
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 21 (2020), 1–17

Research Article

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Taylor’s expansion for fractional matrix functions: theory
and applications

Ahmad El-Ajou

Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan.

Department of Mathematics, Faculty of Science, Taibah University, Madina, KSA.

Abstract
In this paper, several aims and tasks have been accomplished that can be summarized in the following points. Firstly, we

recover some nice results related to the convergence and radii of convergence for the matrix fractional power series formula.
Secondly, the Frobenius norm approximations for the matrix fractional derivatives in Caputo sense and fractional integrals in
Riemann-Liouville sense are presented. Thirdly, we present the general exact and numerical solutions of four important and
interesting matrix fractional differential equations and a new computational technique is also applied for getting the general so-
lutions of the non-linear case in Caputo sense. Finally, some illustrated examples and special cases are also given and considered
to show our new approach.
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1. Introduction

The use of matrix differential equations (MDEs) are appeared in many applications and real life prob-
lems such as in matrix theory, control theory, physics phenomena, engineering problems, decay-growth
problems, mortgage problems, modeling of signal processing, modeling of best predictions, simulation-
reduction problems, matrix time-varying descriptor systems, computing system and large scale bench-
mark problems, state-space problem and constrained least-squares problems [1–4, 10, 19, 23, 24, 27, 30, 39].
The general form of the first order non-homogeneous linear MDE with appropriate orders of matrices is
formulated by [1, 19, 23, 24, 30]:

X
′
(t) =

s∑
i=1

AiX (t)Bi +G (t) , X (t0) = E. (1.1)

In addition, many interesting and important cases can be formulated from Eq. (1.1) and one of the
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simplest and well-known cases from Eq. (1.1) is the following MDE [1, 3, 19, 24, 30]:

X
′
(t) = AX (t) +G (t) , X (0) = B, (1.2)

and the general exact solution of Eq. (1.2) is presented by:

X (t) = eAtB+

∫t
0
eA(t−s)G (s)ds,

where eAt ∈Mm is the matrix exponential function (Mm and Mm,n stand for the set of all matrices of
order m×m and m×n , respectively). Due to the introduction of fractional calculus, scientists nowadays
are paying attentions to the topic of fractional operators and its applications, since they found this topic is
more fitting for extending and generalizing many classical differential equations (systems) and also many
phenomena in physics, engineering and problems in control theory can be modeled mathematically by
matrix fractional differential equations (MFDEs) and systems such as fractional L system, fractional Chen
systems, fractional Lorenz system, descriptor and dynamic systems, nonlinear oscillation of earthquake,
population of fractional oscillators and electromagnetic wave [4, 7–9, 11–13, 20, 22, 25, 28, 29, 31, 32, 34–
38, 40].

There are many definitions of fractional integral and fractional derivative [9, 16, 17, 21, 31, 34, 35,
37], the most important of which are the definition of Riemann-Liouville fractional integral and Caputo
fractional derivative, which are defined as follows.

• The Riemann-Liouville fractional integral of order α > 0 of ϕ (t) is defined by:

Jαsϕ (t) =

{
1

Γ(α)

∫t
s (t− x)

α−1ϕ (x)dt , t > x > s > 0, α > 0,
ϕ (t) , α = 0.

• The Caputo fractional derivative of order α > 0 of ϕ is defined by:

Dαsϕ (t) =

{
Jn−αs ϕ(n) (t) , t > s > 0, n− 1 < α < n,
dnϕ(t)
dtn , α = n.

Many of the properties of the previous definitions exist in the references [6, 9, 14, 15, 18, 31, 33–35, 37].
The most important of these properties that we will need during this work can be summarized in the
following lemma.

Lemma 1.1. For ϕ (t) , t > s , α, β > 0 , C ∈ R, and γ > −1, we have:
1. Jαs J

β
sϕ (t) = Jα+βs ϕ (t) = Jβs J

α
sϕ (t) ,

2. JαsC = C
Γ(α+1) (t− s)

α ,

3. Jαs (t− s)γ = Γ(γ+1)
Γ(α+γ+1) (t− s)

α+γ ,
4. DαsC = 0,
5. Dαs (t− s)γ = Γ(γ+1)

Γ(γ+1−α) (t− s)
γ−α ,

6. Dαs Jαsϕ (t) = ϕ (t) ,

7. JαsDαsϕ (t) = ϕ (t) −
∑n−1
j=0 ϕ (s+)

(t−s)j

j! ,n− 1 < α 6 n.

Recently, Al-Zhour [2] used the Kronecer product method for solving the following non-homogeneous
MFDEs in Caputo sense:

DαX (t) = A X (t) +G (t) , X (t0) = B, 0 < α 6 1,

and it has the following solution:

X (t) = Eα (Atα)B+

∫t
0
(t− s)α−1 Eα (A (t− s)α)G (s)ds,

where Eα (Atα) , A ∈Mm is the one-parameter Matrix Mittag-Leffler function (MM-LF) and given by the
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following formula:

Eα (Atα) =

∞∑
k=0

Aktαk

Γ (kα+ 1)
, (1.3)

whereas the two-parameter MM-LF is given by the following formula [2, 6–8, 32]:

Eα,β (Atα) =

∞∑
k=0

Aktαk

Γ (kα+β)
.

In a case, if we set α = 1 in Eq. (1.3), then we have:

E1 (At) =

∞∑
k=0

Aktk

Γ (k+ 1)
= eAt.

Very recently, Al-Zhour [4], Al-Zuhiri et.al. [5], and Kilicman and Ahmood [26] used, respectively,
the Kronecker product method, Hadamard product method and fractional Laplace transform method for
solving very restricted matrix fractional differential equations.

In this paper, we find the exact and numerical solutions of some interesting and attractive linear and
non-linear MFDEs in Caputo sense by using matrix fractional power series (MFPS) method and establish
some new results related to the convergence of this method. Moreover, the Frobenius norm (which is
defined below) approximation for the matrix fractional derivatives in Caputo sense and fractional integrals
in Riemann-Liouville sense of a given function are presented with some illustrated numerical examples
to show our new approach. Note that the results shown in this paper are established in Caputo fractional
derivative Dαs , since it has suitable for modeling MFDEs and FDEs.

The outcome of this paper is organized as follows. In the next section, we extend the generalized
fractional Taylor’s series to the matrix form and establish some nice results related to the convergence
of the extension formula. In Section 3, we give two applications for computing the Frobenius norm
approximation for the matrix fractional derivatives and fractional integrals of a given matrix function.
Section 4 deals with four applications related to the linear and nonlinear MFDEs with some illustrated
numerical computations in order to show the capability and simplicity of our new approach on the field
of matrix theory. The conclusion of the present work is given as in the last section.

2. Matrix fractional power series (MFPS)

This section extends the fractional power series that discussed in the references [14, 16–18] to the matrix
case, as general, and establish some new nice results related to the convergent and radii of convergence
for MFPS in Caputo sense. In addition, we study some important definitions and theorems which are
very useful to investigate our results in the approximation of the matrix fractional derivative in Caputo
sense and fractional integral in Riemann-Liouville sense and also in the solutions of some MFDEs as in
Sections 3 and 4.

Definition 2.1. Let Ak ∈ Mm,n (k = 0, 1, 2, . . .). Then the sequence {Ak}
∞
k=0 converges to a matrix A ∈

Mm,n with respect to a matrix norm ‖ · ‖ on Mm,n if and only if limk→∞ ‖Ak −A‖ = 0. If {Ak} converges
to A with respect to ‖ · ‖, we write limk→∞Ak = A.

Definition 2.2. Given a matrix series
∑∞
j=0Aj such that Aj ∈Mm,n and Sk denotes its kth partial sum,

Sk =
∑k
j=0Aj. If {Sk} is convergent and limk→∞ Sk = S is existing, then

∑∞
j=0Aj is convergent to the

matrix S. Otherwise, the series is divergent.

Theorem 2.3. LetAk ∈Mm,n (k = 0, 1, 2, . . .) and the matrix series
∑∞
k=0Ak be convergent, then limk→∞Ak =

0.
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Proof. Since
∑∞
k=0Ak is convergent, then {Sk} is convergent and also since limk→∞ Sk = S, then

limk→∞ Sk−1 = S. Therefore, limk→∞Ak = limk→∞ (Sk − Sk−1) = 0.

Definition 2.4. Let Ak ∈Mm,n (k = 0, 1, 2, . . .) be a sequence of constant matrices, 0 6 r− 1 < α 6 r and
the variable t > t0, then the following series

∞∑
k=0

Ak (t− t0)
kα , (2.1)

is called the MFPS about t0 and Ak (k = 0, 1, 2, . . .) are called the coefficients of the MFPS.

Remark 2.5. The MFPS as in Eq. (2.1) always converges when t = t0.

Remark 2.6. We shall treat the MFPS as in Eq. (2.1) about t0 = 0 since the translation t
′
= t− t0 reduces

the MFPS about t0 to the case about 0.

Theorem 2.7. Let Ak ∈Mm,n (k = 0, 1, 2, . . .). Then for t > 0, we have:

(i) if the MFPS
∑∞
k=0Akt

kα converges when t = λ > 0 with respect to a matrix norm ‖ · ‖, then it also converges
when 0 6 t < λ;

(ii) if the MFPS
∑∞
k=0Akt

kα diverges when t = ρ > 0, then it also diverges when t > ρ.

Proof.

(i). Assume that
∑
Akλ

kα converges, then limk→∞Akλkα = 0 (by Theorem 2.3). That is ∃ a positive
number N and a matrix norm ‖ · ‖ on Mm,n such that ‖Akλkα‖ < ε = 1 when k > N. Thus, for k > N,
we have:

‖Akλkα‖ = ‖
Akλ

kαtkα

λkα
‖ = ‖Akλkα‖|

t

λ
|kα < |

t

λ
|kα.

Now, if 0 6 t < λ, then | tλ |
α < 1 and

∑
| tλ |
kα is convergent and so

∑∞
k=0 ‖Aktkα‖ is a convergent series

(by comparison test) which implies that
∑
Akt

kα is convergent.

(ii). Part (ii) follows by applying Part (i) of Theorem 2.7.

Theorem 2.8. The MFPS
∑∞
k=0Akt

kα has the following three cases:

(i) converges at t = 0;
(ii) converges for each t > 0;

(iii) converges when 0 6 t < R and diverges when t > R, where R is a positive integer number and called the
“radius of convergence” of the MFPS.

Proof. Follows by the same techniques of the proof as in [14, Theorem 3.2].

Remark 2.9. It is clear that R = 0 in case (i) and R =∞ in case (ii) of Theorem 2.8.

Theorem 2.10. The matrix classical power series (MCPS)
∑∞
k=0Akt

k, −∞ < t <∞ has a radius of convergence
R if and only if the MFPS

∑∞
k=0Akt

kα, t > 0 has radius of convergence R1/α.

Proof. Straightforward by changing the variable t = xα , x > 0 and conversely by changing the variable
t = x1/α, x > 0.

Theorem 2.11. If the MFPS
∑∞
k=0Akt

kα, t > 0 has radius of convergence R > 0 and X (t) =
∑∞
k=0Akt

kα ∈
Mm,n, 0 6 t < R, 0 6 r− 1 < α 6 r, then we have

Dα0 X (t) =

∞∑
k=1

Ak
Γ (kα+ 1)

Γ ((k− 1)α+ 1)
t(k−1)α, (2.2)

Jα0 X (t) =

∞∑
k=0

Ak
Γ (kα+ 1)

Γ ((k+ 1)α+ 1)
t(k+1)α.
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Proof. Define Y (x) =
∑∞
k=0Akx

k for 0 6 x < Rα, then for 0 6 τ < x < Rα, we have:

Dα0 Y (x) =
1

Γ (r−α)

∫x
0
(x− τ)r−α−1 Y(r) (τ)dτ

=
1

Γ (r−α)

∫x
0
(x− τ)r−α−1

(
dr

dτr

∞∑
k=0

Akτ
k

)
dτ

=

∞∑
k=0

Ak

(
1

Γ (r−α)

∫x
0
(x− τ)r−α−1

(
dr

dτr
τk
)
dτ

)
=

∞∑
k=0

AkD
α
0
(
xk
)

.

(2.3)

Now by setting x = tα, t > 0 in Eq. (2.3), we get:

Dα0 X (t) = Dα0 Y (t
α) =

∞∑
k=0

AkD
α
0
(
tkα
)

, 0 6 tα < Rα

=

∞∑
k=1

Ak
Γ (kα+ 1)

Γ ((k− 1)α+ 1)
t(k−1)α, 0 6 t < R.

Likewise, we find that:

Jα0 Y (x) =
1

Γ (α)

∫x
0
(x− τ)α−1 Y (τ)dτ

=
1

Γ (α)

∫x
0
(x− τ)α−1

( ∞∑
k=0

Akτ
k

)
dτ

=

∞∑
k=0

Ak

(
1

Γ (α)

∫x
0
(x− τ)α−1 (τk)dτ) =

∞∑
k=0

AkJ
α
0
(
xk
)

.

(2.4)

Substitute x = tα, t > 0 in Eq. (2.4), then we get

Jα0 X (t) = Jα0 Y (t
α) =

∞∑
k=0

AkJ
α
0
(
tkα
)

, 0 6 tα < Rα

=

∞∑
k=0

Ak
Γ (kα+ 1)

Γ ((k+ 1)α+ 1)
t(k+1)α, 0 6 t < R,

and so the proof ends.

Theorem 2.12. Assume that X (t) =
[
xij (t)

]
∈Mm,n has a MFPS representation at t0 of the form

X (t) =

∞∑
k=0

Ak (t− t0)
kα , 0 6 r− 1 < α 6 r, t0 6 t < t0 + R. (2.5)

Then
(i) X (t) is analytic matrix function on (t0, t0 + R) ;

(ii) if X (t) and Dkαt0
X (t) ∈ C [t0, t0 + R) , k = 0, 1, 2, . . ., then

Ak =
Dkαt0

X (t0)

Γ (kα+ 1)
, (2.6)

where Dkαt0
= Dαt0

·Dαt0
· · ·Dαt0

( k -times). That is

X (t) =

∞∑
k=0

Dkαt0
X (t0)

Γ (kα+ 1)
(t− t0)

kα , 0 6 r− 1 < α 6 r, t0 6 t < t0 + R, (2.7)

which is called the “Matrix fractional Taylor’s series (MFTS)” about t0.
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As a special case, if α = 1, then we obtain the so-called “Matrix classical Taylor’s series (MCTS)” about t0.

Proof.

(i). Since Y (t) =
∑∞
k=0Akt

k is analytic matrix function on |t| < Rα and g (t) = (t− t0)
α is analytic

function on t0 < t < t0 + R, 0 6 r− 1 < α 6 r, and so (Y ◦ g) (t) = X (t) is analytic matrix function on
(t0, t0 + R).

(ii). Set t = t0 in Eq. (2.5), then each term after the first one vanishes and thus we get: A0 = X (t0) . Now
by using part (5) 0f Lemma 1.1, then for t0 6 t < t0 + R, we have

Dαt0
X (t) = Γ (α+ 1)A1 +

Γ (2α+ 1)
Γ (α+ 1)

(t− t0)
αA2 +

Γ (3α+ 1)
Γ (2α+ 1)

(t− t0)
2αA3 + · · · . (2.8)

By substituting t = t0 in Eq. (2.8), we obtain

A1 =
Dαt0

X (t0)

Γ (α+ 1)
.

Again, by applying Eq. (2.2) on Eq. (2.8), then for t0 6 t < t0 + R, we have

D2α
0 X (t) = Γ (2α+ 1)A2 +

Γ (3α+ 1)
Γ (α+ 1)

(t− t0)
αA3 +

Γ (4α+ 1)
Γ (2α+ 1)

(t− t0)
2αA4 + · · · . (2.9)

Hence, if we put t = t0 in Eq. (2.9), then we have

A2 =
D2α
t0
X (t0)

Γ (2α+ 1)
.

By the same way, if we apply the operator Dαt0
(·) k-times on the Eq. (2.5) and substitute t = t0 in the

resulting equation for each time, then it’s easy to get the result as in Eq. (2.6) and by substituting the
formula as in Eq. (2.6) into Eq. (2.5) we get the result as in Eq. (2.7).

Theorem 2.13. Assume that X (t) =
[
xij (t)

]
∈ Mm,n has a MFTS representation at t0 as in Eq. (2.5),

Dkαt0
X (t) ∈ C (t0, t0 + R) , k = 0, 1, 2, . . . and Y (t) = X

(
(t− t0)

1/α + t0

)
, t0 6 t < t0 + Rα. Then

Dkαt0
X (t0) =

Γ (kα+ 1)
k!

Y(k) (t0) . (2.10)

Proof. Set t = (x− t0)
1/α + t0, t0 6 x < t0 + R

α in Eq. (2.7), then we get

Y (x) = X
(
(x− t0)

1/α + t0

)
=

∞∑
k=0

Dkαt0
X (t0)

Γ (kα+ 1)
(x− t0)

k , t0 6 x < t0 + R
α. (2.11)

Also, the MCTS of Y (x) about t0 can be represented by

Y (x) =

∞∑
n=0

Y(n) (t0)

n!
(x− t0)

n , t0 6 x < t0 + R
α. (2.12)

Now by comparing the corresponding coefficients in Eq. (2.11) and (2.12), then we obtain the result as in
Eq. (2.10).

Remark 2.14. The kth-partial sum of the MFTS of X (t) ∈Mm,n is

Tk (t) =

k∑
j=0

D
jα
t0
X (t0)

Γ (jα+ 1)
(t− t0)

jα ,

and Rk (t) = X (t) − Tk (t) is called the “Remainder of the MFTS”.
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Theorem 2.15. Let X (t) ∈ Mm,n such that X (t) and Djαt0
X (t) ∈ C (t0, t0 + R), j = 0, 1, 2, . . . ,k + 1 and

0 < α 6 1. Then the matrix function X (t) can be represented by

X (t) =

k∑
j=0

(
D
jα
t0
X
)
(t0)

Γ (jα+ 1)
(t− t0)

jα + J
(k+1)α
t0

D
(k+1)α
t0

X (t) , t0 6 t 6 t0 + R. (2.13)

Proof. By applying Lemma 1.1, we get

J
(k+1)α
t0

D
(k+1)α
t0

X (t) = Jkαt0

((
Jαt0
Dαt0

)
Dkαt0

X (t)
)

= Jkαt0

(
(Jt0Dt0)D

kα
t0
X (t)

)
= Jkαt0

(
Dkαt0

X (t) −Dkαt0
X (t0)

)
= Jkαt0

Dkαt0
X (t) − Jkαt0

(
Dkαt0

X (t0)
)

= J
(k−1)α
t0

(
(Jt0Dt0)D

(k−1)α
t0

X (t)
)
−

((
Dkαt0

X
)
(t0)

Γ (kα+ 1)
(t− t0)

kα

)

= J
(k−1)α
t0

(
D

(k−1)α
t0

X (t) −D
(k−1)α
t0

X (t0)
)
−

((
Dkαt0

X
)
(t0)

Γ (kα+ 1)
(t− t0)

kα

)

= J
(k−2)α
t0

(
(Jt0Dt0)D

(k−2)α
t0

X (t)
)
−


(
D

(k−1)α
t0

X
)
(t0)

Γ ((k− 1)α+ 1)
(t− t0)

(k−1)α


−

((
Dkαt0

X
)
(t0)

Γ (kα+ 1)
(t− t0)

kα

)
.

(2.14)

Now, we can get the result as in Eq. (2.13) after repeating previous procedure of calculations in Eq. (2.14)
k-times.

Theorem 2.16. Let X (t) ∈Mm,n and for 0 < α 6 1,

‖D(k+1)α
t0

X (t) ‖ 6M, t0 6 t 6 λ.

Then the reminder Rk (t) ∈Mm,n of the MFTS satisfies the inequality:

‖Rk (t) ‖ 6
M

Γ ((k+ 1)α+ 1)
(t− t0)

(k+1)α , t0 6 t 6 λ.

Proof. Suppose that Djαt0
X (t) exist for j = 0, 1, 2, . . . ,k+ 1 and since

Rk (t) = X (t) −

k∑
j=0

D
jα
t0
X (t0)

Γ (jα+ 1)
(t− t0)

jα ,

we get by applying Theorem 2.15

Rk (t) = J
(k+1)α
t0

D
(k+1)α
t0

X (t) .

Thus for t0 6 τ 6 t 6 λ, we have

‖Rk (t) ‖ = ‖J
(k+1)α
t0

D
(k+1)α
t0

X (t) ‖

= ‖ 1
Γ ((k+ 1)α)

∫t
t0

(t− τ)(k+1)α−1D
(k+1)α
t0

X (τ)dτ‖



A. El-Ajou, J. Math. Computer Sci., 21 (2020), 1–17 8

6
1

Γ ((k+ 1)α)

∫t
t0

| (t− τ)(k+1)α−1
|‖D(k+1)α

t0
X (τ) ‖dτ

6
1

Γ ((k+ 1)α)

∫t
t0

| (t− τ)(k+1)α−1
|Mdτ

=
M

Γ ((k+ 1)α)

∫t
t0

(t− τ)(k+1)α−1 dτ

=
M

Γ ((k+ 1)α+ 1)
(t− t0)

(k+1)α .

3. Frobenius norm approximation of matrix fractional derivatives and integrals

In this section, we present the Frobenius norm approximation for the matrix fractional derivatives and
integrals of the matrix function X (t) ∈Mm,n at a given point based on our results as obtained in Section
2 (Theorems 2.11, 2.12, 2.13 and MFTS method). Here we use Mathematica software packages for getting
the numerical computations.

Prior anything, we recall the definition of the Frobenius norm contained in the following formula

‖X (t) ‖F =

√√√√√
 m∑
i=1

n∑
j=1

|xij (t) |2

, X (t) =
[
xij (t)

]
∈Mm,n.

Problem 3.1. Given the following matrix function:

X (t) =
I4

1 − tα
∈M4×4 , α > 0, t > 0,

where I4 is an identity matrix of order 4.

The MFTS of X (t) about t = 0 is written by

X (t) =

∞∑
k=0

Dkα0 X (0)
Γ (kα+ 1)

tkα, α > 0, t > 0,

which is called the “Matrix fractional Maclaurin’s series (MFMS)” of X (t). According to Theorem 2.13,
we have

Dkα0 X (0) =
Γ (kα+ 1)

k!
Y(k) (0) , α > 0, t > 0,

where

Y (t) = X
(
t1/α

)
=

I4
1 − t

, Y(k) (0) = I4k!.

That is, the MFMS of X (t) can be represented as follows

X (t) =

∞∑
k=0

I4t
kα, α > 0, t > 0,

which is a geometric MFPS with ratio tα and converges for each 0 6 tα < 1, and so for each 0 6 t < 1.
Now according to Theorem 2.11, we can approximate the matrix fractional derivative ‖Dα0 X (t) ‖F and

the matrix fractional integral ‖Jα0 X (t) ‖F of a matrix function X (t) on 0 6 t < 1, beginningwith ‖Dα0 X (t) ‖F
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which can be bounded by the mth-partial sum of its expansion by

‖Dα0 X (t) ‖F ∼= ‖I4
m∑
k=1

Γ (kα+ 1)
Γ ((k− 1)α+ 1)

t(k−1)α‖F, 0 6 t < 1,

6 ‖I4‖F
m∑
k=1

|
Γ (kα+ 1)

Γ ((k− 1)α+ 1)
t(k−1)α|,

= 2
m∑
k=1

Γ (kα+ 1)
Γ ((k− 1)α+ 1)

t(k−1)α.

Table 1 shows the numerical values of ‖Dα0 X (t) ‖F for distinct values of t and α on 0 6 t < 1 in step of
0.1 when m = 10.

Table 1: Numerical values of ‖Dα0 X (t) ‖F when m = 10.

t α = 1/2 α = 3/4 α = 3/2 α = 2

0.0 1.77245 1.83813 2.65868 4.00000
0.1 2.89754 2.50723 2.9625 4.24611
0.2 3.83615 3.23901 3.62818 5.06366
0.3 4.99905 4.22712 4.77134 6.74124
0.4 6.52266 5.65090 6.74233 9.98811
0.5 8.55521 7.79886 10.3588 16.5913
0.6 11.2710 11.1383 17.6872 31.6794
0.7 14.8752 16.4033 34.4080 72.7418
0.8 19.6062 24.7069 76.7787 208.884
0.9 25.7382 37.6799 190.973 731.952

Similarly, the mth-partial sum expansion for approximating ‖Jα0 X (t) ‖F can be obtained by Theorem
2.11 as follows

‖Jα0 X (t) ‖F ∼= ‖I4
m∑
k=0

Γ (kα+ 1)
Γ ((k+ 1)α+ 1)

t(k+1)α‖F, α > 0, 0 6 t < 1,

6
m∑
k=0

2Γ (kα+ 1)
Γ ((k+ 1)α+ 1)

t(k+1)α.

Table 2 shows the numerical values of ‖Jα0 X (t) ‖F for distinct values of t and α on 0 6 t < 1 when m = 10.

Table 2: Numerical values of ‖Jα0 X (t) ‖F when m = 10.

t α = 1/2 α = 3/4 α = 3/2 α = 2

0.0 0.00000 0.00000 0.0000 0.00000
0.1 0.24349 0.05059 0.00045 0.00002
0.2 0.57892 0.16072 0.00372 0.00027
0.3 1.01824 0.33195 0.01310 0.00140
0.4 1.59074 0.57880 0.03280 0.00457
0.5 2.33971 0.92714 0.06857 0.01162
0.6 3.32452 1.41993 0.12897 0.02549
0.7 4.62349 2.12725 0.22806 0.05087
0.8 6.33708 3.16197 0.39193 0.09609
0.9 8.59139 4.70257 0.67637 0.17828
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Problem 3.2. Given the following MM-LF of A ∈Mn:

Eα (Atα) =

∞∑
k=0

Aktkα

Γ (kα+ 1)
, α > 0, t > 0.

Since the general solutions of many fractional differential system are represented in terms of Eα (Atα),
then we need here to approximate: ‖Dα0 (Eα (Atα)) ‖F and ‖Jα0 (Eα (Atα)) ‖F , respectively, for mth-partial
sums based on Theorem 2.11 as follow

‖Dα0 (Eα (Atα)) ‖F = ‖AEα (Atα) ‖F ∼= ‖
m∑
k=0

Ak+1tkα

Γ (kα+ 1)
‖F 6

m∑
k=0

‖A‖k+1
F tkα

Γ (kα+ 1)
,α > 0, t > 0,

‖Jα0 (Eα (Atα)) ‖F ∼= ‖
m∑
k=0

Akt(k+1)α

Γ ((k+ 1)α+ 1)
‖F 6

m∑
k=0

‖A‖kFt(k+1)α

Γ ((k+ 1)α+ 1)
,α > 0, t > 0.

To show the validity of our MFPS representation for the approximating Eα (Atα), consider

A =

[ 1
4

1
4

1
4 −1

4

]
.

Hence, the numerical values of ‖Dα0 (Eα (Atα)) ‖F and ‖Jα0 (Eα (Atα)) ‖F for distinct values of α and t
on 0 6 t 6 4 when m = 10 are given, respectively, as in Tables 3 and 4.

Table 3: Numerical values of ‖Dα0 (Eα (Atα)) ‖F when m = 10.

t α = 1/2 α = 3/4 α = 3/2 α = 2

0.0 0.50000 0.50000 0.50000 0.50000
0.4 0.74338 0.66409 0.54893 0.52013
0.8 0.89951 0.81536 0.64568 0.58216
1.2 1.05385 0.98370 0.78606 0.69106
1.6 1.21501 1.17624 0.97661 0.85562
2.0 1.38709 1.39880 1.22860 1.08909
2.4 1.57296 1.65743 1.55775 1.41027
2.8 1.77504 1.95887 1.98495 1.84502
3.2 1.99563 2.31081 2.53745 2.42837
3.6 2.23704 2.72215 3.25056 3.20728
4.0 2.50164 3.20322 4.16986 4.24448

Table 4: Numerical Values of ‖Jα0 (Eα (Atα)) ‖F when m = 10.

t α = 1/2 α = 3/4 α = 3/2 α = 2

0.0 0.00000 0.00000 0.00000 0.00000
0.4 0.97353 0.65637 0.19572 0.08054
0.8 1.59803 1.26143 0.58273 0.32863
1.2 2.21540 1.93481 1.14425 0.76425
1.6 2.86007 2.70494 1.90645 1.42249
2.0 3.54851 3.59519 2.91440 2.35637
2.4 4.29224 4.62975 4.23100 3.64108
2.8 5.10113 5.83555 5.93980 5.38009
3.2 5.98457 7.24346 8.14981 7.71346
3.6 6.95207 8.88915 11.0023 10.8291
4.0 8.01350 10.8142 14.6794 14.9779
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4. MFPS solutions of some linear and non-linear MFDEs

This section focuses on the general exact (numerical) solutions of four important and interesting linear
and non-linear MFDEs by using the efficient MFPS technique. Also, a new technique is applied on the
non-linear MFDEs as in the last two problems.

Problem 4.1. Given the following linear MFDEs:

D2α
0 X (t) = −W2X (t) , 0 < α 6 1, t > 0, (4.1)
X (0) = P0 , Dα0 X (0) = P1, (4.2)

where W ∈Mm , P0 and P1∈Mm,n are real or complex constant matrices and X (t) ∈Mm,n.

According to MFMS method, assume that the MFPS solution X (t) of Eq. (4.1) as follows:

X (t) =

∞∑
k=0

Ak t
kα. (4.3)

Now, by applying the operator Dα0 two-times on Eq. (4.3), we have

Dα0 X (t) =

∞∑
k=1

Ak
Γ (kα+ 1)

Γ ((k− 1)α+ 1)
t(k−1)α,

D2α
0 X (t) =

∞∑
k=2

Ak
Γ (k+ 1)

Γ ((k− 2)α+ 1)
t(k−2)α =

∞∑
k=0

Ak+2
Γ ((k+ 2)α+ 1)
Γ (kα+ 1)

tkα.

(4.4)

Substitute Eqs. (4.3) and (4.4) into Eq. (4.1), yields that:

∞∑
k=0

Ak+2
Γ ((k+ 2)α+ 1)
Γ (kα+ 1)

tkα +W2
∞∑
k=0

Ak t
kα = 0.

This formula leads to the following recurrence relation:

Ak+2 =
−Γ (kα+ 1)

Γ ((k+ 2)α+ 1)
W2Ak,k = 0, 1, 2, . . . .

By using the initial conditions as in Eq. (4.2), we have

A0 = P0 , A1 =
1

Γ (α+ 1)
P1.

Now, the other coefficients of tkα can be partitioned as follows

1. For the terms of even indices are:

A2 =
−1

Γ (2α+ 1)
W2P0 , A4 =

1
Γ (4α+ 1)

W4P0 , . . . .

2. For the terms of odd indices are:

A3 =
−1

Γ (3α+ 1)
W2P1 , A5 =

1
Γ (5α+ 1)

W4P1 , . . . .
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Thus, we can obtain the series solution as follows

X (t) =

∞∑
k=0

W2kP0
(−1)k

Γ (2kα+ 1)
t2kα +

∞∑
k=0

W2kP1
(−1)k

Γ ((2k+ 1)α+ 1)
t(2k+1)α.

This solution can be represented in the term of the MM-LF as an exact solution by

X (t) = E2α
(
−W2t2α)P0 + t

αE2α,(α+1)
(
−W2t2α)P1.

Problem 4.2. Given the following composite linear MFDEs:

D2
0X (t) +D

1/2
0 X (t) +X (t) = 8B, t > 0, (4.5)

X (0) = X
′
(0) = 0, (4.6)

where B and X (t) ∈Mm,n .

According to the MFMS method, suppose that the MFPS solution X (t) of Eq. (4.5) as follows:

X (t) =

∞∑
k=0

Akt
k
2 .

The MFMS requires to find the fractional derivatives: D1/2
0 X (t), D1

0X (t), and D2
0X (t). However, it is easy

to find them by using Eq. (2.2) as follow

D
1/2
0 X (t) =

∞∑
k=1

Ak
Γ
(
k
2 + 1

)
Γ
(
k−1

2 + 1
)tk−1

2 =

∞∑
k=0

Ak+1
Γ
(
k+1

2 + 1
)

Γ
(
k
2 + 1

) tk2 ,

D1
0X (t) =

dX

dt
= A1t

−1
2 +A2 +

∞∑
k=3

An
k

2
t
k−2

2 ,

D2
0X (t) =

d2X

dt2 =
−1
2
A1t

−3
2 +

3
4
A3t

−3
2 +

∞∑
k=4

kn
k

2

(
k

2
− 1
)
t
k−4

2 .

Since t > 0, then A1 and A3 must be zeros and by using the initial conditions as in Eq. (4.6), we get
A0 = A2 = 0.

Now, the new representation form of the solution is obtained by:

X (t) =

∞∑
k=4

Akt
k
2 ,

D
1/2
0 X (t) = A4

2
Γ
(5

2

)t 3
2 +

∞∑
k=4

Ak+1
Γ
(
k+1

2 + 1
)

Γ
(
k
2 + 1

) tk2 ,

D2
0y (t) = 2A4 +

15
4
A5t

1
2 + 6A6t+

35
4
A7t

3
2 +

∞∑
k=4

Ak+4
k+ 4

2

(
k+ 4

2
− 1
)
t
k
2 .

Substitute the expansion formulas above into Eq. (4.5), we obtain

A4 = 4B,A5 = A6 = 0,A7 = −
128B(

105
√
π
) ,

Ak+4 =
−4

(k+ 2) (k+ 4)

(
Ak +Ak+1 ×

(
k+1

2 + 1
)

Γ
(
k
2 + 1

) ) , k > 4.
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So that the 15th-truncated series approximation of X (t) is represented by

X15 (t) = 4Bt2 −
128B

105
√
π
t

7
2 −

B

3
t4 +

B

15
t5 +

1024B
10395

√
π
t

11
2 +

B

90
t6 −

1024B
135135

√
π
t

13
2 −

B

210
t7 −

2048B
675675

√
π
t

15
2 . (4.7)

In order to examine the approximation solution in Eq. (4.7), we need to calculate the residual error
function (Res (t)) with respect to the Frobenius norm for different values t on 0 6 t 6 1 in step of 0.2,
where the residual error function is defined as follows

Res (t) = ‖D2
0X (t) +D

1
2
0X (t) +X (t) − 8B‖F,

and here, we will take a fixed numerical values for the matrix B as follows:

B =

[ 1
4 0 −1

4
0 1

4 −1
4

]
.

Table 5 shows that the 15th-numerical values of ‖X (t) ‖F, ‖D1/2
0 X (t) ‖F, and ‖D2

0X (t) ‖F with Res (t) .
It indicates that the numerical solution of the problem as in Eq. (4.7) is more accurate at the beginning of
the values of the interval. In fact, we can say that the MFPS method is efficient to obtain a good accuracy
of the solution.

Table 5: 15th-Numerical values of ‖X (t) ‖F, ‖D1/2
0 X (t) ‖F, ‖D2

0X (t) ‖F and Res (t) .

t ‖X (t) ‖F ‖D1/2
0 X (t) ‖F ‖D2

0X (t) ‖F Res (t)

0.0 0.00000 0.00000 0.00000 0.00000
0.2 0.07852 0.26265 3.65883 3.10574× 10−7

0.4 0.30235 0.70661 2.99101 3.08381× 10−5

0.6 0.64523 1.21006 2.14425 4.60852× 10−4

0.8 1.07361 1.70471 1.21851 3.16383× 10−3

1.0 1.55075 2.14109 0.29399 1.41674× 10−2

Problem 4.3. Given the following nonlinear MFDE:

Dα0 X (t) = X2 (t) + In, r− 1 < α 6 r, t > 0, (4.8)

X(i) (0) = 0, i = 0, 1, . . . , r− 1, (4.9)

where In is an identity matrix and X(t) ∈Mn.

Similarly to the previous problems, let the MFPS solution of Eqs. (4.8) and (4.9) as:

X (t)=

∞∑
k=0

Akt
kα. (4.10)

Based on Eq. (4.9), we get A0 = 0 and so Eq. (4.10) becomes:

X (t)=

∞∑
k=1

Akt
kα. (4.11)

In general, it is not easy to find the coefficients Ak from the recurrence relation corresponding to the
MFPS representation for nonlinear MFDEs. Therefore, we use a new technique in this problem for finding
Ak by defining the so-called αmth-order MFDE as follows:

Dαm0
(
Dα0 X (t) −X2 (t) − In

)
= 0, m = 0, 1, 2, . . . . (4.12)
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Note that when m = 0, then Eq. (4.12) is reduced to Eq. (4.8). So, the MFMS representation in Eq.
(4.11) is a solution for the αmth-order MFDE as in Eq. (4.12). That is:

D
α(m+1)
0

( ∞∑
k=1

Akt
kα

)
−Dαm0

( ∞∑
k=1

Akt
kα

)2

−Dαm0 (In) = 0, m = 0, 1, 2, . . . . (4.13)

Based on Eq. (2.2), then Eq. (4.13) becomes

∞∑
k=m+1

Ak
Γ (kα+ 1)

Γ ((k−m− 1)α+ 1)
t(k−m−1)α −

∞∑
k=m

 k∑
j=0

AjAk−j

 Γ (kα+ 1)
Γ ((k−m)α+ 1)

t(k−m)α = χm, (4.14)

where χm = In if m = 0 and χm = 0 if m > 1.
Hence by using Theorems (2.7) and (2.11), the αmth derivative of the MFMS representation, Eq. (4.11)

converges at least at t = 0, for m = 0, 1, 2, . . . .
Now, by setting t = 0 in Eq. (4.14), we get the following values of the coefficients Ak of tkα:

A0 = 0, A1 =
I

Γ (α+ 1)
, Am+1 =

Γ (mα+ 1)
Γ ((1 +m)α+ 1)

m∑
j=0

AjAm−j for m = 1, 2, . . . .

Thus, the general expansion solution of Eqs. (4.8) and (4.9) is obtained as follows:

X (t) =
In

Γ (α+ 1)
tα +

Γ (2α+ 1) In
(Γ (α+ 1))2Γ (3α+ 1)

t3α + 2
Γ (2α+ 1)Γ (4α+ 1) In

(Γ (α+ 1))3Γ (3α+ 1)Γ (5α+ 1)
t5α + . . . . (4.15)

In particular, if α = 1, then the Eqs. (4.8) and (4.9) become:

X
′
(t) = X2 (t) + In, X (0) = 0, t > 0, (4.16)

and when applying Eq. (4.15), then the CPS solution of Eq. (4.16) is presented by:

X (t)=

(
t+

t3

3
+

2t5

15
+

17t7

315
+

62t9

2835
+

1382t11

155925
+ · · ·

)
In = Intant .

In order to examine the approximate solution as in Eq. (4.15), Table 6 shows that the 15th-approximate
of ‖X (t)‖F with Res (t) for different values of α and t on 0 6 t 6 1 by considering the identity matrix of
order 9 and defining the residual error function of Problem 4.3 with respect to Frobenius norm by:

Res (t) =
∥∥Dα0 X (t) −X2 (t) − I9

∥∥
F

.

Table 6: 15th-numerical values of ‖X(t)‖F with Res (t).

t ‖X (t;α=1.5)‖F Res (t;α=1.5) ‖X (t;α=2.5)‖F Res (t;α=2.5)

0.0 0.00000 0.00000 0.000000 0.00000
0.2 0.20199 2.034437×10−17 0.016149 3.109055×10−16

0.4 0.57409 4.370361×10−17 0.091350 1.252591×10−15

0.6 1.06871 2.850815×10−13 0.251775 7.275543×10−16

0.8 1.68902 2.897717×10−10 0.517173 1.022700×10−15

1.0 2.46753 6.341391×10−8 0.905028 1.998026×10−16

Table 6 provides that the numerical values for the convergence of the MFPS technique and the results
shown here confirm that our new method is very efficient by using only a few approximation terms and
higher accuracy can be achieved by computing more components of the solution.
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Problem 4.4. Given the following composite nonlinear MFDE:

D2α
0 X (t) = (Dα0 X (t))2 + In ,

1
2
< α 6 1, t > 0, (4.17)

X (0) = C0, Dα0 X (0) = C1, (4.18)

where In is an identity matrix of order n, and C0, C1, X(t) ∈Mn.

Again, the MFPS solution of Eqs. (4.17) and (4.18) can be assumed as follows:

X (t)=

∞∑
k=0

Akt
kα.

Thus, the αmth-order MFDE of Eq. (4.17) is:

Dmα0

(D2α
0

∞∑
k=0

Akt
kα

)
−

(
Dα0

∞∑
k=0

Akt
kα

)2

− In

 = 0, m = 0, 1, 2, . . . . (4.19)

Based on Eq. (4.17) and using Cauchy product for infinite series, then Eq. (4.19) becomes:

Dmα0

( ∞∑
k=2

Ak
Γ (kα+ 1)

Γ ((k− 2)α+ 1)
t(k−2)α −

∞∑
k=0

Bkt
kα − In

)
= 0, (4.20)

where

Bk =

k∑
j=0

Aj+1Ak−j+1
Γ ((j+ 1)α+ 1)

Γ (jα+ 1)
Γ ((k− j+ 1)α+ 1)

Γ ((k− j)α+ 1)
.

In fact, Eq. (4.20) can be easily reduced into the following equivalent form:

∞∑
k=m+2

Ak
Γ (kα+ 1)

Γ ((k−m− 2)α+ 1)
t(k−m−2)α −

∞∑
k=m

Bk
Γ (kα+ 1)

Γ ((k−m)α+ 1)
t(k−m)α = χm , (4.21)

where χm = In if m = 0 and χm = 0 if m > 1.
However, setting t = 0 in Eq. (4.21) gives the values of Ak, the coefficient of tkα, follows as

A0 and A1 are arbitrary, A2 =
I+C2

1 (Γ (α+ 1))2

Γ (2α+ 1)
, Am+2 =

Γ (mα+ 1)
Γ ((2 +m)α+ 1)

Bm,m = 1, 2, . . . .

Now, by simple computations, we get the exact solution of Eqs. (4.17) and (4.18) which are expanded
in the following power series solution

X (t) = C0 +C1t
α +

In +C2
1 (Γ (α+ 1))2

Γ (2α+ 1)
t2α +

2C1Γ (1 +α) (In +C2
1 (Γ (1 +α))

2
)

Γ (1 + 3α)
t3α + · · · .

Note that so many new special cases can be extracted by giving two constant matrices C0 and C1.

5. Conclusions

In this work, we extend the FPS to the MFPS and discuss the convergence and radii of convergence
for MFPS in Caputo sense. In addition, we approximate the matrix fractional derivatives and fractional
integrals of a given matrix function with respect to Frobenius norm. Finally, new techniques are also
applied for getting the general exact (numerical) solutions of some linear and non-linear MFDEs. How to
apply our new method for solving systems of MFDEs such as matrix fractional time-varying descriptor
system and matrix fractional control systems still need further researches.
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