
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 20 (2020), 334–348

Research Article

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Analytical technique for neutral delay differential equations
with proportional and constant delays

Normah Maana,∗, Aminu Bardea,b

aDepartment of Mathematical Sciences, Universiti Teknologi, 81310 Skudai, Johor, Malaysia.
bDepartment of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

Abstract
Neutral delay differential equations (NDDEs) are a type of delay differential equations (DDEs) that arise in numerous areas

of applied sciences and play a vital role in mathematical modelling of real-life phenomena. Some techniques have experienced
difficulties in finding the approximate analytical solution which converges rapidly to the exact solution of these equations. In
this paper, an analytical approach is proposed for solving linear and nonlinear NDDEs with proportional and constant delays
based on the homotopy analysis method (HAM) and natural transform method where the nonlinear terms are simply calculated
as a series of, He’s polynomial. The proposed method produces solutions in the form of a rapidly convergent series which leads
to the exact solution from only a few numbers of iterations. Some illustrative examples are solved, and the convergence analysis
of the proposed techniques was also provided. The obtained results reveal that the approach is very effective and efficient in
handling both linear and nonlinear NDDEs with proportional and constant delays and can also be used in various types of linear
and nonlinear problems.
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1. Introduction

Delay differential equation is a branch of functional differential equation arising in several applications
from various fields of studies, for instances biology, population dynamics, chemistry, physics, control the-
ory, and many others [2, 3, 7, 14, 16, 20, 21, 24, 25]. Unlike in the case of ordinary differential equations
(ODEs) the unknown functions in DDEs depend not only on the present values of derivatives of indepen-
dent variables, but also depend on the values of the functions at some previous times. For this reason,
DDEs particularly NDDEs provide an efficient mathematical tool to model various phenomena from real-
life problems. Recently, there is a rapid development of new analytical methods with the aim to obtain
the solution of different classes of DDEs. However, it is obvious that a lot of these introduced techniques
have encountered some difficulties in finding approximate analytical solutions which converge to an exact
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solution of DDEs more specifically NDDEs. It is therefore very difficult to solve NDDEs with proportional
and constant delays analytically due to their special transcendental nature. Hence, they are mostly solved
by numerical methods [8, 26, 27, 29]. Therefore, it is of more interest to develop a new analytical approach
for such equations.

HAM is a powerful technique introduced by Lio [11] for solving different types of linear and nonlinear
problems [1, 12, 13, 19, 22]. Therefore, in this article, we introduced a new analytical approach from
the combination of HAM and Natural transform method for both linear and nonlinear NDDEs with
proportional and constant delays. Based on this technique the nonlinear terms of NDDEs would be
computed as a series of He’s polynomial. The method gives solution in a series form which converges to
an exact solution using a few numbers of terms. In addition, some important theorems were established
in order to guarantee the convergence of the new approach and the maximum estimated error between
the approximate and the exact solutions.

This paper is organized as follows. In Section 2 the definitions and concept of Natural transform for
NDDEs are given. The analysis of the technique is presented in Section 3. The convergence analysis of
the proposed method was given in Section 4. To show the effectiveness of the new approach solutions to
a different form of NDDEs was rendered in Section 5. Finally, the conclusion follows in Section 6.

2. Natural transform method

Khan and Khan [10] introduced an integral transform called N-transform, and it was later renamed
as natural transform by Belgacem and Silambarasan [4]. This transform was derived from the renowned
Fourier integral and converged to Laplace and Sumudu transforms depending on the values of the trans-
form variables. The basic concepts of natural transform that are useful in this paper are rendered below.

Definition 2.1 ([6]). Let t ∈ (−∞,∞), then the natural transform of the function f(t) is defined by

N+ [f(t)] = R+(s,u) =
∫∞
−∞ e−stf(ut)dt; s,u ∈ (0,∞] , (2.1)

where N+ denotes as natural transform and s,u are transforming variables.

Now, (2.1) can be written in the following form [6, 23]

N+ [f(t)] = R+(s,u) =
∫∞
−∞ e−stf(ut)dt; s,u ∈ (0,∞]

=

∫ 0

−∞ e−stf(ut)dt; s,u ∈ (−∞, 0) +
∫∞

0
e−stf(ut)dt; s,u ∈ (0,∞)

= N− [f(t)] + N+ [f(t)]

= N[f(t)H(−t)] + N[f(t)H(t)]

= R−(s,u) + R+(s,u).

Here, H(.) is the Heaviside function. Suppose the function f(t)H(t) is defined on R+ and t ∈ R then we
define the natural transform over the set

A =

{
f(t) : ∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
τj , t ∈ (−1)j × [0,∞) , j ∈ Z+

}
as in the given integral:

N+ [f(t)] = R+(s,u) =
∫∞

0
e−stf(ut)dt; s,u ∈ (0,∞] .
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Theorem 2.2 ([4]). Let f(t) =
∑∞
n=0 ant

n, then the generalized natural transform of the function f(t) is given as

N+[f(t)] = R+(s,u) =
∞∑
n=0

n!anun

sn+1 ,

where an ∈N.

Property 2.1 ([6]). Let a be a non-zero constant and f(at) ∈ A, then

N+ [f(at)] =
1
a
R(
s

a
,u).

Theorem 2.3 ([5]). If Hτ is the Heaviside function for any real number τ > 0 defined as

Hτ(t) =

{
1, for t > τ,
0, for t < τ,

then the natural transform of the shifted function f(t− τ) = f(t− τ)Hτ(t) is given by

N+[f(t− τ)Hτ(t)] = e
−sτ
u N+[f(t)].

Theorem 2.4 ([4]). Let f(n)(t) be the nth derivatives of the function f(t) then its natural transform is given by

N+[fn(t)] = R+n(s,u) =
sn

un
R(s,u) −

n∑
k=1

sn−k

u(n−k)+1 f
k−1(0).

Corollary 2.5. Let N+[f(at)] = R+(as,u), if f(n)(at) is the nth derivative of the function f(at) with respect to
t, then its natural transform is given by

N+[fn(at)] = R+n(as,u) =
sn

(au)n
R+(as,u) −

n∑
k=1

sn−k

(au)(n−k)+1 f
(k−1)(0). (2.2)

Proof. For n = 1 and n = 2, (2.2) gives the natural transform of first and second derivatives of f(at),
respectively.

N+[f
′
(at)] = R+1 (as,u) =

s

au
R+(as,u) −

f(0)
au

,

N+[f
′′
(at)] = R+2 (as,u) =

s2R+(as,u) − sf(0)
(au)2 −

f
′
(0)
au

.
(2.3)

Then by induction suppose the condition holds for n, then it is suffices to show it also holds for n+ 1.
Now from (2.3) we have

N+[f(n+1)(at)] = N+[(f(n)(at))
′
] = R+n+1(as,u) =

s

au
R+n(as,u) −

f(n)(0)
au

=
s

au
[
sn

(au)n
R+(as,u) −

n∑
k=1

sn−k

(au)(n−k)+1 f
(k−1)(0)] −

f(n)(0)
au

=
sn+1

(au)n+1R
+(as,u) −

n+1∑
k=1

s(n−k)+1

(au)(n−k)+2 f
(k−1)(0).

Which holds for n+ 1 and hence the result.
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Corollary 2.6. If f(n)(t− τ) is nth derivative of the shifted function f(t− τ) with respect to t, then its natural
transform is given by

N+[fn(t− τ)] = e(−
sτ
u )R+n(s,u) =

sn

un
e(−

sτ
u )R+(s,u) −

n∑
k=1

sn−k

(u)(n−k)+1 [limt→0
f(k−1)(t− τ)]. (2.4)

Proof. The proof of Corollary 2.6 is similar to that of Corollary 2.5, so for n = 1 and n = 2 in (2.4) we
respectively have the natural transform of first and second derivatives of f(t− τ).

N+[f
′
(t− τ)] =

s

u
e

−sτ
u R+(s,u) −

1
u

lim
t→0

f(t− τ),

N+[f
′′
(t− τ)] =

s2e
−sτ
u R+(s,u) − s lim

t→0
f(t− τ)

u2 −
lim
t→0

f
′
(t− τ)

u
.

(2.5)

Also by induction assume (2.4) is true for n and we also have to prove for n+ 1. From (2.5) we can have

N+
[
f(n+1)(t− τ)

]
= N+

[
(fn(t− τ))

′
]
=
s

u
N+

[
f(n)(t− τ)

]
−

lim
t→0

fn(t− τ)

u

=
s

u

[
sn

un
e

−sτ
u R+(s,u) −

n∑
k=1

sn−k

u(n−k)+1

[
lim
t→0

f(k−1)(t− τ)

]]
−

lim
t→0

f(n)(t− τ)

u

=
sn

un
e

−sτ
u R+(s,u) −

n+1∑
k=1

sn−k+1

u(n−k)+2

[
lim
t→0

f(k−1)(t− τ)

]
.

Which is true for n+ 1 and hence the result. For more application of natural transform in solving different
type of differential and integral equations see [5, 15, 17, 18, 23].

3. Analysis of the method

Consider the following n-order Neutral DDEs of the form

[v(t) + v(β(t))](n) = F[t, vk, vk(βi(t))], t ∈ [0,d], (3.1)

where i = 1, 2, . . . , r,k = 1, 2, . . . ,n− 1,βi(t) are delay functions such that v(β(t)) = max[βi(t)] subject to
the given initial condition

vk(0) = vk0 , v(t) = p(t), t < 0. (3.2)

In this paper two types of delays βi(t) are to be considered:

Case I. βi(t) = ait, where ai ∈ (0, 1) (proportional delay);

Case II. βi(t) = t− τi, where τi > 0 is a real constant (constant delay).

Now (3.1) can be written in the following form

L(v+ v(β)) + R(v) + F(v) = g(t) (3.3)

with specified initial conditions. The linear terms are split into L+Rwhere L is the highest order bounded
linear operator, R is the remaining of the linear operator which is also bounded, and F is a continuous
function satisfies the Lipschitz condition with Lipschitz constant α ∈ [0,d], represents the non-linear term.
That is, there exists some positive numbers α1,α2 and α such that

{‖L(v)‖ 6 α1‖v(t)‖, ‖R(v)‖ 6 α2‖v(t)‖, |f(v) − f(u)| 6 α|v− u|, ∀t ∈ [0,d]}.



N. Maan, A. Barde, J. Math. Computer Sci., 20 (2020), 334–348 338

Take the natural transform of both sides of (3.3) we obtain:

N+[L(v+ vβ)] + N+[R(v) + F(v) − g(t)] = 0. (3.4)

Substitute (3.2) into (3.4), and simplify using the differential properties of natural transform to obtain the
following with respect to two types of delays defined in Case I and Case II, respectively.

N+

[
v(t) +

1
an
v(at)

]
−

n∑
k=1

(
1 +

1
a(n+1−k)

)
un−k

sk
vk−1(0)

+
un

sn
N+[R(v) + F(v) − g(t)] = 0,

N+
[
v(t) + e

−sτ
u v(t)

]
−

n∑
k=1

un−k

sk

[
vk−1(0) + lim

t→0
vk−1(t− τ)

]
+
un

sn
N+[R(v) + F(v) − g(t)] = 0,

(3.5)

where a = max[ai] and τ = max[τi].
Now, from (3.5) we can define the following nonlinear operators

N[φ(t;q)] = N+

[
φ(t;q) +

1
an
φ(at;q)

]
−

n∑
k=1

(
1 +

1
a(n+1−k)

)
un−k

sk
φk−1(0)

+
un

sn
N+[R(φ(t;q)) + F(φ(t;q)) − g(t)],

N[φ(t;q)] = N+
[
φ(t;q) + e

−sτ
u φ(t;q)

]
−

n∑
k=1

un−k

sk
[φk−1(0)

+ lim
t→0

φk−1(t;q− τ)] +
un

sn
N+[R(φ(t;q)) + F(φ(t;q)) − g(t)],

(3.6)

where q ∈ [0, 1] is an embedding parameter, φ(t;q) is a function of real variables t and q. Then by means
of HAM we construct the homotopy equation as

(1 − q)N+[φ(t;q) − v0(t)] = hqH(t)N[φ(t;q)], (3.7)

where N+ denotes natural transform, h 6= 0 is auxiliary parameter, H(t) 6= 0 is auxiliary function, v0(t)
is initial approximation of v(t), and φ(t;q) is unknown function. From (3.7) when q = 0 and q = 1 we
respectively have the following equations

φ(t, 0) = v0(t), φ(t, 1) = v(t).

Thus, as q increases from 0 to 1, the solution φ(t,q) varies from the initial approximation v0(t) to the
exact solution v(t). In topology such kind of variation is called deformation and (3.7) is called zero-order
deformation equation. Expanding φ(t;q) in Taylor series with respect to q we have

φ(t,q) = φ(t, 0) +
∞∑
m=1

vm(t)qm, (3.8)

where

vm(t) =
1
m!
∂mφ(t;q)
∂qm

|q=0.
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Suppose that the initial approximation v0(t), auxiliary parameter h and the auxiliary function H(t) are
appropriately chosen so that the series in (3.8) converges at q = 1, that is

φ(t, 1) = v0(t) +

∞∑
m=1

vm(t). (3.9)

Now define vector
−→v n(t) = [v0(t), v1(t), . . . , vn(t)].

By differentiate (3.7) m times with respect to q and setting q = 0 and finally divided by m! we obtain the
so-called mth-order deformation equation

N+[vm(t) − χmvm−1(t)] = hH(t)Ry,m[−→v m−1(t)], (3.10)

where

Ry,m[−→v m−1(t)] =
1

(m− 1)!
∂m−1N[φ(t,q)]

∂qm−1 |q=0, (3.11)

and

χm =

{
0, m 6 1,
1, m > 1.

Now, taking the inverse natural transform on both sides of (3.10) we have

vm(t) = χmvm−1(t) + hN−[H(t)Ry,m[−→v m−1(t)]]. (3.12)

Therefore, vm(t) for m > 1 can be easily obtained from (3.12), and at Mth order we have

v(t) =

M∑
m=0

vm(t). (3.13)

Therefore, as M→∞ we obtained the following recursive relations of (3.1) and (3.2) with respect to type
of delays defined in Case I and Case II, respectively.

vm(t) =(χm + h)vm−1(t) +
1
an
hvm−1(at) − h(1 − χm)N−[

n∑
k=1

(
1 +

1
an−k+1

)
× u

k−1

sk
vk−1(0)] + hN−

{
un

sn
N+[R(vm−1(t)) +Hm−1(v0, v1 . . . vn) − g]

}
,

vm(t) =(χm + h)vm−1(t) + hvm−1(t− τ) − h(1 − χm)N−[

n∑
k=1

uk−1

sk
[vk−1(0)

+ lim
t→0

vk−1(t− τ)]] + hN−

{
un

sn
N+[R(vm−1(t)) +Hm−1(v0, ..vn) − g]

}
.

(3.14)

For m > 1, the nonlinear operators F(v) are expanded as series of He’s polynomials Hm−1(v0, v1 . . . vn)
define by

Hm(v0, v1, . . . , vn) =
1
m!

∂m

∂qm
F

 m∑
p=0

qpvp

 |q=0.

4. Convergence theorem and estimated error

In this section the convergence analysis and estimated error of our derived method will be presented.

Theorem 4.1. Suppose the homotopy series (3.9) converges, then it must be the solution of original problem defined
in (3.1) and (3.2), where vm(t) is governed by the higher order deformation (3.10) under the definitions in equations
(3.6) and (3.11).
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Proof. If the series
∑∞
m=0 vm(t) converges, then

lim
m→∞ vm(t) = 0. (4.1)

Let S(t) =
∑∞
m=0 vm(t), then it suffices to show that S(t) satisfies (3.3). From definition of χm we have
n∑
m=1

[vm(t) − χmvm−1(t)] = v1 + (v2 − v1) + (v3 − v2) + · · ·+ (vn − vn−1) = vn. (4.2)

From (4.2) we obtained
∞∑
m=1

[vm(t) − χmvm−1(t)] = lim
n→∞

n∑
m=1

[vm(t) − χmvm−1(t)] = lim
n→∞ vn(t) = 0. (4.3)

From (4.1) we have
∞∑
m=1

[vm(t) − χmvm−1(t)] = lim
n→∞

n∑
m=1

[vm(t) − χmvm−1(t)] = lim
n→∞ vn(t) = 0.

According to (3.10) and (4.3) we have
∞∑
m=1

N+[vm(t) − χmvm−1(t)] =  hH(t)

∞∑
m=1

Rm(−→v m−1(t)) = 0.

Since  h 6= 0 and H(t) 6= 0 therefore
Rm(−→v m−1(t)) = 0.

According to (3.6) and (3.11) we have to consider the two types of delay defined in Case I and Case II.

Case I. (Proportional delay):

Rm(−→v m−1(t)) =

∞∑
m=1

1
(m− 1)!

∂m−1

∂qm−1 N+

[
φ(t;q) +

1
an
φ(at;q)

]

− N+

[
n∑
k=1

(
1 +

1
a(n+1−k)

)
un−k

sk
φk−1(0)

]

+ N+

[
un

sn
N+[R(φ(t;q)) + F(φ(t;q)) − g(t)

]
,

=⇒ N+

[ ∞∑
m=1

[vm−1(t) + vm−1(at)

](n)
+ F

( ∞∑
m=1

vm−1(t)

)

+ R

( ∞∑
m=1

vm−1(t)

)
− g

( ∞∑
m=1

vm−1(t))

)
= 0

=⇒ N+

[ ∞∑
m=0

[vm(t) + vm(at)](n) + F

( ∞∑
m=0

vm(t)

)]

+N+

[
R

( ∞∑
m=0

vm(t)

)
− g

( ∞∑
m=1

vm−1(t)

)]
= 0.

(4.4)

Now take the inverse natural transform of both sides of (4.4) we obtain

L[S(t) + S(at)] + R[S(t)] + F[S(t)] − g[S(t)] = 0.

And the result follows immediately. The proof for Case II (constant delay) is of the same process with
that of Case I.
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Theorem 4.2. Suppose the solution components vm(t) is defined in a Banach space (C[D], ‖ . ‖), and let δ =
(α2 +α)d for some δ ∈ (0, 1) such that ‖ vm ‖6 δ ‖ vm−1 ‖. Then the series solution (3.13) converges uniformly
to the unique solution v(t) of (3.1) and (3.2).

Proof. Let {Sn} be a sequence of partial sum of the series (3.13). Then we need to show that {sn}∞n=0 is a
Cauchy sequence in Banach space (C[D], ‖ . ‖). So consider

‖ Sm − Sm−1 ‖=‖ vm ‖6 δ ‖ vm−1 ‖6 δ2 ‖ vm−2 ‖6 · · · 6 δm ‖ v0 ‖ . (4.5)

Now for every m,n ∈ N with m > n, then by the means of (4.5) and using triangle inequality we can
successively obtain

‖ Sm − Sn ‖ =‖ (Sm − Sm−1) + (Sm−1 − Sm−2) + · · ·+ (Sn+1 − Sn) ‖
6‖ Sm − Sm−1 ‖ + ‖ Sm−1 − Sm−2 ‖ · · ·+ ‖ Sn+1 − Sn ‖
6 δm ‖ v0(t) ‖ +δm−1 ‖ v0(t) ‖ + · · ·+ δn+1 ‖ v0(t) ‖

= δn+1‖v0(t)‖
m−n∑
k=0

δk 6 δn‖v0(t)‖
∞∑
k=0

δk = δn‖v0(t)‖
(

1
1 − δ

)
.

(4.6)

Since δ < 1 then for arbitrary ε we can have some large η ∈ N such that δη< ε(1−δ)
‖v0(t)‖ . Hence, by choosing

n,m > N we obtain

‖Sm − Sn‖ 6 δn‖v0(t)‖(
1

1 − δ
) <

ε(1 − δ)

‖v0(t)‖
‖v0(t)‖

(
1

1 − δ

)
= ε. (4.7)

Therefore, (4.7) shows that {sn}∞n=0 is a Cauchy sequence in Banach space (C[D], ‖ . ‖), so the sequence
converges, and hence the series solution in (3.13) also converges. Therefore, the proof is completed.

To show the uniqueness of this solution, suppose that v(t) and u(t) are two distinct solutions of
equations (3.1) and (3.2). Now from (3.3) we have

v(t) + vβ = L−1 [g(t) − R(v) − F(v)] , (4.8)

where L−1 is an inverse operator defined by
∫t

0(.)dt. Since v(t) and u(t) are distinct solutions of Equations
(3.1) and (3.2). So from (4.8) we obtain the following equation

‖(v− u) + (vβ − uβ)‖ 6 ‖(v− u)‖ = ‖−
∫t

0
[R(v− u) + F(v− u)]dt‖

6
∫t

0
[‖R(v− u)‖+ ‖F(v) − F(u)‖]dt

6 (α2‖v− u‖+α‖v− u‖)d 6 δ‖v− u‖.

(4.9)

From (4.9) we obtained (1 − δ)‖v− u‖ 6 0 and since δ ∈ (0, 1) then ‖v− u‖ 6 0 implies that v = u and
hence the proof.

Theorem 4.3. If the series solution (3.13) Converges then the maximum absolute error between the series and
solution v(t) to problem (3.1) and (3.2) is estimated to be∥∥∥∥∥v(t) −

M∑
m=0

vm(t)

∥∥∥∥∥ 6
δn

(1 − δ)
‖v0(t)‖.
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Proof. From Theorem 4.2 and (4.6) we have

‖Sm − Sn‖ 6
δn

(1 − δ)
‖v0(t)‖.

So as m→∞ then Sm → v(t), hence we have

‖v(t) − Sn‖ 6
δn

(1 − δ)
‖v0(t)‖. (4.10)

Since δ ∈ (0, 1) then 1 − δ 6 1 and from (4.10) we obtain∥∥∥∥∥v(t) −
M∑
m=0

vm

∥∥∥∥∥ 6
δn

(1 − δ)
‖v0(t)‖.

Hence the proof is completed.

5. Analytical examples

In this section, Algorithm (3.14) will be applied to obtain solutions of some linear and nonlinear DDEs
with both proportional and constant delays.

Example 5.1 ([26]). Consider the following first order linear NDDE with proportional delay

v
′
(t) −

1
2
v
′
(
t

2

)
+ v(t) −

1
2
v

(
t

2

)
= 0, 0 6 t 6 1, v(0) = 1. (5.1)

Equation (5.1) has an exact solution e−t [26].

Figure 1: The h-curve for the third order approximation of Example 5.1.

Taking the natural transform of both side of (5.1) we obtain

N+

[
v(t) −

1
2
v

(
t

2

)]
+
u

s
N+

[
v(t) −

1
2
v

(
t

2

)]
= 0. (5.2)

From (5.2) we can define a nonlinear operator,

N[φ(t;q)] = N+

[
φ(t;q) −

1
2
φ

(
t

2
;q
)]

+
u

s
N+

[
φ(t;q) −

1
2
φ

(
t

2
;q
)]

.
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Now using (3.14) the recursive relation of (5.1) can be obtained as

vm(t) = (χm + h)vm−1(t) − hvm−1

(
t

2

)
+ hN−

{u
s

N+[R(vm−1(t))]
}

, m > 1. (5.3)

By choosing an initial approximation v0(t) = 1 and using (5.3) we obtained the following components as

v1(t) =
1
2
ht,

v2(t) =
1
4
(h2 + 2h)t+

3
16
h2t2,

v3(t) =
1
8
(h3 + 4h2 + 4h)t+

1
64

(15h3 + 24h2)t2 +
7

128
h3t3.

The remaining terms of vm(t) for m > 3 can be obtained in a similar way.
Now, from Fig. 1 the optimal value of h = −2. Hence, the series solution for the fifth order approxi-

mation of (5.1) is given as

v(t) = 1 − t+
t2

2!
−
t3

3!
+
t4

4!
−
t5

5!
+ · · · ,

which converges to exact solution e−t of the given problem. Therefore, the fifth order approximation of
the algorithm (3.14) converged to the exact solution of problem (5.1). This reduces the computational size
used in [26] to obtain the approximate solution of the problem. The graph of the exact solution and fifth
order approximate solution is plotted in Fig. 2.

Figure 2: The exact and approximate solution of Example 5.1.

Example 5.2 ([9]). Consider the following first order linear NDDE with constant delay

v
′
(t) +

1
4
v
′
(t− 1) − v(t) − v(t− 1) = 0, 0 6 t 6 1, v(t) = −t, t ∈ [−1, 0]. (5.4)

Taking the natural transform of both side of (5.4) we obtain

N+

[
v(t) +

1
4
e−

s
u v(t)

]
−

1
4s

−
u

s
N+[v(t) + v(t− 1)] = 0. (5.5)

From (5.5) we can define a nonlinear operator,

N[φ(t;q)] = N+[φ(t;q) +
1
4
e−

s
uφ(t;q)] −

1
4s

−
u

s
N+[φ(t;q) +φ(t− 1;q)].
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Now using (3.14) the recursive relation of Example 5.2 can be obtained as

vm(t) = (χm + h)vm−1(t) +
1
4
hvm−1(t− 1) −

1
4
(1 − χm)hN−[

1
s
] − hN−{

u

s
N+[R(vm−1(t))]}, m > 1. (5.6)

By choosing an initial approximation v0(t) = −t and using (5.6) we obtained the following components

v1(t) = ht
2 −

9
4
ht,

v2(t) = −
2
3
h2t3 +

1
8
(14h2 + 5h)t2 −

9
16

(4h2 + 4h),

v3(t) =
1
3
h3t4 −

1
24

(24h3 + 7h2)t3 +
1
16

(71h3 + 81h2 + 10h)t2 −
9
16

(5h3 + 9h2 + 4h)t.

The remaining terms of vm(t) for m > 3 can be obtained in a similarly. Therefore, from Fig. 3 the optimal
value of h can be choose as −1 and the solution of Example 5.2 can be expressed in a series form as

v(t) =
5t
4

+
t2

8
+
t3

24
+
t4

96
+
t5

480
+ · · · = t− 1

4
+

1
4

(
1 + t+

t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ . . .

)
. (5.7)

Equation (5.7) gives the Taylor series expansion of the exact solution of the given problem, i.e.,

v(t) = t−
1
4
+

1
4
et.

Fabiano [9] obtained only the approximate solution of (5.4), and by using our approach the closed form
solution of this problem was successfully obtained.

Figure 3: The h-curve for the third order approximation of Example 5.2.

Example 5.3 ([8]). Consider the third order nonlinear NDDE with proportional delay

v
′′′
(t) −

1
2
v
′′′
(
t

4

)
− v

′′
(
t

3

)
− v

′
(
t

2

)
− (v(t))2 − g(t) = 0, 0 6 t 6 1, (5.8)

where

g(t) =
e
t
12

54
{−13752 sin(2t) − 54e

7t
12 cos2(8t) + 1727 cos(2t) + 6e

t
36 (48 sin(

8t
3
) + 575 cos(

8t
3
))

− 18e
t
12 (cos(4t) − 24 sin(4t)) + 2e

t
4 (13752 sin(8t) − 1727 cos(8t))}
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with the given initial condition

v(0) = 1, v
′
(0) =

1
3

, v ′′(0) = −
575

9
.

Taking the natural transform of both sides of (5.8) we obtained

N+

[
v(t) − 32v

(
t

4

)]
+

[
41
s

+
41u
3s2 −

23575u2

9s3

]
−
u3

s3 N+

[
v
′′
(
t

3

)
+ v

′
(
t

2

)
+ (v(t))2

]
= 0. (5.9)

From (5.9) we can define a nonlinear operator,

N[φ(t;q)] = N+

[
φ(t;q) − 32φ

(
t

4
;q
)]

+

[
41
s

+
41u
3s2 −

23575u2

9s3

]
−
u3

s3 N+

[
φ
′′
(
t

3
;q
)
+φ

′
(
t;
2

;q
)
+ (φ(t;q))2

]
.

Now using (3.14) the recursive relation of Example 5.3 can be obtained as

vm(t) = (χm + h)vm−1(t) − 32hvm−1

(
t

4

)
+ h(1 − χm)N−

[
41
s

+
41u
3s2 −

23575u2

9s3

]
− hN−

{
u3

s3 N+[R(vm−1(t)) +Hm−1(v0, v1, . . . , vn) + g(t)]
}

, m > 1.
(5.10)

Figure 4: The h-curve for the third order approximation of Example 5.3.

By choosing an initial approximation v0(t) = 1 + t
3 − 575t2

18 and (5.10) we obtained the following com-
ponents as

v1(t) = −
2312063
15552

ht4 +
1727
324

ht3 −
11500

9
ht2 +

34
3
ht,

v2(t) = (1 + h)v1(t) − 32v1

(
t

4

)
− hN−

{
u3

s3 N+[R(v1(t)) +H1(v0, v1, . . . , vn) + g(t)]
}

,

v3(t) = (1 + h)v2(t) − 32v2

(
t

4

)
− hN−

{
u3

s3 N+[R(v2(t)) +H2(v0, v1, . . . , vn) + g(t)]
}

.

Therefore, by choosing the optimal value of h = −1 from Fig. 4, then third order approximate solution of
Example 5.3 can be obtained in a series form as

v(t) = 1 +
t

3
−

575t2

18
−

1727
162

t3 +
328321
1944

t4 +
1653121
29160

t5 + · · · ,
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which converges to Taylor series expansion of e
t
3 cos(8t). Therefore, using the derived method (3.14) we

were able to obtain a closed form solution of Example 5.3 from only three iterations. Unlike in the case
of Bhrawey et al. [8] only the approximate solution of the problem was able to obtain. The graph of the
exact solution and the third order approximate solution is plotted in Fig. 5.

Figure 5: The exact and approximate solution of Example 5.3.

Example 5.4 ([28]). Finally we consider the following Cauchy problem (nonlinear Ricatti equation)

v
′
(t− 2) − t2v(2t− 3) − v2(t− 1) + 5t4 − 20t3 + 19t2 − 2t− 3 = 0, x(0) = −2. (5.11)

The exact solution to this problem is v(t) = t2 − t− 2 [28]. Taking the natural transform of both side
of (5.11) we obtain

e−
2s
u N+[v(t)] +

[
2
s
−

3u
s2

]
−
u

s
N+[t2v(2t− 3) + v2(t− 1) − (5t4 − 20t3 + 19t2 − 2t)] = 0. (5.12)

From (5.12) we can define a nonlinear operator

N[φ(t;q)] = e−
2s
u N+[φ(t;q)] +

[
2
s
−

3u
s2

]
−
u

s
N+[t2φ(2t− 3;q)

+φ2(t− 1;q) − (5t4 − 20t3 + 19t2 − 2t)].

Now using (3.14) the recursive relation of Example 5.4 can be obtained as

vm(t) = χmvm−1(t) + hvm−1(t− 2) − h(1 − χm)N−

[
3u
s2 −

2
s

]
− hN−

{u
s

N+[R(vm−1(t)) +Hm−1(v0, v1, . . . , vn) − g(t)]
}

, m > 1.
(5.13)

By choosing an initial approximation v0(t) = t2 − t− 2 and using (5.13) we obtain the following compo-
nents as

v1(t) = t
2 − (8h+ 1)t+ (6h− 2),

v2(t) =
1
4
(24h2 + 25h)t4 −

1
3
(106h2 + 28h)t3 − (42h2 − h+ 1)t2

− (8h2 + 13h− 1)t− (22h2 + 6h− 2).
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It is easy to see that at h = 0 the second order approximate solution gives the actual exact solution of the
problem, i.e.,

v(t) = v0(t) + v1(t) + v2(t) = t
2 − t− 2.

In [28] Yuzbasi was only able to compute approximate numerical solution of this problem of the form

v(t) = (0.1× 10−19)t3 + t2 − t− 2.

6. Conclusion

In this research, the combination of HAM and natural transform yield a reliable and efficient analytical
approach suitable for solving linear and nonlinear NDDEs with proportional and constants delays. The
He’s polynomial is utilized to generate the series of nonlinear terms of NDDEs. In order to show the
efficiency of our derived algorithms over the reference methods, solutions to different problems were
obtained in a series form which converge to the exact solution with high precision using few number
of iterations. Therefore, the presented technique is effective and straightforward for analytic treatment
of Linear and nonlinear NDDEs which is also capable of solving other forms of linear and nonlinear
problems.
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