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Abstract

In this paper, we characterize the PDE’s of conformal vector fields on Finsler space with special (α,β)-metrics. Further, we
prove that conformally transformed vector field related by F and also corresponding conformal factors c and c̃.
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1. Introduction

The first to treat the conformal theory of Finsler metrics generally was M. S. Knebelman. He defined
two metric functions F and F as conformal if the length of an arbitrary vector in the one is proportional to
the length in the other, that is if gij = φgij. The length of vector ε means here the fact that φgij , as well
as gij , must be Finsler metric tensor, he showed that φ falls into a point function and also proved that if
(M, F) be an n-dimensional Finsler manifold and φ a transformation on M, then φ is called the conformal
transformation, if it preserves the angles. Let X be a vector field on M and φt be the local one-parameter
group of local transformations on M generated by X. Then X is called a conformal vector field on M if
each φt is a local conformal transformation of M.

Conformal vector fields play an important role in Finsler geometry. Some problems on (α,β)-metrics
can be solved by constructing a conformal vector field on a Riemannian metric with certain curvature
features. For two conformally related Finsler metrics on a manifold, their conformal vector field coincide
[6].

In [4], Shen and Xia study the conformal vector fields on Randers spaces under certain curvature
conditions. In [1], Huang and Mo shows that a conformal vector field of a Randers space of isotropic S-
curvature must be homothetic. In [2], Kang characterizes the conformal vector fields of an (α,β)-metrics
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by some PDE’s in a special case φ1 6= 0. Recently, Natesh et al. studied the conformal vector fields on
Finsler space with special (α,β)-metrics [3].

As above reviews, this work characterize the PDE’s of conformal vector fields on Finsler space with
special (α,β)-metric. Then we proved the conformally transformed vector fields of Finsler metric F̃ related
by F and also with conformal factor related to each other (see Proposition 3.3, 4.2).

2. Preliminaries of conformal vector fields

Let F be a Finsler metric on a manifold M and V be a vector field on M. Let φt be the flow generated
by V . φ̃t : TM→ TM by φ̃t = (φt(x),φt ∗ (y)). V is said to be conformal if

φ∗t F̃ = e
−2σtF, (2.1)

where σt is a function M for every t. Differentiating (2.1) by t at t = 0. We obtain

Xv(F) = −2cF,

where we define

Xv = V
i ∂

∂xi
+ yi

∂Vj

∂xi
∂

∂yj
, c =

d

dt|t = 0
σt. (2.2)

In (2.2), the function c is called the conformal factor.

Remark 2.1. A vector field V is conformal satisfying (2.1) if and only if (2.2) holds for some scalar function
c. In this case, c and σt are related by

σt =

∫t
0
c(φs)ds, c =

d

dt|t = 0
σt. (2.3)

Remark 2.2. By (2.3) we easily see that φ̃∗tF = e−2σtF for a scalar function c if and only if c is constant
along every integral curve of V .

Lemma 2.3 ([5]). Let β = bi(x)y
i be a 1-form and V be a vector field on a Riemanian manifold (M, α̇) with

α =
√
aijyiyj. Then we have

Xv(α
2) = 2V0;0, Xv(β) = (Vj

∂bi
∂xi

)yi = (Vjbi;j + b
jVj;i)y

i, (2.4)

where Vi = aijVj and bi = aijbj, and the covariant derivative is taken with respect to the Levi-Civita connection
of α.

3. Conformal vector fields on special (α,β)-metric, F = α+ β2

α

In this, section, we study the conformally transformed vector field on Finsler space with special (α,β)-
metric, F = α+ β2

α . For this, first we prove the following lemma.

Lemma 3.1. A vector field V on a Finsler space with special (α,β) metric F = α+ β2

α is conformal with conformal
factor c if and only if it satisfies

Xv(F
2) = −4

(
cF2 + F1 ∂Vi

∂yk
yi
)

,

or

V0|0 = −2
(
cF2 + F1 ∂Vi

∂yk
yi
)

,

where
F1 = 2αksi0 −ms0r00b

i.
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Proof. By Remark 2.1, it is sufficient to show that Xv(F2) = 2V0|0 + F
1 ∂Vi
∂yk

yi. Let us consider the spray
coefficients Gi as

Gi = Giα + Pyi +Qi,

where

P = α−1θ(−2αQs0 + r00),

Qi = αQsi0 +ψ(−2αQs0 + r00)b
i,

θ =
φφ

′
− s(φφ

′′
+φ

′ ∗φ ′)
2φ ((φ− sφ

′
) + (b2 − s2)φ

′′)
,

Q =
φ
′

φ− sφ
′ ,

ψ =
1
2

φ
′′

φ− sφ
′
+ (b2 − s2)φ

′′ .

By calculation we get,

θ =
4s3

(2 + 2s2)(1 − 3s2 + 2b2)
,

Q =
1 + s2

1 − s2 ,

ψ =
1

1 − s2 + 2b2 ,

P =
4s3

α(1 − s2)(2 + 2s2)

{
−2(α+ s2)s− 0 + r00(1 − s2)

(1 − 3s2 + 2b2)

}
,

Q
′
= α

(
1 + s2

1 − s2

)
si0 −

{
2αs0 − r00

1 − s2 + 2b2

}
bi.

Let

Gi = gimGm =
1
4
{
[F2]xkykY

k − [F2]xi
}

,

Gkk =
∂Gk

∂yi
,

Gkij =
∂2Gk

∂yi∂yj
.

Then the spray coefficients of class of Finsler metric F = α+ β2

α is

Gk =
α

Gk − (Ls0 +Mr00)y
i +αksi0 − Rs0r00b

i,

where

L =
s3(2α− 2s2)

(2α+ 2αs4)(1 − 3s2 + 2b2)
,

M =
4s2(1 − s2)

2α(1 + s4)(1 − 3s2 + 2b2)
,

K =
1 + s2

1 − s2 ,
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R =
2α

1 − s2 + 2b
.

From [6] by computation shows that

Xv(F
2) = Vi(F2)xi + 2

∂Vi

∂xj
yiyj = Vi(F2)xi + 2

∂Vi

∂xj
yiyj −

∂yi

∂xj
Viyj, (3.1)

∂Vi

∂xj
yiyj = V0|0 + 2(αksi0 −Ms0r00b

i)
∂Vi

∂yk
yi + 2VkGk, (3.2)

4VkGk = 2Vi
∂yi

∂xk
yk − Vi

{
(

1
2α

+β4)
∂aij

∂xi
yiyj + 4β(1 − 2α3β2)

∂bi
∂xi

yi
}

. (3.3)

Sunstitute (3.2) and (3.3) in (3.1) then we have

XF(F
2) = 2V0|0 + 2(αksi0 −Ms0r00b

i)
∂Vi

∂yk
yi. (3.4)

Therefore, it desired the claim.

Remark 3.2. From (3.4), suppose to be ∂Vi
∂yk

yi = 0. Then Lemma 3.2 becomes as, if V be vector field and F be
special (α,β)-metric, then it is conformal with conformal factor c if and only if it satisfies Xv(F2) = −4cF2

or V0|0 = −2cF2.

Proposition 3.3. Let (M, F̃ = (α̃+ β̃2

α̃2 )) be conformally transformation of special (α,β) metric F(= α+ β2

α ) related
with F̃ = e

σ
2 F for a scalar function σ. Then V is a conformal vector field of (M, F) if and only if V is a conformal

vector field of (M, F̃). Further, their conformal factor c and c̃ are related by, c̃ = c− 1
4V(σ).

Proof. Assume that V is conformal vector field of F with the conformal factor c. Then by Remark 3.2 we
have

Xv(F
2) = −4cF2.

Then by conformally related with F̃ = e
σ
2 F, we have

Xv(F
2) = Xv(e

σ)F2 + eσXv(F
2),

Xv(F
2) = (V(σ) − 4c) F̃2. (3.5)

Again by Remark 3.2 implies that V is also a conformal vector field of F̃ and the conformal factor c̃.
Therefore, from (3.5) we get

c̃ = c−
1
4
V(σ).

Theorem 3.4. Let F = α+ β2

α be Finsler metric and V = Vi(x) ∂
∂xi

be a vector field. Then V is a conformal vector
field of F with the conformal factor c if and only if it satisfies Vi;j + Vj;i = −4caij and Vjbi;j + bjVj;i = −2cbi,
where c is a scalar function.

Proof. Since we says that V is a conformal vector field of F if and only if Xv(F2) = −4cF2. From [3] by
computation shows that

Xv(F
2) = (1 − s4)Xv(α

2) + 4αs(1 + s2)Xv(β).
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Now, plugging (3.1), we see that

Xv(F
2) = −4cF2,

is written as

V0;0 +α

(
2s

1 − s2

)(
Vibj;i + b

iVi;j
)
yj =

4sc
1 − s2α

2, (3.6)

where “; ” represents the covariant derivative with respect to α.
In order to simplify (3.6). We choose a special coordinate system (s,ya) at a fixed point on a manifold

as usually used. Fix an arbitrary point x ∈M and take an orthogonal basis ei at x such that

α =

√√√√ n∑
i=1

(yi)2, β = byi.

It follows that β = sα such that

y1 =
s√

b2 − s2
α̃

α̃ =

√√√√ n∑
a=2

(ya)2

 .

Then if we change coordinate (yi) to (s,ya) we get

α =
b√

b2 − s2
α̃, β =

bs√
b2 − s2

α̃.

Let,

V0;0 = Va;by
ayb, V1;0 = V1;ay

a,

V0;1 = Va;1y
a, b0;i = ba;iy

a.

Note, that under the coordinate (s,ya), we have bi = b, b0 = 0, but generally b0;i 6= 0.
Under these coordinate, Equation (3.6) is equivalent to

0 = b
(
bV1;0 + V

ib0;i
) 2s

1 − s2 +
(
V1;0 + V0;1

)
s, (3.7)

0 = b

[
b(2bc+ Vib1|i + bV1|1)

2s2

1 − s2 + 2b2c+ V1|1s
2
]
α2 + (b2 − s2)V0;0. (3.8)

For (3.7), we will prove
bV1;0 + V

ib0;i = 0, V1;0 + V0;1 = 0. (3.9)

If bV1;0 + V
ib0;i 6= 0 at a point, then we prove Q = 2s

1−s2 = ks, for some constant k. Solving Q = ks with
φ(0) = 1, we get φ(s) =

√
1 + ks and hence F is Riemannian. So we must have the first equation in (3.9).

Again by (3.8), we have the second equation in (3.9). For (3.8) we will prove

V0;0 = −2cα2, Vib1|i + bV1|1 = −2bc, V1|1 = −2cF. (3.10)

Putting s = 0 in (3.8) we have

Ṽ0; 0 = −2cα̃2.

By this, (3.8) is reduced to

b
(
2bc+ Vib1|i + bV1|1)

) 2s
1 − s2 +

(
V1|1 + 2c

)
s = 0.

Similarly, repeating this procedure of (3.7) we obtain second and third values of (3.10). Therefore, it
follows from (3.9) and (3.10) then we get the claim.
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4. Conformal vector fields on special (α,β)-metric, F = α+β+ β2

α

In this, section, we study the conformally transformed vector field on Finsler space with special (α,β)-
metric. Now we prove the following lemma.

Lemma 4.1. A vector field V on a Finsler space with special (α,β) metric is conformal with conformal factor c, if
and only if it satisfies Xv(F2) = −4cF2 or V0|0 = −2cF2.

Proof. By Remark 2.1, it is suffycies to show Xv(F
2) = 2V0|0. Let

Gi = gimGm =
1
4
{
[F2]xkykY

k − [F2]xi
}

, Gkk =
∂Gk

∂yi
,Gkij

∂2Gk

∂yi∂yj
.

In the view of section third the spray coefficients Gi is on the Finsler metric F = α+β+ β2

α , we get,

Gk =
α

Gk +A1A2y
i +A3s

i
0 − {A4s0 + r00}b

i,

where

A1 =
r00(1 − s2) − 2α(1 + 2s)s0

2 − 2s− 4b2 − 4s2b2 − 4sb2 + 2s3 + 6s4 ,

A2 =
1 − 3s2 − 4s3

α(1 − s2)
,

A3 =
α(1 + 2s)

1 − s2 ,

A4 =
2α(1 + 2s)

(1 − s2)(1 − 3s2 − 2b2)
s0.

We know that

Xv(F
2) = Vi(F2)xi + 2

∂Vi

∂xj
yiyj = Vi(F2)xi + 2

∂Vi

∂xj
yiyj −

∂yi

∂xj
Viyj, (4.1)

∂Vi

∂xj
yiyj = V0|0 + 2(A3s

i
0 −A4s0r00b

i)
∂Vi

∂yk
yi + 2VkGk, (4.2)

4VkGk = 2Vi
∂yi
∂xk

yk −
∂aij

∂xi
yiyj

(
1

2α
+
β4

2α3

)
+
∂bi
∂xi

(
6β− 4β3 + 2α+

6β2

α

)
+
∂α

∂xi

(
2β−

2β3

α2

)
.

(4.3)

Substitute (4.2) and (4.3) in (4.1) then we have

Xv(F
2) = 2V0|0 + 2(A3s

i
0 −A4s0r00b

i)
∂Vi

∂yk
yi.

Therefore, it is desired.

Proposition 4.2. Let (M, F̃ = (α̃+ β̃+ β̃2

α̃2 )) be conformally transformation of special (α,β) metric F = α+β+ β2

α

related with F̃ = e
σ
2 F for a scalar function. Then V is a conformal vector field of (M, F) if and only if V is a conformal

vector field of (M, F̃). Further, their conformal factor c and c̃ are related by, c̃ = c− 1
4V(σ).
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Proof. Assume that V is conformal vector field of F with the conformal factor c. Then by Remark 3.2 we
have

Xv(F
2) = −4cF2.

Then by conformally related with F̃ = e
σ
2 F, we have

Xv(F
2) = Xv(e

σ)F2 + eσXv(F
2),

Xv(F
2) = (V(σ) − 4c) F̃2. (4.4)

Again, by Remark 3.2 implies that V is also a conformal vector field of F̃ and the conformal factor c̃.
Therefore, from (4.4) we get

c̃ = c−
1
4
V(σ).

Theorem 4.3. Let F = α+ β+ β2

α be Finsler metric and V = Vi(x) ∂
∂xi

be a vector field. Then V is a conformal
vector field of F with the conformal factor c, if and only if it satisfies

Vi;j + Vj;i = −4caij,

and
Vjbi;j + b

jVj;i = −2cbi,

where c is a scalar function.

Proof. Since we say that V is a conformal vector field of F if and only if Xv(F2) = −4cF2.
From [3] by computation shows that

Xv(F
2) = (1 − s4)Xv(α

2) + 4αs(1 + s2)Xv(β).

Now, plugging Equation (2.4), we see that

Xv(F
2) = −4cF2,

is written as

V0;0 +α

(
2s

1 − s2

)(
Vibj;i + b

iVi;j
)
yj =

4sc
1 − s2α

2, (4.5)

where “; ” represents the covariant derivative with respect to α.
In order to simplify (4.5), we choose a special coordinate system (s,ya) at a fixed point on a manifold

as usually used. Fix an arbitrary point x ∈M and take an orthogonal basis ei at x such that

α =

√√√√ n∑
i=1

(yi)2, β = byi.

It follows that β = sα such that

y1 =
s√

b2 − s2
α̃

α̃ =

√√√√ n∑
a=2

(ya)2

 .
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Then if we change coordinate (yi) to (s,ya) we get

α =
b√

b2 − s2
α̃, β =

bs√
b2 − s2

α̃.

Let,

V0;0 = Va;by
ayb, V1;0 = V1;ay

a,

V0;1 = Va;1y
a, b0;i = ba;iy

a.

Note that under the coordinate (s,ya), we have bi = b, b0 = 0, but generally b0;i 6= 0. Under these
coordinate, (4.5) is equivalent to

0 = b
(
bV1;0 + V

ib0;i
) 2s

1 − s2 +
(
V1;0 + V0;1

)
s, (4.6)

0 = b

[
b(2bc+ Vib1|i + bV1|1)

2s2

1 − s2 + 2b2c+ V1|1s
2
]
α2 + (b2 − s2)V0;0. (4.7)

For (4.6), we will prove
bV1;0 + V

ib0;i = 0, V1;0 + V0;1 = 0. (4.8)

If bV1;0 + V
ib0;i 6= 0 at a point, then we prove Q = 2s

1−s2 = ks for some constant k. Solving Q = ks with
φ(0) = 1. We get φ(s) =

√
1 + ks and hence F is Riemannian. So we must have the first equation in (4.8).

Again by (4.7), we have the second equation in (4.8).
For (4.7) we will prove

V0;0 = −2cα2, Vib1|i + bV1|1 = −2bc, V1|1 = −2cF. (4.9)

Putting s = 0 in (4.7) we have

Ṽ0; 0 = −2cα̃2.

By this, (4.7) is reduced to

b
(
2bc+ Vib1|i + bV1|1)

) 2s
1 − s2 +

(
V1|1 + 2c

)
s = 0.

Similarly, repeating this procedure of (4.7) we obtain the second and third values of (4.9). Therefore, it
follows from (4.8) and (4.9) then we get the cliam.

Remark 4.4. Let F = αφ(βα) be an (α,β)-metric with φ(0) = 1. For this, holds for all class of (α,β)-metrics.
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