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Abstract 
This paper models supply chain uncertainties by fuzzy sets and develops a fuzzy linear 
programming model for tactical supply chain planning in a multi-echelon, multi-
product, multi-stage with different methods of manufacturing in each stage, multi-
distribution centre and multi-period supply chain network. In this approach, the 
demand, process and supply uncertainties are jointly considered. The aim is to achieve 
the best use of the available resources and the best method of manufacturing at each 
stage for a product along the time horizon so that customer demands are met at a 
minimum cost. The fuzzy model provides the decision maker with alternative decision 
plans with different degrees of satisfaction. 
 
Keywords: Supply Chain Management, Supply Chain Planning, Fuzzy Sets, Uncertainty 
Modeling. 
 
 

1. Introduction 
The concept of supply chain management (SCM), since their appearance in 1982[1] , is 

associated with a variety of meanings. In the eighties, SCM was originally used in the logistical 
literature to describe a new integrated approach of logistics management through different 
business functions [2]. Then,   this integrated   approach was    extended outside of   the 
company limits to suppliers and customers [3]. In accordance with the Global   Supply Chain   
Forum [4], the SCM is the integration of key business processes, from final users to original  
suppliers providing products, services and information which  add  value to clients, 
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shareholders, etc.  This paper is related to one  of these key business processes: the supply 
chain production planning. 

Supply chain production planning consists of the coordination and the integration of key   
business activities carried out from the  procurement  of  raw  materials to   the  
distribution of  finished  products   to   the  customer [5].   Here, tactical models 
concerning mainly about inventory management and resource limitations are the focus 
of our work. In this context, with the  objective of  obtaining optimal solutions related to  
the minimization of costs, several authors have studied the modeling  of    supply   chain   
planning    processes  through   mathematical programming  models,   for  instance. 
However , the  complex   nature  and dynamics  of   the  relationships  among  the   
different   actors  of supply chains imply an  important grade of  uncertainty in  the 
planning   decisions  [6].   Therefore, uncertainty  is  a  main factor that can  influence the 
effectiveness of  the configuration  and  coordination of  supply chains .One  of the key  
sources of uncertainty in  any production– distribution  system  is   the  product   
demand.  Thus,    demand   uncertainty  is  propagated  up  and down along the supply 
chain affecting sensibly to  its  performance [7].    

Along  the years  many researches and applications aimed to model the uncertainty in 
production planning   problems [8]. Different  stochastic  modelling techniques  have   been  
successfully applied in supply chain  production  planning  problems with randomness  [9].   
However, probability distributions  derived  from  evidences recorded  in  the past are  not  
always  available  or  reliable. In these situations, the fuzzy set theory , represents an attractive 
tool to support the production planning research when the dynamics of the manufacturing 
environment limit the  specification  of the model objectives, constraints and parameters. 
Uncertainty can be present as randomness, fuzziness and/or lack of knowledge or epistemic 
uncertainty [10]. Randomness comes from the random nature  of  events  and  deals with 
uncertainty  regarding membership or non-membership of an element in a set.  Fuzziness  is  
related  to  flexible  or   fuzzy   constraints  modelled  by   fuzzy   sets. Epistemic  uncertainty  is   
concerned  with   ill-known  parameters modelled by   fuzzy   numbers  in  the  setting  of  
possibility  theory [11]. 

Few studies address the SC planning problem on  a medium-term basis (tactical level) 
which integrates procurement, production and distribution planning activities into a 
fuzzy environment .The aim  of this approach is to simultaneously optimize the decision 
variables of different functions that have been traditionally optimized sequentially [12]. 
Moreover, there is a lack of models contemplating the different sources of uncertainty in 
an integrated manner. Hence in this study, we develop a tactical supply chain model in a 
fuzzy environment in a multi-echelon, multi-product, multi-level, multi-period supply 
chain network. In this proposed model, the demand, process and supply uncertainties 
are considered simultaneously. 

In the context of fuzzy mathematical programming, two very different issues can be 
addressed: fuzzy or flexible constraints for fuzziness, and fuzzy coefficients for lack of 
knowledge or epistemic uncertainty [13]. The aim of this paper is to propose an SC planning 
model where the data, associated with all the sources of uncertainty in an SC,  are  ill-
known and modeled by trapezoidal fuzzy numbers. 

The  main  contributions of this paper can  be summarized as follows: 
 Introducing   a   novel   tactical  SC  planning model by integrating  procurement, 

production and distribution planning activities into a multi- echelon,  multi-

product, multi-level and multi-period  SC  network. 

 Achieving a  model  which  contemplates the different  sources of uncertainty 

affecting SCs in an integrated fashion by considering the possible lack of  knowledge in 



Hamid Reza Feili, Mojdeh Hassanzadeh Khoshdooni/ TJMCS Vol .2 No.1 (2011) 65-80
 

67 
 

the data. 

 
The rest of this paper is arranged as follows. Section 2 presents a literature review 

about fuzzy applications in SC planning. Section 3 proposes a new fuzzy mixed-

integer linear programming (FMILP) model for the tactical SC planning under 

uncertainty. Then in Section 

4, the fuzzy model is transformed into an equivalent auxiliary crisp mixed-integer 

linear programming model and a resolution method that permit the interactive 

participation of the decision maker in all the steps of the decision process, and the 

expressing of opinions in linguistic terms is introduced. In Section 5, the behavior of 

the model in a real-world automobile SC has been evaluated and, finally, the 

conclusions and directions for further research  are  provided. 

 

 

 

2. Literature Review 
In [14] a literature survey on SC planning  under  uncertainty conditions by adopting 

quantitative approaches is presented. Here, we present a summary, extracted from this 
paper, about the applications  of  the Fuzzy  Set Theory and the Possibility Theory  to 
different  problems related to SC planning: 
 

(a)   SC   inventory management:  [15] ,[16] described the fuzzy  modeling  and simulation of an SC 
in an  uncertain environment. Their  objective was  to  determine the stock levels and 
order  quantities for  each inventory during a  finite time horizon to achieve an  acceptable 
delivery performance at a reasonable total cost  for the whole SC [17] .developed a 
simulation tool, SCSIM, for  analyzing SC behavior and performance in the presence of 
uncertainty modeled by  fuzzy sets.  [18] developed a methodology to define inventory 
management policies in an SC, which was  based on the echelon stock concept [19] ,and the 
Fuzzy  Set Theory was used to model the uncertainty associated with both demand and 
inventory costs.[20] proposed a fuzzy logic  approach to  reduce the bullwhip effect [21] 
developed a decentralized decision model based on a genetic algorithm which minimizes 
the inventory costs of an SC subject to the constraint  to be met with a specific  task 
involving  the delivery  of finished goods. The authors used the fuzzy   set   theory to 
represent the uncertainty of customer demands, processing times and reliable deliveries 
[22] presented a new bilevel  coordination strategy to control  and manage inventories in 
serial supply chains with demand uncertainty. Firstly, the problem associated with the 
whole SC was  divided  into  subproblems  in accordance  with the different  parts that the 
SC was  made up  of. Secondly, for the purpose of improving   the integrated operation of a 
whole SC, the leader  level  was  defined to  be  in charge of coordinating  inventory control 
and management by amending the optimization  subproblems. This process  was  to be 
repeated until the desired level  of operation for the whole SC was  reached. [23] modeled  SC 
uncertainties with fuzzy sets and developed  a possibilistic decision model to determine the 
SC configuration and inventory policies that minimize the total SC costs subject to also  
fulfilling  the target service  time of the end-product. They assumed that sourcing options 
differed in terms  of  their direct costs and lead-times.  Fuzzy  sets   were used to  represent  
fluctuating customer demands, uncertain lead-times, and unreliable supply deliveries (in  
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terms of  delay time). A fuzzy SC model extended from [21] was used to evaluate the 
performance of the entire SC directly. A genetic algorithm  approach  integrated  with the 
proposed fuzzy SC model was  developed to determine the optimal SC  configuration and the 
order-up-to level  for each stage  at the same time. 

(b)   Vendor selection: [24] presented a fuzzy  goal  programming  approach which was  applied 
to the problem of selecting vendors in an  SC. This problem  was  posed  as a mixed-integer 
and fuzzy goal programming problem with three basic objectives to minimize the net cost  
of the vendors network, rejects within the network, and delays in deliveries. With this 
approach, the authors used triangular membership functions for each fuzzy objective. The 
solution method was  based on the intersection of membership functions of the fuzzy 
objectives by applying the min-operator. Then, [25] solved the same problem using the 
multi- objective fuzzy programming approach proposed by [26] ,[27] addressed the 
problem of adequately  selecting  suppliers  within an  SC. For this purpose, they devised a 
fuzzy-based  multi-objective mathematical  programming model where each objective 
may be  assigned a  different weight .The  objectives  considered were related to  cost  cuts, 
increased quality and to an increased service of the suppliers selected. The imprecise 
elements considered in this work were to meet both objectives and demand. [28] analyzed  
the uncertainty prevailing in integrated steel manufacturers in relation to the nature of the 
finished  good  and significant  demand by customers. They  proposed a new hybrid 
evolutionary algorithm named endosymbiot icpsychoclonal (ESPC) to decide what to stock 
and how much as an intermediate product in inventories. They  compared  ESPC with 
genetic algorithms and simulated annealing. They concluded the superiority of the 
proposed algorithm in terms of both the quality of the solution obtained and the 
convergence time. 

(c)   Transport planning: [29] considered several  assumptions  at the supply and demand 
levels for a given transportation problem in accordance with the kind of information 
that the decision maker has: crisp values, interval values or fuzzy numbers. For all three 
cases, classical, interval and fuzzy  models for  the transportation problem were 
proposed,  respectively. The  links  among them were provided by focusing on  the case  
of the fuzzy transportation problem, for which solution methods were proposed and 
discussed. [30] addressed the problem of transporting cement in Taiwan by  using 
fuzzy linear programming models. The author used three approaches based  on  the 
works by [31]. [32] [33] ,who contemplated: the capacities of ports, the fulfilling  
demand, the capacities of the loading and unloading operations, and the constraints 
associated with traffic control. [34] developed  a method to obtain the membership 
function of the total transport cost  by con- sidering this as a fuzzy objective value where 
shipment costs, supply and demand were fuzzy numbers. The method was  based on 
the extension principle defined by [35] to transform the fuzzy transport problem into a 
pair  of mathematical programming models. [36] developed   an interactive multi-
objective linear programming model for solving fuzzy multi-objective transpor- tation 
problems with a piecewise linear membership function. 

(d)   Production–distribution planning: [37] addressed the real  problem  of production and 
transport related to a manufacturer  through a  deterministic mathematical  
programming model  which minimized  costs in  accordance with  capacities and 
demands. Then,  the authors developed a mathematical fuzzy programming model. 
Finally, they presented an  outline  of the distribution of profits  and costs based on  the 
Game Theory. [38] proposed  an  interactive fuzzy multi-objective linear program- ming 
model for solving an  integrated production–transportation planning  problem in supply 
chains. [39] proposed fuzzy goal-based programming approaches applied to planning 
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problems of a collaborative production–distribution type in centralized  and 
decentralized supply chains. The  fuzzy  elements that the authors considered 
corresponded to  the fulfilment of different objectives  related to  maximizing profits 
for  manufacturers and distribution centers, retailer cost  cuts and  minimizing delays 
in demand in retailers. [40] developed an integrated multi-period, multi-product fuzzy 
production and distribution aggregate planning model for supply chains by providing a 
sound trade-off between the filtrate of the fuzzy  market demand and the profit. The 
model was formulated in terms of  fuzzy  programming  and the solution was  provided 
by genetic optimization. 

(e)   Procurement-production–distribution planning: [41] developed an approach to derive the 
membership function of the fuzzy  minimum  total  cost  of the multi-product, multi-
echelon, and multi-period SC model when the unit cost  of raw materials supplied by 
suppliers, the unit transportation cost  of products, and the demand quantity of 
products were fuzzy numbers. Recently, [42] proposed a new multi-objective 
possibilistic mixed-integer  linear  programming  model for  integrating  procurement, 
production and distribution planning by considering  various conflicting  objectives  
simultaneously along with the imprecise nature of some critical  parameters such as 
market demands, cost/time coefficients and capacity levels. The proposed model and 
solution method were validated by numerical tests. 

 
As mentioned previously, there is a lack of models which focus on the different sources of 

uncertainty in an integrated manner, and few studies address the SC planning 
problem on   a medium-term basis which integrates procurement, production and 
distribution planning activities in a fuzzy environment. Moreover, the majority of the 
models studied do not  apply to supply  chains  based on real-world cases. 

 

3.  Problem description 
This  section  outlines  the tactical  SC  planning  problem  .The  
can    overall  problem   be  stated  as  follows:    Given: 

 
–   An SC topology: the number of nodes and type (suppliers,  manufacturing   plants,           
warehouses, distribution centers, retailers, etc.). 
–   Each  cost   parameter, such as manufacturing, inventory, transportation, demand 
backlog, etc. 

–   Manufacture data, processing times, production  capacity , overtime capacity, BOM, 
minimum and maximum production run, etc. 

–   Transportation data ,  such  as lead-time, transport capacity, etc. 

–   Procurement  data  , procurement capacity, etc. 

–   Inventory data , such  as inventory capacity, etc. 

–   Forecasted product demands over  the  entire planning  periods. 

–  Waste   percentage of received materials from suppliers at each node. 
 

To determine: 
 

–   The production plan of each  manufacturing  node. 
–  The  production run of each  manufacturing  node. 

–   The distribution transportation plan between nodes. 

–   The procurement  plan of each supplier  node. 

–   The inventory  level  of each  node. 
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–   Sales  and  demand backlog. 

 
The  aim  is to centralize the multi-node decisions simultaneously in order to achieve 
the best use  of the available  resources  in the SC along  the time horizon so that 
customer demands are  met at a minimum cost. 

3.1. Fuzzy model  formulation 
 

The fuzzy mixed-integer linear programming (FMILP) model for the tactical SC planning 
proposed by [43] is adopted as the basis of this work. Sets of indices, parameters and 
decision variables for the FMILP  model  are  defined  in the nomenclature (see  Table  1).  
Table  2 shows the uncertain parameters grouped according to the uncertainty sources 
that may be presented in an  SC. 

FMILP is formulated as follows: 
 
 
 
 
 

Table 1 :  Nomenclature (fuzzy  parameters are shown with a tilde: ~ ). 

 

 Set  of indices 

Set  of destination nodes for  transports (d =1, 2. . .,D) D 

Set  of products (raw materials, intermediate products, finished goods) (i =1, 2. . 
.,I) 

I 

Set  of production resources (j =1, 2. . .,J) J 
Set  of transports (l =1, 2. . .,L) L 

Set   of  stage   of  production  (m =1,2,….,M) M 

Set  of SC nodes (n  =1, 2. . .,N) N 

Set  of origin nodes for  transports (o =1, 2. . .,O) O 

Set  of parent products in the bill  of materials (p =1, 2. . .,P) P 

Set  of planning periods (t =1, 2. . .,T) T 

 

 
Objective function 

cost  coefficients 

Variable production cost per unit of product i on j at n in t P   Cnjt 

Overtime cost of resource j at n in t O      Cnjt 

Undertime cost of resource j at n in t U Cnjt 

Price of raw material i at n in t RMCint 

Transport cost per unit from o to d by  l in t T   C  odlt 

Inventory holding cost per unit of product i at n in t H Cint 

Demand backlog cost per unit of product i at n in t B   Cint 

 General  data 
 

Waste  percentage  recieved materials  from suppliers β 

Quantity of i to produce a unit of p at n in t Qpint 

Maximum procurement capacity from supplier node n in t UP  Snt 

Demand of product i at n in t D    int 

Overtime capacity of resource j at n in t O  R njt 

Production capacity of resource j at n in t PC  Rnjt 

Inventory amount of i at n in period 0 IP0in 

Minimum production run of i on j at n in t LPRinjt 

Maximum production run of i on j at n in t UPRinjt 

Demand backlog of i at n in period 0 B0int 

Shipments of i received at d from o by  l at the beginning of period 0 SR0iodlt 
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Shipments in progress of i from o to d by  l at the beginning of period 0 SIP0iodlt 

Processing time to produce a unit of i on j at n in t PT  P injt 

Transport lead-time from o to d by  l in t TL T odlt 

Physical volume of product i in t PV it 

Maximum transport capacity of l in t UTC  nt 

Maximum inventory capacity at n in t UI nt 

0–1 function. It takes 1 if TLT odlt     > 0, and 0 otherwise X1odlt 

0–1 function. It takes 1 if TLT odlt     ¼ 0, and 0 otherwise X2odlt 

 Decision variables 
 

Production amount of i on j at n in t=PT injt     > 0 Pinjt 

Production run of i on j at n in t PRinjt 

Number of production runs of i produced on j at n in t NPRinjt 

Supply of product i from n in t SPint 

Demand backlog of i at n in t=DBCint  > 0 Bint 

Transport quantity of i from o to d by  l in t=o <> d; TCodlt    > 0; ICi;n¼d;t > 0 TQ iodlt 

Shipments of i received at d from o by  l at the beginning of period t=o <> d;  
TC odlt     > 0; ICi;n¼d;t > 0 

SRiodlt 

Shipments in progress of i from o to d by  l at the beginning of period t=o <> d; 
TCodlt    > 0; ICi;n¼d;t > 0; TLT odlt     > 0 

SIPiodlt 

Transport lead-time for  i from o to d by  l in t (only used in the fuzzy model) FTLT iodlt 

Inventory amount of i at n at the end of period t Iint 

Purchase quantity of i at n in t=RMCint  > 0 PQ int 

Overtime for  resource j at n in t OT njt 

Undertime for  resource j at n in t UT njt 

Binary variable indicating whether a product i has been produced on j at n in t YPinjt 

 
Table 2   Fuzzy parameters considered in the model. 

 
Source of uncertainty in supply 

chains 
Fuzzy coefficient Formulation 

Demand Product demand D    int 

 Demand backlog cost B   Cint 

Process Processing  time PT  P injt 

 Production capacity PC  Rnjt, O  R njt 

 Production costs P   Cnjt, O      Cnjt, U Cnjt 

 Inventory holding cost H Cint 

 Maximum inventory capacity UI nt 

Supply Transport lead-time TL T odlt 

 Transport cost T   C  odlt 

 Maximum transport capacity UTC  nt 

 
Maximum procurement 
capacity 

UP  Snt 

 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =       (PCM
m=1

T
t=1

J
j=1

N
n=1

I
𝑖=1 injmt . Pinjmt) +    (𝑂𝐶𝑛𝑗𝑡 . 𝑂𝑇𝑛𝑗𝑡 + 𝑈𝐶𝑛𝑗𝑡  . 𝑈𝑇𝑛𝑗𝑡 ) +𝑇

𝑡=1
𝐽
𝑗=1

𝑁
𝑛=1

      𝑅𝑀𝐶𝑖𝑛𝑡 . 𝑃𝑄𝑖𝑛𝑡 + 𝐻𝐶𝑖𝑛𝑡 . 𝐼𝑖𝑛𝑡 + 𝐵𝐶𝑖𝑛𝑡 . 𝐵𝑖𝑛𝑡  +𝑇
𝑡=1

𝑁
𝑛=1

𝐼
𝑖=1

       𝑇𝐶𝑜𝑑𝑙𝑡 . 𝑇𝑄𝑖𝑜𝑑𝑙𝑡                                                                                                1 
𝑇
𝑡=1

𝐿
𝑙=1

𝐷
𝑑=1

𝑂
𝑜=1

𝐼
𝑖=1  

Subject to 
 (𝑃𝑖𝑛𝑗𝑚𝑡 . 𝑃𝑇𝑃𝑖𝑛𝑗𝑚𝑡 )𝐼
𝑖=1 ≤ 𝑃𝐶𝑅𝑛𝑗𝑚𝑡 + 𝑂 𝑅𝑛𝑗𝑚𝑡                                  ∀ 𝑛, 𝑗, 𝑡                                          (2)                                   

𝐿𝑃𝑅𝑖𝑛𝑗𝑡𝑚 ≤ 𝑃𝑅𝑖𝑛𝑗𝑚𝑡 ≤ 𝑈𝑃𝑅𝑖𝑛𝑗𝑚𝑡                                                                                                                 (3)                

𝑃𝑖𝑛𝑗𝑚𝑡 = 𝑁𝑃𝑅𝑖𝑛𝑗𝑚𝑡 . 𝑃𝑅 𝑖𝑛𝑗𝑚𝑡                   ∀ 𝑖, 𝑛, 𝑗, 𝑡                                                                                      (4)         

 𝑃𝑖𝑛𝑗𝑚𝑡 . 𝑃𝑇𝑃𝑖𝑛𝑗𝑚𝑡 ≤ 𝑃𝐶𝑅𝑖𝑛𝑗𝑡 . 𝑌𝑃𝑖𝑛𝑗𝑡 + 𝑂𝑅𝑖𝑛𝑗𝑡 . 𝑌𝑃𝑖𝑛𝑗𝑡              ∀ 𝑖, 𝑛, 𝑗, 𝑡𝑀
𝑚=1                                       5   

𝑃𝑖𝑛𝑗𝑡𝑚 ≥ 𝐿𝑃𝑅𝑖𝑛𝑗𝑚𝑡 . 𝑌𝑃𝑖𝑛𝑗𝑚𝑡            ∀ 𝑖, 𝑛, 𝑗, 𝑡                                                                                                 6  
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𝐼𝑖𝑛𝑡 = 𝐼𝑖𝑛  𝑡−1 +    𝑃𝑖𝑛𝑗𝑚𝑡 +    𝑆𝑅𝑖𝑜 .𝑑=𝑛𝑙𝑡 + 𝑃𝑄𝑖𝑛𝑡 −   𝑇𝑄𝑖.𝑜=𝑛.𝑑𝑙𝑡 − 𝑆𝑃𝑖𝑛𝑡 −
𝐿
𝑙=1

𝐷
𝑑=1

𝐿
𝑙=1

𝑂
𝑜=1

𝑀
𝑚=1

𝐽
𝑗=1

 𝑝=1𝑃(𝑄𝑝𝑖𝑛𝑡. 𝑗=1𝐽𝑚=1𝑀𝑃𝑖=𝑝.𝑛𝑗𝑡𝑚 )             ∀ 𝑖,𝑛,𝑡                                                                                    (7)  

𝑆𝑅𝑖𝑜𝑑𝑙𝑡 = 𝑆𝑅𝑂𝑖𝑜𝑑𝑙𝑡 + 𝑇𝑄𝑖𝑜𝑑𝑡 .𝑡−𝑇𝐿 𝑇         ∀ 𝑖, 𝑜, 𝑑, 𝑙, 𝑡                                                                                    8  
𝑆𝐼𝑃𝑖𝑜𝑑𝑙𝑡 = 𝑆𝐼𝑃0𝑖𝑜𝑑𝑙𝑡 + 𝑆𝐼𝑃𝑖𝑜𝑑𝑙𝑡 .(𝑡−1) + 𝑇𝑄𝑖𝑜𝑑𝑙𝑡 − 𝑆𝑅𝑖𝑜𝑑𝑙𝑡           ∀ 𝑖, 𝑜, 𝑑, 𝑙, 𝑡                                        (9) 

 Iint . PVit ≤ 𝑈𝐼𝑛𝑡
I
i=1                                                                                                                         (10) 

   SIPiodlt . PVit . 𝑋odlt
1D

d=1
O
o=1

𝐼
i=1 +    TQiodlt . PVit . Xodlt

2D
d=1

O
o=1

𝐼
i=1 ≤ U TC𝑖𝑡                       (11) 

 PQint
I
i=1 ≤ 𝑈𝑃 𝑆𝑛𝑡                                                                                                                          (12) 

 pinjmt
𝑀
m=1 =

𝐷 𝑖𝑛𝑡

1−β
                                                                                                                           (13) 

𝐵𝑖𝑛𝑡 = 𝐵𝑖𝑛  𝑡−1 + 𝐷 𝑖𝑛𝑡 − 𝑆𝑃𝑖𝑛𝑡                                                                                                         (14) 

𝑂𝑇𝑛𝑗𝑡 =    𝑃𝑖𝑛𝑗𝑚𝑡 . 𝑃𝑇𝑃𝑖𝑛𝑗𝑚𝑡 + 𝑃𝐶𝑅𝑛𝑗𝑡  + 𝑈𝑇𝑛𝑗𝑡
𝑀
𝑚=1

𝐼
𝑖=1                                                             (15) 

  𝑆𝑃𝑖𝑛𝑡
𝑇
𝑡=1

𝑁
𝑛=1 ≤   (𝐷 𝑖𝑛𝑡 + 𝐵0𝑖𝑛𝑡 )𝑀

𝑚=1
𝐼
𝑖=1                                                                                  (16) 

𝑃𝑖𝑛𝑗𝑡𝑚 , 𝑁𝑃𝑅𝑖𝑛𝑗𝑚𝑡 ≥ 0    ∀𝑖, 𝑗, 𝑛, 𝑡, 𝑚                                                                                                 (17) 

𝑆𝑃𝑖𝑛𝑡 , 𝐵𝑖𝑛𝑡 , 𝐼𝑖𝑛𝑡 , 𝑃𝑄𝑖𝑛𝑡 ≥ 0     ∀𝑖, 𝑛, 𝑡                                                                                                 (18) 
𝑆𝑅𝑖𝑜𝑑𝑙𝑡 , 𝑆𝐼𝑃𝑖𝑜𝑑𝑙𝑡 , 𝑇𝑄𝑖𝑜𝑑𝑙𝑡 ≥ 0     ∀𝑖, 𝑜, 𝑑, 𝑙, 𝑡                                                                                      (19) 

𝑂𝑇𝑛𝑗𝑡 , 𝑈𝑇𝑛𝑗𝑡 ≥ 0     ∀𝑛, 𝑗, 𝑡                                                                                                                (20) 

Eq. (1)  attemps  to minimize the total cost. The production costs considering differentiation between 
regular and overtime production are included in the total cost. It also consider  idleness , raw material 
acquisition, inventory holding, demand backlog and transport. Most of these costs cannot be measured 
easily since they mainly imply human perception for their estimation. Therefore, these  costs  are  
considered uncertain data and are  modeled  by  fuzzy  numbers. Only  the  raw  material  cost  is 
assumed to be known. 
The  production  time  in each stage per  period could be lower or equal to the available regular time 

plus the available overtime for a certain production resource of a node (2). The variable production run 
of I in each stage in j at n in t could variate in the defined  interval  (between minimum and maximum 
production run). On the other  hand , the  produced  quantity of each  product in each planning period 
must always be a multiple of the selected production lot  size  (4). 

Eqs. (5) and (6) guarantee  a  minimum production size  for the different productive resources of the 
nodes in the different periods. These  equations  guarantee  that  Pinjt   will  be  equal  to  zero  if YPinjt      
is zero. 

Eq. (7) considers to the  inventory balance. The inventory of a certain  product  in a node, at  the  end of 
the period, will  be equal to the inputs minus the outputs of  the product generated in this period. 
Inputs include the production, transport receptions from other nodes, purchases (if supplying nodes) 
and  the inventory of the  previous period. Outputs are related to shipments to other nodes, supplies to 
customers and the consumption of other products (raw materials and intermediate products)  that  
need  to be  produced  in  the  node. 
Eqs.  (8) and (9) control the shipment of products  among  nodes. The  receptions  of  shipments for a 

certain product will be equal to the sum of planned deliveries and the shipments carried out  in 
previous periods. In constraint (8), the transport lead-time is considered uncertainty data. On the other  
hand (9), the shipments in progress will be equal to sum of the initial shipments  in progress and 
shipments from the  previous period, and the new shipments initiated in this period minus the new 
receptions. 

Both the transports and inventory levels are limited by the available volume (known approximately).  
Thus according to  Eq. (10),  the inventory level  for  the  physical volume of each product must be lower 
than the available  maximum volume for each  period (considering uncertainty data). The inventory 
volume depends on the period to consider  the  possible  increases  and decreases of the storage 
capacity over  time. Additionally, the physical volume of  the product depends on  the  time  to  cope 
with the  possible engineering changes  that may occur and  affect  the dimensions  and  volume  of  the  
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different  products. 
 

On  the other hand, the shipment quantities in progress of each shipment in each period  multiplied by 
the volume of the transported products (if  the transport time is  higher  than 0  periods), plus  the 
initiated  shipments by  each transport in  each period multiplied by the volume of the transported 
products (if the transport time is equal to  0  periods), can  never exceed the maximum transport volume 
for that  period (11). The reason for using a different formulation in terms of the transport time among 
nodes (TLT odlt  ) is because the transport in  progress will  never exist if  this value is not  higher than 
zero because all the  transport  initiated in a period is received in this same period if TLT odlt = 0. 
Finally, the transport volume depends on the period to consider the possible increases and decreases of  
the  transport  capacity  over  time. 

Eq. (12) limits the purchase quantity of materials for different suppliers at each node and period. Eq. 
(13) considers the defined amount of waste, so the amount of production of product I should equal to 
the demand of that product divide by percentage of healthy products. Eq. (14)  contemplates the backlog 
demand management over  time. The  backlog demand for a product and node in a certain period will be 
equal (approximately) to the backlog demand of the previous period plus the difference between supply 
and demand. 

Eq. (15) considers  that  the  sum  of overtime and undertime  production for the different productive 
resources is equal  to the total  production time minus the available regular production time plus the idle 
time. OT njt   and UT njt   will  always be higher or equal to zero if the total production time  is  higher 
than the available  regular production time, UT njt  will  be zero as it does not  incur in added costs, and 
OT njt   will  be positive. Alternatively, if the total production time is lower than the available regular 
production time, UT njt will  be positive and OT njt  will  be zero. 

Conversely, Eq. (16) establishes that the sum of all the supplied products is essentially lower or equal 
to demand  plus  the  initial  backlog demand. At  any   rate, the  problem could easily consider that all 
the demand is served at the end of last  planning  period by transforming  this inequality equation into 
an equality equation.  Finally,  Eqs. (17)–(20) guarantee  the  non  negativity of  the corresponding 
decision variables. 

 

4.  Solution methodology 
 

4.1. Transformation of the  fuzzy  mixed-integer  linear  programming model  into  an equivalent  crisp 
model 

 
In this section, we define an approach to transform the fuzzy mixed-integer linear programming 

model (FMILP) into an equivalent auxiliary crisp mixed-integer linear programming model for tactical 
SC planning under supply, process and demand uncertainties. According to Table  2, and in order to 
address the fuzzy coefficients of the FMILP model, it is necessary to consider the fuzzy mathematical 
programming approaches that integrally consider the fuzzy coefficients  of  the objective function and 
the fuzzy constraints: technological and right-hand side  coefficients. In this context, several research 
works exist in the literature, and readers may refer to them ([44] [45]; [46],[478]; [48]; [49]; [50]; [51]). 
In this paper, we adopt the approach by [49]). The authors proposed a method for solving linear 
programming problems where all the coefficients   were ,  in general, fuzzy numbers. They introduced a 
resolution method for this type of  problems  that  permitted the interactive participation of the decision 
maker (DM) in all the steps of the decision process, and the expressing of opinions  in linguistic terms 
was  introduced. 

Let us now consider the following linear programming problem with fuzzy parameters: 

Min    z=c  t x 
s.a.      x ϵ  N A . b = {xϵRn|a ix ≥ bi    i = 1……m. x ≥ 0         (21) 
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where c =( c 1. c 2…. c n)  , A  =  a ij m×n
 ,b =( b 1. b 2…. b n)t    represent, respectively, fuzzy  

parameters involved  in the objective function and  constraints. The possibility distribution of  fuzzy  
parameters is assumed to be characterized by fuzzy  numbers. x = (x1 , x2 , ... , xn ) is the  crisp  decision  
vector. 

The uncertain and/or imprecise nature of the parameters of the problem leads us  to  compare fuzzy 
numbers that involve two main problems: feasibility and optimality, therefore it is necessary to answer 
two questions [49] 

 
(1) How  to  define  the  feasibility of a decision vector x, when the 

constraints  involve fuzzy numbers. 
 (2)  How  to define the optimality for an  objective function with fuzzy 
coefficients. 

 
Several focuses have been developed to  solve  this problem and to  answer these questions (see  for  

example [52];  [53],  [54]). A variety of methods for comparing or ranking fuzzy numbers has  been 
reported in the literature ([55]). Different properties have been applied to justify ranking methods, such 
as: distinguishability, rationality, fuzzy or linguistic representation and robustness. In this paper we  use  
a fuzzy relationship to  compare fuzzy numbers [56] that verifies all the suitable properties above and . 
which, besides, is computationally efficient to solve linear problems because it   preserves its  linearity. 

Thus,  by applying the approach described by [56] the problem (21) is transformed into the crisp 
equivalent parametric linear programming problem defined in (22) where . represents the degree that, 
at least, all the constraints are  fulfilled; that is, . is the feasibility degree of a decision x. 

 

 
Min    EV(c )x              (22) 

s.a      1 − α E2
ai + αE2

ai  x ≥ αE2
b i +  1 − α E2

b i     i = 1……m. x ≥ 0   αϵ 0,1  
where  the  expected value of a fuzzy  number, noted EV (~c), is the  half  point of its  expected interval 

[57]: EV(c) =
E1

c +E2
c

2
         (23) 

and  if  the  fuzzy  number ~c is trapezoidal, its expected interval is easily calculated as follows: 

 
 

EI c =  E1
c . E2

c  =  
1

2
 c1 + c2 .

1

2
 c3 + c4              (24)  

If (21)  was  a  less  than or equal type constraint, 6, this could be transformed into the following 
equivalent crisp constraint: 
 

  1 − α E1
ai + αE2

ai  x ≤ αE1
b i +  1 − α E2

b i          i = 1……m. x ≥ 0   αϵ 0,1            (25) 
Otherwise, if (21) was  a equality type constraint, this could be transformed into two equivalent crisp 
constraints: 

 

  1 −
α

2
 E1

ai +
α

2
E2

ai  x ≤
α

2
E1

b i +  1 −
α

2
 E2

b i          i = 1……m. x ≥ 0   αϵ 0,1   

  1 −
α

2
 E2

ai +
α

2
E1

ai  x ≥
α

2
E2

b i +  1 −
α

2
 E1

b i          i = 1……m. x ≥ 0   αϵ 0,1            (26) 

 

Consequently  by applying this approach to the previously defined  FMILP  model, and  by considering 
trapezoidal fuzzy  numbers for the uncertain  parameters, we  obtain an  auxiliary crisp mixed-integer 
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linear programming model (MILP) as follows: 
 

Minimize   z =        
pc injtm 1+pc injtm 2+pc injtm 3+pc injtm 4

4
. pinjtm  +M

m=1
T
t=1

J
j=1

N
n=1

I
i=1

     
OC njt 1+OC njt 2+OC njt 3+OC njt 4

4
. OTnjt +

UC njt 1+UC njt 2+UC njt 3+UC njt 4

4
. UTnjt  

T
t=1

J
j=1

N
n=1 +

    RMCint . PQint +
HC int 1+HC int 2+HC int 3+HC int 4

4
. Iint +T

t=1
N
n=1

I
i=1

 
BC int 1+BC int 2+BC int 3+BC int 4

4
. Bint  +

      
TC odlt 1+TC o dlt 2+TC odlt 3+TC odlt 4

4
. TQodlt  

T
t=1

L
l=1

D
d=1

O
o=1

I
i=1           (27) 

 
 
Subject to 

 pinjt
I
i=1 .   1 − α 

PTP injt 1+PTP injt 2

2
+ α

PTP injt 3+PTP injt 4

2
 ≤

 1 − α 
PCR njt 3+PCR njt 4

2
+ α

PCR njt 1+PCR njt 2

2
+  1 − α 

PR njt 3+OR njt 4

2
+ α

OR njt 1+OR njt 2

2
      ∀n, j, t          

(28) 
 
 
 

Pinjt .   1 − α 
PTP injt 1+PTP injt 2

2
+ α

PTP injt 3+PTP injt 4

2
 +

  1 − α 
PCR njt 1+PCR njt 2

2
+ α

PCR njt 3+PCR njt 4

2
 . YPinjt +

  1 − α 
OR njt 1+OR njt 2

2
+ α

PR njt 3+OR njt 4

2
 . YPinjt ≤ 0   ∀n, j, t        (29) 

SRiodlt = SR0iodlt + TQiodlt −FTLT    ∀i, o, d, l, t        (30) 

 Iint
I
i=1 . PVit ≤  1 − α 

UI nt 3+UI nt 4

2
+ α

UI nt 1+UI nt 2

2
           ∀n, t       (31) 

    SIPiodlt . PVit . Xodlt
1  D

d=1
O
o=1

I
i=1 +     TQiodlt . PVit . Xodlt

2  D
d=1

O
o=1

I
i=1 ≤  1 − α 

UTC lt 3+UTC lt 4

2
+

α
UTC lt 1+UTC lt 2

2
           ∀l, t            (32) 

 PQint
I
i=1 ≤  1 − α 

UPS nt 3+UPS nt 4

2
+ α

UPS nt 1+UPS nt 2

2
           ∀n, t        (33) 

 
 

Bint − Bin .t−1 + Sint ≤  1 −
α

2
 

Dint 1 + Dint 2

2
+

α

2
 
Dint 3 + Dint 4

2
   ∀i, n, t        34  

Bint − Bin .t−1 + Sint ≥  1 −
α

2
 

Dint 3 + Dint 4

2
+

α

2
 
Dint 1 + Dint 2

2
   ∀i, n, t        35  

.  Pinjt
I
i=1  1 −

α

2
 

PTP injt 1+PTP injt 2

2
+

α

2
 
PTP injt 3+PTP injt 4

2
+ TOCnjt − Texnjt ≤

  1 −
α

2
 

PCR njt 1+PCR njt 2

2
+ α

PCR njt 3+PCR njt 4

2
   ∀n, j, t        36    

 Pinjt
I
i=1 .  1 −

α

2
 

PTP injt 3+PTP injt 4

2
+

α

2
 
PTP injt 1+PTP injt 2

2
+ TOCnjt − Texnjt ≥

  1 −
α

2
 

PCR njt 3+PCR njt 4

2
+ α

PCR njt 1+PCR njt 2

2
   ∀n, j, t      37   
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  Sint
T
t=1

N
n=1 ≤   (  1 − α 

D int 3+D int 4

2
T
t=1

N
n=1 + α 

D int 1+D int 2

2
+ BOint )   ∀i        (38)  

FTLTodlt ≤ 
α

2
 
TLTodlt 1 + TLTodlt 2

2
+  1 − 

α

2
 

TLTodlt 3 + TLTodlt 4

2
   ∀ o. d. l. t         39  

FTLTodlt  ≥   
α

2
 
TLTodlt 3 + TLTodlt 4

2
+  1 − 

α

2
 

TLTodlt 1 + TLTodlt 2

2
   ∀ o. d. l. t        40  

 
FTLTodlt  ≥ 0   ∀ o. d. l. t        41  
 

The  non  fuzzy constraints have also  to be included in the model as in the original way. 

 
4.2. Interactive resolution method 

 
Here, an interactive resolution method which allows us to take a decision interactively with the DM is 

presented. This method is organized in three steps. 
In  the   first  step  of our  method   the auxiliary crisp mixed-integer linear  programming model 

defined  above  is solved  parametrically in order to obtain the values of the decision variables and the 
objective function  for each c ∈ [O, l]. Then  we  apply a method of evaluation (extended from [58]) for  
the validation of models according to the following group of measurable parameters: (i) the average 
service level; (ii) inventory cost; (iii) planning nervousness with  regard to the  planned period; (iv) 
planning  nervousness with regard to the planned  quantity  and (v)  total  costs. 

 
(i)  The average service level  for  the  finished  good  is calculated as follows: 

Average service level  % =   

 1−
B int

 D
int َ

T
t=َ1

 ×100

T
   ∀i, n        42 T

t=1   

 

(ii)   The inventory cost  is  calculated as the sum of the inventory holding cost  of the  finished  good  
and  parts  at the end of each  planning  period. 

(iii)   Planning nervousness with regard to the planned period. ”Nervous” or unstable planning refers to 
a plan which undergoes significant variations when incorporating the demand changes between 
what is foreseen and what  is observed  in successive plans, as defined by [59]. Planning 
nervousness can be measured according to the demand changes in relation to the planned  period 
or to the planned quantity. The demand changes in the planned period measure the number of 
times that a planned order is rescheduled, irrespectively of the planned quantity [60]. The next rule 
proposed by [61].is summarized as follows: At time t we check for each period t + x (x = O, l, 2, ... , T 
— l): 
     If  there  is a planned order in t + x, and  this order is not  planned  in the next  planning run, we  

increase the number of  reschedules by l. 
     If  there  was  no  planned order in t + x, and  there is one  in the next planning run, we  increase 
the number of  reschedules by l. 

 
(iv)   Planning nervousness with regard to the planned quantity measures the demand changes in the 

planned quantity as the number of times that the quantity of a planned order is modified [62].. The 
rule is described as follows: 

 
In  the  period t = l,.. .,T , where T is the  number of periods  that  forms the planning horizon, each period 
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is checked so  that t + x (x = O,l,2,.. .,T — l): 
 

   If  a planned  order exists in the period t + x, then  if  the quantity of  the  planned order is not the same 
as in the  next planning run, we  increase the number of  reschedules by l. 

 
In the  computation of planning nervousness, we   measure the  number of changes. Another  way  to 

compute  it would be to take into account the rate of the changes. 
 

(v)   Total  costs  are  the sum of all the costs that are  generated in every period of the considered 
planning  horizon, and derived from the  procurement, production and distribution plans provided 
by the model. 

 

In order to obtain a decision vector that complies with the expectations of the DM, we  should evaluate 
two  conflicting  factors: the feasibility degree o and the reaching of an  acceptable value for the different 
parameters. 

In  the  second  step of our  method, after  seeing the results obtained in the  first  step, the DM is asked 
to specify an aspiration level  G and its  tolerance threshold t for the numerical values obtained by each 
evaluation parameter. In the case of ‘‘less is better”, that is, inventory cost, nervousness  and total cost,  
the DM’s satisfaction level  is expressed by means of a fuzzy set  𝐺  whose membership function is as 
follows [49].: 

 

 

μ
G
 z =   

1   if z ≤ G
λϵ 0,1  decreasing on G ≤ z ≤ G + 1 

0 if z ≥ G + 1

         (43) 

Symmetrically in the case  ‘‘more  is better”, that is, in service level  the goal  is expressed by an  
increasing membership function: 

μ
G
 z =   

1   if z ≥ G
λϵ 0,1  decreasing on G − t ≤ z ≤ G 

0 if z ≤ G − t

         (44) 

 
We define  λ i  (i =l,.. .,5) as  the degree in which the corresponding fuzzy aspiration levels of the above  

parameters  are  satisfied  by a decision vector. Obviously the DM wants to obtain a maximum 
satisfaction degree for all of them. In order to aggregate them we propose the weighted sum. The weight 
wi  (i = l,.. .,5) assigned by the DM to each parameter have been determined, as in the analytic hierarchy 
process[63], by the eigenvalues of the matrix of  pairwise  ratios whose rows give the ratios of weights of 
each parameter with respect to all others.   

Thus we obtain the following global satisfaction degree (where  wii = 1): A =   wii λi  = 
w1λ1+w2λ2 + w3λ3 + w4λ4 + w5λ5 

But,  in  general, a lower level  of the feasibility degree αwill  be achieved to obtain a better satisfaction 
degree K. Given these circum stances, the  DM might require lower satisfaction  in exchange for a better 
feasibility. 

 
In the third step of our  method , in an  attempt to find  a balanced solution between the feasibility degree o 
and the global satisfaction degree K, we propose to build two fuzzy sets whose membership functions 
represent the DM’s acceptation of the feasibility degree, 𝛾o , and the acceptation of the satisfaction degree, 
𝛾K , respectively. The respective acceptation degrees, 𝛾o  and 𝛾K , increase monotonously between the 
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corresponding  lower and upper  bounds defined  by the DM. 
Observe that, when the DM built the fuzzy set related with the acceptation of the feasibility degree, 𝛾o , 

he/she is implicitly manifesting his/her aptitude against the risk of unfeasibility and when he/she built the 
fuzzy set related with the acceptation of the satisfaction degree, 𝛾K , he/she is manifesting his/her aptitude 
regarding to the attainment of good  results. 
In order to obtain a recommendation for a final decision, we calculate a joint acceptation index K by 
aggregating, through the weightedmean, the two aforementioned acceptation degrees. 

 

K =  
β. γα +  1 − β . γA    ifγα ≠ 0 and γA ≠ 0 

otherwise
           (45) 

where β ϵ [O, l] is the relative importance, assigned by the DM, to the feasibility in comparison 

with the satisfaction. 
 
5. Conclusion 
Supply chain planning in an uncertainty environment is a complex task. This  paper has  proposed a novel 
fuzzy mixed-integer linear programming (FMILP) model for  tactical SC planning by integrating 
procurement, production and distribution planning activities into a multi-echelon, multi-product, multi-
level and multi-period SC network. The fuzzy model integrally handles all the epistemic uncertainty 
sources identified in SC tactical planning problems given a lack of knowledge (demand, process and supply 
uncertainties). This model takes a long time to be run and since in real environments short execution time 
model is essential, continued research will be performed by the algorithms and techniques on how to solve 
meta heuristic models and how to shorten the execution time and the planning range in real 
environments. Therefore, research and development will continue.
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