is called join-dense in P , if each element of P is a join of
elements from S. Equivalently, for any two elements a, b ∈ P with a � b, there is some s ∈ S with
s ≤ a, s � b. We also have the concept of meet-density which is defined dually.
Join-density plays a crucial role in poset theory to construct some important classes of posets. We
mention some of these classes. Let P be a poset;

(i) if the set of all atoms is join-dense in P then P is atomistic,

(ii) if the set of all compact elements is join-dense in P then P is compactly generated.

However, Shewale [9] has given the following definition of an atomistic poset. A Poset P with 0 is
called atomistic if every a ∈ P is such that a ∈ {p ∈ A(P ) : p ≤ a}U .

2. Complete posets

We introduce a more general concept of density in posets as follows:

Definition 2.1. Let P be a poset. A subset S ⊆ P is called U -dense in P , if each element of P
belongs to SU

1 for some S1 ⊆ S. We also have the concept of L-density which is defined dually.

We note that every join-dense subset of a poset P is U -dense but the converse neednot be true.
For instance, in the poset depicted in Figure P1 the set of atoms is U -dense but not join-dense.
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We observe that in a poset P if A(P ) is U -dense then P is atomistic in the sense of Shewale [9].
Henceforth, atomistic posets in the sense of Shewale is termed as U -atomistic posets.

Remark 2.2. We observe that if a subset S of a poset P is U -dense in P then for any two elements
a, b ∈ P with a < b, there is some s ∈ S with s ≤ b, s � a. Indeed, consider {si : si ≤ b; i ∈ I} ⊆ S.
Then b ∈ {si : si ≤ b; i ∈ I}U . If si ≤ a for every i then b /∈ {si : si ≤ b; i ∈ I}U , a contradiction.

We apply U -density to the set of all atoms and compact elements of a given poset to obtain and
study classes of posets, namely, atomistic and compactly generated posets, respectively.
For a given pair of elements a, b of a poset we may have the set (a, b)u is nonempty but the set
(a, b)U is an empty set; see the poset P2. This observation along with U -density lead us to define
completeness and further compactness and compact generation in posets.

Definition 2.3. A poset P is called conditionally U -complete if for every subset H ⊆ P and for
every u ∈ Hu, there exists an element v ∈ HU such that v ≤ u. A poset P is called conditionally
L-complete if for every subset H ⊆ P and for every l ∈ H l, there exists an element t ∈ HL such
that l ≤ t. A poset P is called conditionally complete if it is both conditionally U -complete and
conditionally L-complete.

We observe that every U -complete poset has the top element 1 and every L-completeposet has
the bottom element 0. Consequently, every complete poset is a bounded poset. We also observe that
a bounded conditionally complete poset is a complete poset. If a complete poset P happens to be a
lattice then our completeness coincides with the lattice completeness. There exist posets which are
complete but not up-complete nor chain-complete and vice versa. The poset depicted in Figure P5 is
a complete poset which is not chain-complete. The poset P2 is up-complete but it is not U -complete
nor chain-complete. The poset P3 is U -complete but not chain-complete nor L-complete. The poset
P4 is up-complete as well as chain-complete but it is not U -complete nor L-complete and hence it is
not complete. The poset depicted in the Figure P4 is conditionally complete. The poset depicted in
Figure P2 is conditionally L-complete but not conditionally U -complete.

Remark 2.4. We assert that the converse part of Remark 2.2 holds in U -complete posets. In fact,
consider two elements a, b ∈ P with a < b such that there exists an element s of a subset S of P
with s ≤ b, s � a. We claim that S is U -dense in P , that is, for every x ∈ P there exists a subset
S1 of S such that x ∈ SU

1 . U -completeness assures that SU
1 is non-empty. On the contrary, assume

that x /∈ SU
1 for some x ∈ P . Then there exists an element y ∈ SU

1 such that y < x. By assumption,
there exists an element s1 ∈ S1 such that s1 ≤ x, s1 � y. However, s1 � y contradicts the fact that
s1 � y since y ∈ SU

1 .
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Consequently, a subset S of a U -complete poset P is U -dense in P if and only if for any two
elements a, b ∈ P with a < b, there is some s ∈ S with s ≤ b, s � a.

3. Compact generation in posets

In this section first we define the notion of compactness in posets and then we study compact
generation.

Definition 3.1. An element c of a conditionally complete poset P is called U -compact if c ≤ u for
some u ∈ XU , where X ⊆ P implies that c ≤ u1 for some u1 ∈ XU

1 , where X1 is a finite subset of
X. The set of all U -compact elements of a poset P is denoted by C(P ).

Definition 3.2. A complete poset P is said to be U -compactly generated if the set of all U -compact
elements is U -dense in P . A poset P is said to be U -compactly atomistic if every atom of P is
U -compact and the set of all atoms is U -dense in P .

Evidently, if a poset P is finite then every element is U -compact. If a poset P is both up-complete
and complete then U -compactness implies compactness. Let c be a U -compact element of P and
c ≤

∨
D, where D is a directed subset of P . As c is U -compact and

∨
D = DU , there exists a finite

subset D1 of D such that c ≤ u for some u ∈ DU
1 . But u ∈ D and so c is compact. The poset P6 is

complete as well as up-complete. The element t is not U -compact (nor compact) and it is not the
join of compact elements contained in it. In fact, t ∈ (a, b)U , where both a andb are U -compact. The
poset P6 is a U -compactly generated poset which is not compactly generated.

We investigate properties of U -compactly generated posets and its relationships with other known
concepts in posets. One of the concepts which is well studied in the class of atomistic lattices is the
concept of a finite element. An element a in a lattice L with 0 is called finite if either a = 0 or
a is a join of finite number of atoms. Shewale [9] introduced the concept of a finite element in
posets as follows. An element a of a poset P with 0 is called a finite element if either a = 0 or
a ∈ {finitely many atoms}U .

Remark 3.3. In every U -compactly generated poset the atoms are U -compact. For, let P be a U -
compactly generated poset and let p be an atom of P . Then p ∈ SU , where S ⊆ {c ∈ P : c ∈ C(P )}.
Note that c ≤ p for every c ∈ S and we must have at least one non-zero c ∈ S. Otherwise, we get
p ∈ SU = {0} which is not possible. Consequently, such c is p and so p is U -compact.

Birkhoff [1] proved that in an atomistic compactly generated lattice, every compact element is a
finite element. The similar fact we state for posets in the following sense.
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Lemma 3.4. In a U-atomistic U-compactly generated poset (U-compactly atomistic poset), every
U-compact element is a finite element.

Proof. Let P be a poset as described in the statement and let c be a U -compact element of P . Since
P is U -atomistic, c ∈ {ω(c)}U . Now, by U -compactness of c, there exists a finite subset S of ω(c)
such that c ∈ SU . Since S essentially contains finite number of atoms, c is finite.

Crawley and Dilworth [5] essentially proved that every compactly generated lattice is weakly
atomic and here we extend this result to posets in the following sense.

Theorem 3.5. Every U-compactly generated poset is weakly atomic.

Proof. Let P be a U -compactly generated poset and b < a in P . Then there exists a U -compact
element c such that c ≤ a, c � b. As b < a, c ≤ a and P is complete, there exists u ∈ (b, c)U such
that b < u ≤ a. Consider Q = {x ∈ P : b ≤ x < u;x � c} which is non-empty since b ∈ Q. Note
that for every chain C in Q, CU is non-empty and so let d ∈ CU . Clearly b ≤ d ≤ u. Also, d 6= u
and d � c. Indeed, if d = u then d ∈ (b, c)U and we get c ≤ d. Now, as c is U -compact, there exists
a finite subset (finite chain) T of C such that c ≤

∨
T = TU and since T is a finite chain, if x is

the largest element of T , then we have c ≤ x and consequently x /∈ Q, a contradiction. If c ≤ d, by
the similar arguments we get a contradiction. In nutshell, b ≤ d < u with d � c and consequently
d ∈ Q. It means that every chain in Q has an upper bound in Q and by Zorn’s Lemma, Q contains
a maximal element, say v. Now, b ≤ v < u ≤ a and maximality of v ensures that there does not
exist z ∈ P with v < z < u. Indeed, otherwise we get z ∈ (b; c)u with z < u, a contradiction to the
fact that u ∈ (b, c)U . Therefore b ≤ v ≺ u ≤ a and P is weakly atomic.

Next, we extend some results from Stern [10] known for lattices; see also Kalman [8]. The concept
of a complement of an element in a poset is well known and studied in the literature; for more details,
see Chajda [3] and Chajda and Moravkova [4].

Let P be a poset with 0 and 1. A complement of an element a ∈ P is an element a
′ ∈ P if

(a, a
′
)u = {1} and (a, a

′
)l = {0}. A poset P with 0 and 1 is called complemented when every element

of P has a complement. Let P be a poset. Let x ∈ [a, b] ⊆ P . An element y ∈ [a, b] is called a weak
relativecomplement of x in [a, b] if (x, y)u ∩ [a, b] = {b} and (x, y)l ∩ [a, b] = {a}. A poset P is called
weakly relatively complemented if for every interval [a, b] of P , each x in [a, b] has a weak relative
complement in [a, b].

Proposition 3.6. Let P be a U-compactly generated poset. If an atom p ∈ P has a complement p
′
,

then there exists a dual atom m(≥ p
′
) which is also a complement of p.

Proof. Let P be a U -compactly generated poset, p be an atom and consider the set Q = {x ∈ P :
(p, x)l = {0};x ≥ p

′} which is non-empty since p
′ ∈ Q. Note that for everychain C in Q, CU is

non-empty and so let d ∈ CU . We claim that d ∈ Q. Indeed, if d /∈ Q then (d, p
′
)l 6= {0} and so

p ≤ d. Now, P is U -compactly generated so p is U -compact and hence p ≤ {d1} = CU
1 for some finite

subset C1 ⊆ C. But C1 is a finite chain, therefore CU
1 =

∨
C1 and hence d1 ∈ C and consequently

(p, d)l = {0}, a contradiction to the fact that p ≤ d1. Thus, d is an upper bound for C and by Zorn’s
Lemma, there exists a maximal element in Q, say m.

Claim 1: m is the complement of p. As m ∈ Q, (m, p)l = {0}. As p
′ ≤ m, we must have

(m, p)u = {1}, otherwise (p, p
′
)u 6= {1} which is not possible.
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Claim 2: m is a dual atom. If m is not a dual atom then there exists an element n which is not
in Q such that m < n < 1. As n /∈ Q, (n, p)l 6= {0} so p ≤ n and n ∈ (p,m)u = {1}, that is,
n = 1, a contradiction.

Theorem 3.7. In an atomic U-compactly generated poset P , each atom has a complement if and
only if Sl = {0}, where S is the set of all dual atoms of P .

Proof. Let P be an atomic U -compactly generated and S be the set of all dual atoms of P . Suppose
that Sl = {0}, and there exists an atom p ∈ P which has no complement. This means p ≤ m for
every dual atom m ∈ P and consequently p ∈ Sl, a contradiction. Conversely, suppose that each
atom has a complement. If Sl 6= {0} then there exists a non-zero element in Sl, say a. Let p be an
atom contained in a. As every dual atom d contains p, there is no dual atom which is a complement
of p, a contradiction to Proposition 3.6.

Next, we generalize some definitions and results due to Bjorner [2] and Stern [10] for lattices.

Definition 3.8. We say that an interval [x, y] of a poset of finite length is U -regular, if y ∈
{atoms of[x, y]}U . Dually, we have the concept of L-regular intervals. An interval [x, y] is called
an upperinterval if y = 1. It is called a lowerinterval if x = 0.

For every element a ∈ P, [0, a] is U -regular if and only if a ∈ {ω(a)}U and so we have the following.

Proposition 3.9. Every lower interval of a poset P of finite length is U-regular if and only if P is
U-atomistic.

Bjorner [2] essentially proved that if L is a lattice of finite length such that all upper intervals
are join-regular then L is complemented. By the following example we show that this fact fails in
posets. Consider the poset depicted in Figure P7 of which every interval is U -regular, how ever the

poset is not complemented. Also, it is known that if all upper intervals of a lattice of finite length
are join-regular, then they are meet-regular too (see Stern [10]). The poset depicted in the Figure
P7 shows that although all upper intervals of this poset are U -regular but the interval [0, 1] is not
L-regular.

Remark 3.10. The statement of Theorem 3.7 can be rephrased as: in a bounded poset P of finite
length, the upper interval [0, 1] is L-regular if and only if each atom of P has a complement.
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Corollary 3.11. An interval [x, y] of a bounded poset of finite length is L-regular if and only if each
atom of [x, y] has a complement in this interval.

Proof. The statement follows immediately by applying Theorem 3.7 to the interval [x, y].

Theorem 3.12. Let P with 0 and 1 be a poset of finite length. Consider the following statements.

(1) P is relatively complemented.

(2) All intervals of P are L-regular.

(3) All intervals of P are U -regular.

(4) P is dually U -atomistic.

(5) P is U -atomistic.

(6) P has no 3-element interval.

Then (→ indicates implication)

Proof. Let P be weakly relatively complemented. Then each interval [x, y] is complemented for
x, y ∈ P and in particular, each atom of [x, y] has a complement in [x, y]. Corollary 3.11 yields now
that each interval is L-regular. In particular, every upper interval [a, 1], a ∈ P is L-regular and hence
P is dually U -atomistic, proving (1) → (2) → (4). (1) → (3) → (5) follows dually. (5) → (6) and
(4)→ (6) are evident.

We now take a look at the definition of upper semimodular posets introduced by Shewale [9].

Definition 3.13. A poset P is called upper semimodular, briefly USM, if l ≺ a for some l ∈ (a, b)L

implies that b ≺ u for all u ∈ (a, b)U . A lower semimodular (LSM) poset is defined dually.

Proposition 3.14. In a complete USM poset P the interval [0, 1] is U-regular if and only if each
upper interval of P is U-regular.

Proof. Let P = [0, 1] be U -regular and consider an arbitrary upper interval [x, 1]. Since 1 =
∨
{A(P )}

and x < 1, there exists an atom p such that p � x. By upper semimodularity all the elements of
(p, x)U are atoms of [x, 1]. It follows that the join of all atoms of [x, 1], which can be written in the
form of (q, x)U for every atom q � x, must be 1 since otherwise it contradicts U -regularity of [0, 1].
Hence [x, 1] is U -regular. Converse is true as [0, 1] itself is an upper interval.
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Remark 3.15. In every bounded complemented poset P of finite length, 1 =
∨
{A(P )} (dually, meet

of dual atoms is 0). In fact, since P is complemented then in particular, each dual atom of P has a
complement. The dual of Theorem 3.7 now implies that the greatest element 1 is the join of atoms.

Evidently, every strongly atomic poset is weakly atomic. The converse need not be true in general.
We obtain a class of posets in which weakly atomicity and strongly atomicity are equivalent.

Proposition 3.16. Let P be a weakly relatively complemented lower semimodular poset. Then P is
strongly atomic if and only if P is weakly atomic.

Proof. Let P be such a given poset and b < a in P . Since P is U -compactly generated, P is weakly
atomic. Therefore, there exist u, v ∈ P such that b ≤ v ≺ u ≤ a. As P is relatively complemented,
v has a complement in [b, u], say v

′
. Since v

′ � v and v ≺ u, by lowersemimodularity, l ≺ v
′

for all
l ∈ (v, v

′
)L. As b ∈ (v, v

′
)L we have b ≺ v

′
and consequently P is strongly atomic.
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