Positive solutions to a nonlinear eigenvalue problem

Yong-Hui Zhou
School of Mathematics and Statistics, HeXi University, Zhangye, Gansu 734000, P. R. China.

Abstract

In this paper, the existence of positive solutions to a nonlinear eigenvalue problem is obtained by Leray-Schauder fixed point theorem.

Keywords: Existence, positive solutions, Leray-Schauder fixed point theorem.
2020 MSC: 34B15.
(C)2020 All rights reserved.

1. Introduction

In this paper, we consider the nonlinear eigenvalue two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda h(t) f(u(t)), \quad t \in(0,1) \tag{1.1}\\
u(0)=u^{\prime}(1)=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

where $\lambda>0$ is a positive parameter.
We will make the following assumptions:
(i) $f:[0,1) \longrightarrow R$ is continuous and $f(0)>0$;
(ii) $h(t) \in C[0,1]$ and there exist two constants $\tau, \kappa: \tau \in[0,1], k \in(1, \infty)$ such that $h(\tau) \neq 0$ and

$$
\begin{equation*}
\int_{0}^{1} G(t, s) h^{+}(s) d s \geqslant k\left[\int_{0}^{1} G(t, s) h^{-}(s) d s\right] \tag{1.2}
\end{equation*}
$$

for $t \in[0,1]$, where a^{+}is the positive part of a and a^{-}is the negative part of a.
Next, we state the main result.
Theorem 1.1. Let (i) and (ii) hold. Then there exists a positive number λ^{*} such that BVP (1.1) has at least one positive solution for $\lambda: 0<\lambda<\lambda^{*}$.

[^0]
2. Preliminaries lemmas

To prove Theorem 1.1, we need several preliminary results.
Lemma 2.1. For $y \in C[0,1]$, the problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=y(t) t \in(0,1) \tag{2.1}\\
u(0)=u^{\prime}(1)=0=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

has a unique solution

$$
u(t)=\int_{0}^{1} G(t, s) y(s) d s
$$

where

$$
G(t, s)=\frac{1}{6} \begin{cases}\left(6 t-3 t^{2}-s^{2}\right) s, & 0 \leqslant s \leqslant t \leqslant 1 \\ \left(6 s-3 s^{2}-t^{2}\right) t, & 0 \leqslant t \leqslant s \leqslant 1\end{cases}
$$

Lemma 2.2. If $y \in C[0,1], y \geqslant 0$, then the unique solution u of the (2.1) satisfies

$$
u \geqslant 0, t \in[0,1] .
$$

Moreover, if $\mathrm{y}_{1}(\mathrm{t}) \geqslant \mathrm{y}_{2}(\mathrm{t})$ for $\mathrm{t} \in[0,1]$, then the corresponding solutions $\mathrm{u}_{1}(\mathrm{t})$ and $\mathrm{u}_{2}(\mathrm{t})$ satisfy

$$
u_{1}(t) \geqslant u_{2}(t), \text { for } t \in[0,1]
$$

Lemma 2.3. Let (i) and (ii) hold, then for every $0<\delta<1$, there exists a positive number λ_{1} such that, for $0<\lambda<\lambda_{1}$, the problem

$$
\left\{\begin{array}{l}
u^{(4)}(\mathrm{t})=\lambda h^{+}(\mathrm{t}) \mathrm{f}(\mathrm{u}(\mathrm{t})), \quad \mathrm{t} \in(0,1) \\
\mathrm{u}(0)=\mathrm{u}^{\prime}(1)=0=\mathrm{u}^{\prime \prime}(0)=\mathrm{u}^{\prime \prime \prime}(1)
\end{array}\right.
$$

has a positive solution $u_{\lambda_{1}}$ with $\left|u_{\lambda_{1}}\right|_{0} \longrightarrow 0$ as $\lambda \longrightarrow 0$, and

$$
\begin{equation*}
u_{\lambda_{1}} \geqslant \lambda \delta f(0) p(t), t \in[0,1] \tag{2.2}
\end{equation*}
$$

where

$$
p(t)=\int_{0}^{1} G(t, s) h^{+}(s) d s
$$

Proof. By Lemma 2.2, we know that $p(t) \geqslant 0$ for $t \in[0,1]$. From Lemma 2.1, (2.2) is equivalent to the integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G(t, s) h^{+}(s) f u(s) d s:=A u(t) \tag{2.3}
\end{equation*}
$$

where $u \in C[0,1]$. Then $A: C[0,1] \longrightarrow C[0,1]$ is completely continuous and fixed points of A are solutions of (2.2). We apply the Leray-Schauder fixed point theorem to prove A has a fixed point.

Let $\varepsilon>0$ be such that

$$
f(t) \geqslant \delta f(0), \text { for } 0 \leqslant \varepsilon
$$

Suppose that

$$
\lambda<\frac{\varepsilon}{2|p|_{0} f_{1}(\varepsilon)}:=\lambda_{1}
$$

where

$$
f_{1}(t)=\max _{s \in[0, t]} f(s)
$$

Since

$$
\lim _{t \rightarrow 0^{+}} \frac{f_{1}(t)}{t}=+\infty
$$

it follows that there exists $\tau_{\lambda} \in(0, \varepsilon)$, such that

$$
\begin{equation*}
\frac{f_{1}\left(\tau_{\lambda}\right)}{\tau_{\lambda}}=\frac{1}{2 \lambda|\mathfrak{p}|_{0}} . \tag{2.4}
\end{equation*}
$$

We note that (2.4) implies

$$
\begin{aligned}
& \tau_{\lambda} \longrightarrow 0 \text { as } \lambda \longrightarrow 0 . \\
& u=\theta A u, \theta \in(0,1),
\end{aligned}
$$

Now, we consider the equations
let $u \in C(0,1)$ and $\theta \in(0,1)$ be such that $u=\theta A u$. We claim that $|\mathfrak{u}|_{0} \neq \tau_{\lambda}$. In fact

$$
u(t)=\theta \lambda \int_{0}^{1} G(t, s) h^{+}(s) f u(s) d s
$$

set

$$
w(\mathrm{t})=\theta \lambda \int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{h}^{+}(\mathrm{s}) \mathrm{f}_{1}|\mathfrak{u}|_{0} \mathrm{~d} s \leqslant \theta \lambda \mathrm{f}_{1}\left(|\mathfrak{u}|_{0}\right) \mathfrak{p}(\mathrm{t})
$$

then by Lemma 2.2 and the fact that $f(u) \leqslant f_{1}\left(|\mathfrak{u}|_{0}\right)$, we know that

$$
u(t) \leqslant w(t), \text { for } t \in[0,1] .
$$

Moreover, we have

$$
|\mathfrak{u}|_{0} \leqslant \lambda|\mathfrak{p}|_{0} f_{1}\left(|\mathfrak{u}|_{0}\right)
$$

or

$$
\begin{equation*}
\frac{\mathrm{f}_{1}\left(|\mathfrak{u}|_{0}\right)}{|\mathfrak{u}|_{0}} \geqslant \frac{1}{\lambda|\mathfrak{p}|_{0}} \tag{2.5}
\end{equation*}
$$

which implies that $|\mathfrak{u}|_{0} \neq \tau_{\lambda}$. Thus by Leray-Schauder fixed point theorem, A has a fixed point $u_{\lambda_{1}}$ with

$$
\left|\mathfrak{u}_{\lambda_{1}}\right|_{0} \leqslant \tau_{\lambda}<\varepsilon .
$$

Therefore, combining (2.3), (2.5), and using Lemma 2.2, we have that

$$
\mathfrak{u}_{\lambda_{1}}(\mathrm{t}) \geqslant \lambda \delta \mathrm{f}(0) \mathfrak{p}(\mathrm{t}), \mathrm{t} \in[0,1] .
$$

3. Proof of the main result

Proof of Theorem 1.1. Let

$$
\mathrm{q}(\mathrm{t})=\int_{0}^{1} \mathrm{G}(\mathrm{t}, \mathrm{~s}) \mathrm{h}^{-}(\mathrm{s}) \mathrm{d} \mathrm{~s},
$$

then $\mathrm{q}(\mathrm{t}) \geqslant 0$. By (ii), there exist positive numbers $\mathrm{c} \in(0,1), \mathrm{d} \in(0,1)$ such that

$$
\begin{equation*}
\mathrm{q}(\mathrm{t})|\mathrm{f}(\mathrm{y})| \leqslant \mathrm{dp}(\mathrm{t}) \mathrm{f}(0) \tag{3.1}
\end{equation*}
$$

for $y \in[0, c]$ and $t \in[0,1]$. Fix $\delta \in(d, 1)$, and let $\lambda_{2}>0$ be such that

$$
\begin{equation*}
\left|\mathbf{u}_{\lambda_{1}}\right| 0+\lambda \delta f(0)|p|_{0} \leqslant c \tag{3.2}
\end{equation*}
$$

for $\lambda<\lambda_{2}$, where $u_{\lambda_{1}}$ is given by Lemma 2.3, and

$$
\begin{equation*}
|f(x)-f(y)| \leqslant f(0)\left(\frac{\delta-d}{2}\right) \tag{3.3}
\end{equation*}
$$

for $x \in[-c, c], y \in[-c, c]$ with $|x-y| \leqslant \lambda_{2} \delta f(0)|p|_{0}$.

Let $\lambda<\lambda_{2}$, we look for a solution \mathfrak{u}_{λ} of the form $\mathfrak{u}_{\lambda}+v_{\lambda}$. Here v_{λ} solves

$$
\left\{\begin{array}{l}
\mathfrak{u}^{(4)}(t)=\lambda h^{+}(t)\left(f\left(u_{\lambda_{1}}+v\right)-f\left(u_{\lambda_{1}}\right)\right)-\lambda h^{-}(t) f\left(u_{\lambda_{1}}+v\right), \quad t \in(0,1), \\
\mathfrak{u}(0)=\mathfrak{u}^{\prime}(1)=0=\mathfrak{u}^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

For each $\omega \in \mathrm{C}[0,1]$, let $v=\mathrm{T}(\omega)$ be the solution of

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda h^{+}(t)\left(f\left(u_{\lambda_{1}}+w\right)-f\left(u_{\lambda_{1}}\right)\right)-\lambda h^{-}(t) f\left(u_{\lambda_{1}}+w\right), \quad t \in(0,1), \\
u(0)=u^{\prime}(1)=0=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0,
\end{array}\right.
$$

then $\mathrm{T}: \mathrm{C}[0,1] \longrightarrow \mathrm{C}[0,1]$ is completely continuous. Let $v \in \mathrm{C}[0,1]$ and $\theta \in \mathrm{C}[0,1]$ be such that $v=\theta \mathrm{T} v$. Then we have

$$
\left\{\begin{array}{l}
\mathfrak{u}^{(4)}(t)=\theta \lambda h^{+}(t)\left(f\left(u_{\lambda_{1}}+v\right)-f\left(u_{\lambda_{1}}\right)\right)-\theta \lambda h^{-}(t) f\left(u_{\lambda_{1}}+v\right), \quad t \in(0,1), \\
u(0)=u^{\prime}(1)=0=u^{\prime \prime}(0)=u^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

We claim that $|v|_{0} \neq \lambda \delta f(0)\left|p_{0}\right|$. Suppose to the contrary that $|v|_{0} \neq \delta f(0)\left|p_{0}\right|$. Then by (3.2) and (3.3), we obtain

$$
\left|u_{\lambda_{1}}+v\right|_{0} \leqslant\left|u_{\lambda_{1}}\right| 0\left|+|v|_{0} \leqslant c\right.
$$

and

$$
\begin{equation*}
\left|f\left(u_{\lambda_{1}}+v\right)-f\left(u_{\lambda_{1}}\right)\right|_{0} \leqslant f(0)\left(\frac{\delta-d}{2}\right) . \tag{3.4}
\end{equation*}
$$

Using (3.1), (3.4), Lemmas 2.1, and 2.2, we have

$$
\begin{equation*}
|v(t)| \leqslant \lambda\left(\frac{\delta-\mathrm{d}}{2}\right) f(0) \mathfrak{p}(\mathrm{t})+\lambda \mathrm{df}(0) \mathfrak{p}(\mathrm{t})=\lambda\left(\frac{\delta+\mathrm{d}}{2}\right) \mathrm{f}(0) \mathfrak{p}(\mathrm{t}) . \tag{3.5}
\end{equation*}
$$

In particular,

$$
|v|_{0} \leqslant \lambda\left(\frac{\delta+\mathrm{d}}{2}\right) f(0) \mathfrak{p}_{0}<\lambda \delta f(0)|\mathfrak{p}|_{0}
$$

is a contradiction, and the claim is proved. Thus by Leray-Schauder fixed point theorem, T has a fixed point v_{λ} with

$$
\left|v_{\lambda}\right|_{0} \leqslant \lambda \delta f(0)|p|_{0}
$$

Using (2.2) and (3.5), we obtain

$$
u_{\lambda} \geqslant \mathfrak{u}_{\lambda_{1}}-\left|v_{\lambda}\right| \geqslant \lambda \delta f(0) p(t)-\lambda\left(\frac{\delta+d}{2}\right) f(0) p(t)
$$

and

$$
\lambda \delta f(0) p(t)-\lambda\left(\frac{\delta+d}{2}\right) f(0) p(t)=\lambda\left(\frac{\delta-d}{2}\right) f(0) p(t) .
$$

Therefore,

$$
\mathbf{u}_{\lambda} \geqslant \lambda\left(\frac{\delta-\mathrm{d}}{2}\right) \mathbf{f}(0) \mathfrak{p}(\mathrm{t}) \geqslant 0,
$$

i.e., u_{λ} is a positive solution of (1.1). The proof is completed.

Acknowledgment

This paper is supported by the Youth Fund of Hexi University of China (QN2018008).

References

[1] R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res. Hot-line., 3 (1998), 9-14.
[2] R. I. Avery, A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42 (2001), 313-322.
[3] Z. B. Bai, The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal., 67 (2007), 1704-1709.
[4] C. Z. Bai, Triple positive solutions of three-point boundary value problems of fourth-order differential equations, Comput. Math. Appl., 56 (2008), 1364-1371.
[5] Z. B. Bai, Y. F. Wang, W. G. Ge, Triple positive solutions for a class of two-point boundary value problems, Electron. J. Differential Equations, 2004 (2004), 8 pages.
[6] J. R. Graef, L. J. Kong, B. Yang, Positive solutions of boundary value problems for discrete and continuous beam equations, J. Appl. Math. Comput., 41 (2013), 197-208.
[7] B. Liu, Positive solutions of fourth-order two-point boundary value problems, Appl. Math. Comput., 148 (2004), 407-420.
[8] J.-P. Sun, W.-T. Li, Y.-H. Zhao, Three positive solutions of a nonlinear three-point boundary value problem, J. Math. Anal. Appl., 288 (2003), 708-716.
[9] Y. P. Sun, X. P. Zhang, M. Zhao, Successive iteration of positive solutions for fourth-order two-point boundary value problems, Abstr. Appl. Anal., 2013 (2013), 8 pages.
[10] Y.-R. Yang, Triple positive solutions of a class of fourth-order two-point boundary value problems, Appl. Math. Lett., 23 (2010), 366-370.

[^0]: Email address: 2823877618@qq.com (Yong-Hui Zhou)
 doi: 10.22436/jmcs.021.01.02
 Received: 2019-09-11 Revised: 2020-02-06 Accepted: 2020-02-19

