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Abstract
In this paper, we have introduced a new symmetry property of space-time which is named as semiconformal curvature

collineation, and its relationship with other known symmetry properties has been established. This new symmetry property of
the space-time has also been studied for non-null and null electromagnetic fields.
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1. Introduction

In recent years general relativists have been much interested in symmetries of space-time. Such interest
is due to the need to simplify the Einstein’s field equations in the search for their exact solutions. These
geometrical symmetries of the space-time are often defined through the vanishing of the Lie derivative of
certain tensors with respect to a vector (this vector may be time-like, space-like or null). The symmetries in
general theory of relativity have been introduced by Katzin et al. in the papers [14, 15]. These symmetries
which are also known as collineations, were further studied by Ahsan [2–5], Ahsan and Ali [4–8] and Ali
and Ahsan [9] among many others. However, in this paper our study is focused on these symmetries
which can be used as simplifying assumptions in the exact solution of Einstein’s field equations (EFE) but
solving EFE by our findings will be the next target. Main objective of this paper is to give new symmetry
in mathematical approach and analyse it on parameters of the well established literature on symmetries
of space-time manifolds.

We know that two Riemannian spaces are conformally related through the equation ˜gbc = e2ψgbc,
where ˜gbc and gbc are the two metric tensors of the two Riemannian spaces Ṽ and V , while ψ is a real
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function of coordinates. Moreover, it is known that a harmonic function is defined as a function whose
Laplacian vanishes. In general, a harmonic function is not transformed into a harmonic function. The
conditions under which the harmonic functions remains invariant have been studied by Ishii [13]. He
has introduced the conharmonic transformation as a subgroup of the conformal transformation satisfying
the condition ψb;b + ψ;bψ

b
; = 0. A rank four tensor Lhbcd that remains invariant under conharmonic

transformation for an n-dimensional Riemannian manifold (Mn,g) of dimension n > 4, as follows:

Lhbcd = Rhbcd +
1

n− 2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d),

where Rhbcd, Rbd are Riemann curvature tensor and Ricci tensor respectively. The geometric properties of
conharmonic curvature tensor have been discussed by Shaikh and Hui [22], while the relativistic signifi-
cance of this tensor has been investigated by Abdussattar and Dwivedi [1] and Siddiqui and Ahsan [23].
In 2017, J. Kim [17] introduced curvature-like tensor field which remain invariant under conharmonic
transformation. He named this new tensor as semiconformal curvature tensor and denoted it by Phbcd.
For a Riemannian manifold Mn with metric g, this tensor is defined as (see also [18])

Phbcd = −(n− 2)BChbcd + [A+ (n− 2)B]Lhbcd, (1.1)

provided the constants A and B are not simultaneously zero, is conformal curvature tensor defined as

Chbcd = Rhbcd +
1

n− 2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d) +

R

(n− 1)(n− 2)
(δhdgbc − δ

h
cgbd), (1.2)

where Rab is the Ricci tensor and R is the scalar curvature. For a special substitution A = 1 and B = −1
(n−2) ,

the semiconformal curvature tensor reduces to conformal curvature tensor, while for A = 1 and B = 0, it
reduces to conharmonic curvature tensor. It can be noted that throughout the paper we will be assuming
that A 6= 0 and B 6= 0. The semiconformal curvature Phbcd satisfies the following symmetry properties

Phbcd = −Pbhcd = −Phbdc = Pcdhb, and Phbcd + Pchbd + Pbchd = 0.

In this paper, we define a new symmetry in terms of semiconformal curvature tensor and study its rela-
tionship with other symmetries of the space-time. We call this new symmery as semiconformal curvature
collineation. Section 2 contains some known results that are required for our investigation. In sections 2
and 4, the relationship between semiconformal curvature collineation and the other symmetry properties
for a general Riemannian space and for a Riemannian space with vanishing Ricci tensor, respectively,
have been established. Finally in section 5, the semiconformal curvature collineation has been studied for
non-null and null electromagnetic fields.

2. Preliminaries

A geometrical symmetry of the space-time is often defined in terms of the Lie derivative of a tensor.
These symmetries are also known as collineations. The literature on such collineations is very large and
still expanding with results of elegance. Here we shall mention only those symmetry assumptions that
are necessary for our study and we have (cf. [12, 21, 28])

Definition 2.1 (Motion (M)). A space-time is said to admit motion if there exists a vector field ξa such
that1

ηab ≡ Lξgab = ξa;b + ξb;a = 0. (2.1)

1Indices take the values 1, 2, 3, . . . ,n and the summation convention is used. Covariant differentiation is indicated by a semicolon
(;) and partial differentiation by a comma (,).
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Equation (2.1) is known as Killing equation and the vector ξa is known as a Killing vector field.

Definition 2.2 (Affine Collineation (AC)). A space-time is said to admit an affine collineation if there is a
vector field ξa such that

LξΓ
c
ab ≡

1
2
gcd(ηda;b + ηdb;a − ηab;d) = 0, (2.2)

where Γcab is the Christoffel symbol of second kind. Hence the necessary and sufficient condition for an
AC [from equation (2.2)] is

ηab;c = 0, (2.3)

It may be noted, from equations (2.2) and (2.3), that every M is AC.

Definition 2.3 (Conformal Motion (Conf M)). A space-time is said to admit a conformal motion if there
exists a vector field ξa such that

ηab = 2φgab, (2.4)

where φ is scalar and we may express it in the following form

φ =
1
4
ξd;d.

Definition 2.4 (Projective Collineation (PC)). A space-time is said to admit projective collineation if there
exists a vector ξa such that

Lξ

a∏
bc

= 0, (2.5)

where the projective connection [25] is defined as for n = 4

a∏
bc

= Γabc −
1
5

(
δabΓ

h
hc + δ

a
c Γ
h
hb

)
. (2.6)

From equations (2.5) and (2.6), we get

LξΓ
a
bc = δ

a
bσ;c + δ

a
cσ;b, (2.7)

where
σ;c =

1
5
ξm;mc. (2.8)

Further, for every projective collineation, we have [14]

LξW
h
bcd = 0, (2.9)

where the Weyl projective curvature tensor for n = 4 is given by

Wh
bcd = Rhbcd −

1
3
(δhdRbc − δ

h
cRbd). (2.10)

From equations (2.7), (2.8), and (2.9) it follows that every AC is PC.

Definition 2.5 (Conformal Collineation (Conf C)). A space-time is said to admit a conformal collineation
if there exists a vector ξa such that

LξΓ
a
bc = δ

a
bφ;c + δ

a
cφ;b − gbcg

amφ;m, (2.11)

where φ = 1
4ξ
d
;d. Equations (2.4) and (2.11) may be expressed as [14]

ηab;c = 2φ;cgab,
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and that every Conf C must satisfy (for explanation c.f., [28])

LξC
h
bcd = 0,

where Chbcd is conformal curvature tensor, which from equation (1.2) for n = 4, is given by

Chbcd = Rhbcd +
1
2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d) +

R

6
(δhdgbc − δ

h
cgbd). (2.12)

Definition 2.6 (Curvature Collineation (CC)). A space-time is said to admit curvature collineation if there
is a vector field ξa such that

LξR
h
bcd = 0,

where Riemann curvature tensor is defined as [12]

Rhbcd = Γhhd,c − Γ
h
hc,d + Γ

m
bdΓ

h
mc − Γ

m
bcΓ

h
md. (2.13)

Definition 2.7 (Ricci Collineation (RC)). A space-time is said to admit Ricci collineation if there is a vector
field ξa such that

LξRab = 0,

where Rab is the Ricci tensor.

Definition 2.8 (Maxwell collineation (MC)). The electromagnetic field inherits the symmetry property of
space-time such that

LξFab = Fab;cξ
c + Facξ

c
;b + Fbcξ

c
;a = 0, (2.14)

where Fab is the electromagnetic field tensor. Such symmetry of space-time is called Maxwell collineation
[10].

3. Semiconformal symmetry

For n = 4, the semiconformal curvature tensor, from equation (1.1), is given by

Phbcd = −2BChbcd + [A+ 2B]Lhbcd, (3.1)

where Chbcd and Lhbcd are the conformal and conharmonic curvature tensor, respectively. We now define
a new symmetry for the space-time manifold of general relativity as

Definition 3.1 (Semiconformal Curvature Collineation (Semiconf CC)). A space-time V4 is said to admit
a semiconformal curvature collineation if there exists a vector field ξa such that

LξP
h
bcd = 0, (3.2)

where Phbcd is semiconformal curvature tensor is defined in equation (1.1).

We also define the following definition.

Definition 3.2 (Conharmonic Curvature Collineation (Conh CC)). A space-time V4 is said to admit a
conharmonic curvature collineation if there exists a vector ξa such that

LξL
h
bcd = 0, (3.3)

where conharmonic curvature tensor Lhbcd is defined by [23]

Lhbcd = Rhbcd +
1
2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d). (3.4)
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Before giving the next definition we should have an idea of concircular transformation. In general
conformal transformation ( ˜gbc = ψ2gbc) does not transform the geodesic circles to the geodesic circles.
Therefore in 1940, Yano [27] introduced a transformation which preserves the geodesic circles. Actually
Yano used the conformal transformation together with the condition ψ;b;c = αgbc and named it as
concircular transformation. He defines these symmetry property as following.

Definition 3.3 (Concircular Curvature Collineation (Conc CC)). A space-time V4 is said to admit a concir-
cular curvature collineation if there exists a vector ξa such that LξMh

bcd = 0, where concircular curvature
tensor Mh

bcd is defined by [28]

Mh
bcd = Rhbcd −

R

12
(δhdgbc − δ

h
cgbd). (3.5)

Using equations (2.12) and (3.4) in equation (3.1), we get

Phbcd = A[Rhbcd +
1
2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d)] −

BR

3
(δhdgbc − δ

h
cgbd). (3.6)

Theorem 3.4. The necessary and sufficient condition for a semiconformal curvature collineation (Semiconf CC) to
be a curvature collineation (CC) is φ;bc = 0, where φ = 1

4ξ
d
;d is a scalar function.

Proof. The semiconformal curvature tensor in terms of Riemann, Ricci and scalar curvature tensors is
given in equation (3.6). For semiconformal curvature collineation to be reduced to curvature collineation,
we first suppose that V4 admits a semiconformal curvature collineation.

We know the Christoffel symbols vanish but not their derivative at a point in geodesic coordinate
system. Therefore, at this point equation (2.13) leads to

LξR
h
bcd =

(
LξΓ

h
db

)
;c
−
(
LξΓ

h
cb

)
;d

, (3.7)

using equation (2.11), we have

LξR
h
bcd =

(
δhdφ;b + δ

h
bφ;d − gdbg

hmφ;m

)
;c
−
(
δhcφ;b + δ

h
bφ;c − gcbg

hnφ;n

)
;d

, or

LξR
h
bcd =

(
δhdφ;bc + δ

h
bφ;dc − gdbg

hmφ;mc

)
−
(
δhcφ;bd + δ

h
bφ;cd − gcbg

hnφ;nd

)
,

(3.8)

to find the required condition for our target we have to put LξRhbcd = 0, therefore equation (3.8) leads to

δhdφ;bc + δ
h
bφ;dc − gdbg

hmφ;mc − δ
h
cφ;bd − δ

h
bφ;cd + gcbg

hnφ;nd = 0, (3.9)

performing some indexing arrangement in the equation (3.9), we get

2φ;bc + gcbg
dnφ;nd = 0. (3.10)

In equation (3.10), multiplied by gbc, we get gbcφ;bc = 0. It implies that φ;bc = 0, where φ = 1
4ξ
d
;d is a

scalar function. This completes the proof.

Theorem 3.5. The necessary and sufficient condition for a semiconformal curvature collineation to be a Weyl
projective curvature collineation is that σ;bc = 0, where σ = 1

5ξ
m
;m.

Proof. From equations (2.10) and (3.6), the semiconformal curvature tensor in terms of Weyl projective
curvature tensor may be expressed in the following way

Phbcd = A[Wh
bcd +

1
6
(δhcRbd − δ

h
dRbc) +

1
2
(gbdR

h
c − gbcR

h
d)] −

BR

3
(δhdgbc − δ

h
cgbd), or

Phbcd = A[Wh
bcd +

1
6
(δhcR

j
bdj − δ

h
dR
i
bci) +

1
2
(δhdR

u
bcu − δhcR

t
bdt)] −

4B
3
(δhdR

v
bcv − δ

h
cR
w
bdw).

(3.11)
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For semiconformal curvature collineation to be reduced to Weyl projective curvature collineation, we start
with a semiconformal curvature collineation admitted by V4, i.e., LξPhbcd = 0, equation (3.11) leads to

ALξW
h
bcd =

A

6
δhdLξR

i
bci −

A

6
δhcLξR

j
bdj +

A

2
δhcLξR

t
bdt −

A

2
δhdLξR

u
bcu

+
4B
3
δhdLξR

v
bcv −

4B
3
δhcLξR

w
bdw,

(3.12)

using the equations (3.7) and (3.12), we get

ALξW
h
bcd =

A

6
δhd
[(
LξΓ

i
ib

)
;c −

(
LξΓ

i
cb

)
;i

]
−
A

6
δhc
[(
LξΓ

j
jb

)
;d −

(
LξΓ

j
db

)
;j

]
+
A

2
δhc
[(
LξΓ

t
tb

)
;d −

(
LξΓ

t
db

)
;t

]
−
A

2
δhd
[(
LξΓ

u
ub

)
;c −

(
LξΓ

u
cb

)
;u

]
+

4B
3
δhd
[(
LξΓ

v
vb

)
;c −

(
LξΓ

v
cb

)
;v

]
−

4B
3
δhc
[(
LξΓ

w
wb

)
;d −

(
LξΓ

w
db

)
;w

]
,

now with the help of equation (2.7), the above equation will reduced to the following form

ALξW
h
bcd =

A

2
δhdσ;bc −

A

2
δhcσ;bd +

3A
2
δhcσ;bd −

3A
2
δhdσ;bc + 4Bδhdσ;bc − 4Bδhcσ;bd. (3.13)

Further for Weyl projective curvature collineation LξW
h
bcd = 0 putting in (3.13) and contraction over h

and d, equation (3.13) leads to (12B− 3A)σ;bc = 0, which implies that σ;bc = 0, where σ = 1
5ξ
m
;m. This

establishes the proof.

From Katzin et al. [14], we have the following.

Lemma 3.6. Every motion in V4 is curvature collineation (CC), Weyl projective collineation (WPC) and Weyl
conformal collineation (W Conf C).

Also we can write the following.

Lemma 3.7. Every motion in a V4 is a Conh CC and Conc CC.

Proof. Proof is obvious from Lemma 3.6 on use of the equations (3.3)-(3.5).

Theorem 3.8. A space-time V4 admits semiconformal curvature collineation along a vector field ξa provided that
ξa is Killing.

Proof. From equations (3.4) and (3.6), the relation between semiconformal and conharmonic curvature
tensor is given by

Phbcd = ALhbcd −
BR

3
(δhdgbc − δ

h
cgbd), (3.14)

taking the Lie derivative on both sides of (3.14), we have

LξP
h
bcd = ALξL

h
bcd −

B

3
[δhdRLξgbc + δ

h
dgbcLξR− δ

h
cRLξgbd − δ

h
cgbdLξR]

= ALξL
h
bcd −

B

3
[(ξmRhh;m − ξh;mR

m
h + ξm;hR

h
m)δhdgbc + (ξb;c + ξc;b)δ

h
dR

− (ξmRhh;m − ξh;mR
m
h + ξm;hR

h
m)δhcgbd − (ξb;d + ξd;b)δ

h
cR],

(3.15)

from equations (2.1), Lemmas 3.6 and 3.7, the terms on right side of equation (3.15) vanishes, hence the
proof is done.
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Moreover, equations (3.5) and (3.6) lead to the following relation between semiconformal and concir-
cular curvature tensors

Phbcd = A[Mh
bcd +

R

12
(δhdgbc − δ

h
cgbd) +

1
2
(δhcRbd − δ

h
dRbc + gbdR

h
c − gbcR

h
d)] −

BR

3
(δhdgbc − δ

h
cgbd),

which on taking the Lie derivative on both sides yields

LξP
h
bcd = A[LξM

h
bcd +

1
12

(ξmRhh;m − ξh;mR
m
h + ξm;hR

h
m)δhdgbc + (ξb;c + ξc;b)δ

h
dR

− (ξmRhh;m − ξh;mR
m
h + ξm;hR

h
m)δhcgbd − (ξb;d + ξd;b)δ

h
cR−

1
2
(ξb;c + ξc;b)R

h
d

−
1
2
(ξmRhd;m − ξh;mR

m
d + ξm;dR

h
m)gbc +

1
2
δhc (ξ

mRbd;m + ξmRmd;b + ξ
mRbm;d)

−
1
2
δhd(ξ

mRbc;m + ξmRmc;b + ξ
mRbm;c) +

1
2
(ξb;d + ξd;b)R

h
c +

1
2
gbd(ξ

mRhc;m

− ξh;mR
m
c + ξm;c R

h
m)] −

B

3
[(ξmRhh;m − ξh;mR

m
h + ξm;hR

h
m)δhdgbc + (ξb;c + ξc;b)δ

h
dR

− (ξmRhh;m − ξh;mR
m
h + ξm;hR

h
m)δhcgbd − (ξb;d + ξd;b)δ

h
cR].

(3.16)

Remark 3.9. We find that the Lemmas 3.6 and 3.7 together with equations (2.1) and (3.16) give the similar
result as in Theorem 3.8.

4. Semiconformal symmetry in empty space-time

The Einstein field equations are given by

Rbc −
1
2
gbcR = −kTbc, (4.1)

where Rbc is the Ricci tensor, gbc is the metric tensor, Tbc is the energy momentum tensor, R is the scalar
curvature tensor and k is the constant. Multiplying by gbc and using gbcgbc = 4, equation (3.16) takes
the form

R = kT . (4.2)

from the equations (4.1) and (4.2), we get

Rbc = k(Tbc −
1
2
gbcT). (4.3)

If Tbc = 0, then T = gbcTbc = 0, equation (4.3) yields

Rbc = 0, (4.4)

these equations are the field equations for empty space-time.

Theorem 4.1. In an Empty space-time V0
4 Lie derivative of semiconformal curvature tensor is identical to Lie

derivative of Riemann curvature tensor for A = 1.

Proof. From equation (3.6), we have

Phbcd = A[Rhbcd +
1
2
(δhcRbd − δ

h
dRbc + gbdg

hiRic − gbcg
hjRjd)]

−
BgpqRpq

3
(δhdgbc − δ

h
cgbd) = AR

h
bcd −Bδ

h
dRbc.

(4.5)

Now using the equation (4.4), equation (4.5) leads to Phbcd = ARhbcd. The Lie derivative on both sides of
this equation give the immediate proof of the theorem.



Naeem A. Pundeer, M. Ali, N. Ahmad, Z. Ahsan, J. Math. Computer Sci., 20 (2020), 241–254 248

Theorem 4.2. In empty space-time V0
4 the Lie derivatives of semiconformal curvature and Weyl projective curvature

tensors are identical for A = 1.

Proof. From (3.11), we have

Phbcd = A[Wh
bcd +

1
6
(δhcRbd − δ

h
dRbc) +

1
2
(gbdg

hiRic − gbcg
hjRjd)] −

BgpqRpq

3
(δhdgbc − δ

h
cgbd)

= A[Wh
bcd +

1
3
(δhdRbc − δ

h
cRbd)] − 4BδhdRbc,

(4.6)

using the result for empty space-time in equation (4.6) and then performing Lie derivative, we get

LξP
h
bcd = ALξW

h
bcd. (4.7)

This establishes the theorem.

From equation (4.7), we can state the following.

Corollary 4.3. A space-time V0
4 admits semiconformal curvature collineation if and only if it admits Weyl projective

curvature collineation.

Remark 4.4. Making use of the equations (3.4), (3.5), (3.6), and (4.4) also following similar steps as in
Theorems 4.1, 4.2, and Corollary 4.3, we find the similar kind of results for conharmonic and concircular
curvature tensors.

5. Semiconformal curvature collineation and electromagnetic fields

It is known that in general relativity, the electromagnetism can be described through Maxwell’s equa-
tion

F[ab;c] = 0, Fab;b = Ja,

where the skew-symmetric tensor Fab represents the electromagnetic field tensor and Ja the current
density. Moreover, we have defined the Einstein field equations in equation (4.1) and in presence of
matter in equation (4.3). The energy-momentum tensor for an electromagnetic field is given by

Tab = −FacF
c
b +

1
4
gabFpqF

pq, (5.1)

which is symmetric tensor. Equation (5.1) leads to Taa = T = 0 and thus the Einstein equation for a purely
electromagnetic distribution is given by

Rab = kTab. (5.2)

The geometrical symmetry defined by equation (2.14) along with the symmetry given by equation (2.1)
has been the subject of interest for quite some time. Thus for example, for non-null electromagnetic fields
Woolley [26] has shown that if equation (2.1) holds then Fab satisfies LξFab = k(α)Fab for some constant
k(α), α = 1, 2, . . . , r; while Michalski and Wainwright [19] have shown that Lξgab = 0 implies LξFab = 0
for non-null fields. On the other hand, for non-null fields, Duggal [11] has proved the converse part under
certain conditions. Maxwell collineations have also been studied by Ahsan [2, 3]. It is seen that for null
electromagnetic fields neither MC is a consequence of Motion nor Motion is a consequence of Maxwell
collineation. Moreover, using Newman-Penrose formalism, Ahsan [3] has obtained the conditions under
which a null electromagnetic field may admit Maxwell collineation and Motion. The concept of Maxwell
collineation was further extended as Maxwell Inheritance (MI) by Ahsan and Ahsan [5], who applied
this concept to (i) the space-time solution corresponding to strong gravitational waves propagating in
generalized electromagnetic universes and (ii) the algebraically general twist-free solution of Einstein-
Maxwell equation for non-radiative electromagnetic fields.
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In 1986 Khlebnikov [16] has obtained the solutions for Einstein-Maxwell equations corresponding to
the strong gravitational waves in the generalized electromagnetic universe. He used the technique of
N.P. formalism [20] to obtain the solution in non-radiative electromagnetic fields. In his solution he took
the first real null tetrad vector la corresponding to geodesic and shear-free and the tetrad as parallelly
propagated along la also proved that the solution does not admit the Maxwell collineation. As another
example we can refer the twist-free algebraically general solution given by Tariq and Tupper [24]. For this
solution of Einstein-Maxwell equations in non-null electromagnetic fields together with the condition of
coupling theorem Tariq and Tupper proved that their solutions also do not admit the Maxwell collineation.
Motivated by above discussions, in this section, we shall investigate the role of semiconformal curvature
collineation to the non-null and null electromagnetic fields.

Lemma 5.1 ([19]). In a non-null electromagnetic field, the Lie derivative of electromagnetic field tensor Fab with
respect to a vector field ξ vanishes, if ξ is Killing vector.

Theorem 5.2. A non-null electromagnetic field admits semiconformal curvature collineation along a Killing vector
field.

Proof. From the equations (5.1), (5.2), and (3.6), we have

Phbcd = ARhbcd −
kA

2

(
gbcF

h
mF

m
d − δhc FbmF

m
d

)
+

(
δhdFbmF

m
c − gbdF

h
mF

m
c

)
+

(
kA

4
FijF

ij −
BR

3

)
(δhdgbc − δ

h
cgbd).

(5.3)

Taking the Lie derivative on both side of the equation (5.3), we get

LξP
h
bcd = ALξR

h
bcd −

kA

2

[
Lξ(gbc)F

h
mF
m
d + gbcLξ(F

h
m)Fmd + gbcF

h
mLξ(F

m
d )

− δhcLξ(Fbm)Fmd − δhc FbmLξ(F
m
d )

]
+

[
δhdLξ(Fbm)Fmc + δhdFbmLξ(F

m
c )

−Lξ(gbd)F
h
mF
m
c − gbdLξ(F

h
m)Fmc − gbdF

h
mLξ(F

m
c )

]
+

[
kA

4
Lξ(Fij)F

ij

+
kA

4
FijLξ(F

ij) −
B

3
Lξ(R)

][
δhdgbc − δ

h
cgbd

]
+

(
kA

4
FijF

ij −
BR

3

)[
δhdLξ(gbc) − δ

h
cLξ(gbd)

]
.

(5.4)

Further, use of symmetry properties of metric tensor and electromagnetic field tensor (i.e., equations (2.1)
and (2.14)) to equation (5.4) yields

LξP
h
bcd = ALξR

h
bcd −

kA

2

[
(ξb;c + ξc;b)F

h
mF
m
d + gbc(F

h
m;µξ

µ + Fhµξ
µ
;m − Fµmξ

h
;µ)F

m
d

+ gbcF
h
m(Fmd;µξ

µ + Fmµ ξ
µ
;d − Fµdξ

m
;µ) − δ

h
c (Fbm;µξ

µ + Fbµξ
µ
;m + Fmµξ

µ
;b)F

m
d

− δhc Fbm(Fmd;µξ
µ + Fmµ ξ

µ
;d − Fµdξ

m
;µ)

]
+

[
δhd(Fbm;µξ

µ + Fbµξ
µ
;m + Fmµξ

µ
;b)F

m
c

+ δhdFbm(Fmc;µ + Fmµ ξ
µ
;c − F

µ
cξ
m
;µ) − (ξb;d + ξd;b)F

h
mF
m
c − gbd(F

h
m;µξ

µ + Fhµξ
µ
;m

− Fµmξ
h
;µ)F

m
c − gbdF

h
m(Fmc;µξ

µ + Fmµ ξ
µ
;c − F

µ
cξ
m
;µ)

]
+

[
kA

4
(Fij;µξ

µ + Fiµξ
µ
;j

+ Fjµξ
µ
;i)F

ij +
kA

4
Fij(F

ij
;µξ
µ − Fiµξj;µ − Fjµξi;µ) −

B

3
Lξ(R)

][
δhdgbc

− δhcgbd

]
+

(
kA

4
FijF

ij −
BR

3

)[
δhd(ξb;c + ξc;b) − δ

h
c (ξb;d + ξd;b)

]
,

(5.5)

using the definition of motion 2.1, Maxwell collineation (2.14), semiconformal curvature collineation, and
Lemma 5.1 in equation (5.5). This Completes the proof.
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Further, using equations (5.1) and (5.2) in equation (3.11), we get

Phbcd = AWh
bcd −

kA

6
(δhdFbmF

m
c − δhc FbmF

m
d ) −

kA

2
(FhmF

m
d gbc

− FhmF
m
c gbd) + (δhdgbc − δ

h
cgbd)

(
kA

6
FijF

ij −
BR

3

)
,

which on taking Lie derivative leads to

LξP
h
bcd = ALξW

h
bcd −

kA

6

[
δhdLξ(Fbm)Fmc + δhdFbmLξ(F

m
c ) − δhcLξ(Fbm)Fmd

− δhc FbmLξ(F
m
d )

]
−
kA

2

[
Lξ(F

h
m)Fmd gbc + F

h
mLξ(F

m
d )gbc + F

h
mF

m
d Lξ(gbc)

−Lξ(F
h
m)Fmc gbd − F

h
mLξ(F

m
c )gbd − F

h
mF

m
c Lξ(gbd)

]
+

[
δhdLξ(gbc)

− δhcLξ(gbd)

][
kA

6
FijF

ij −
BR

3

]
+

[
δhdgbc − δ

h
cgbd

][
kA

6
Lξ(Fij)F

ij

+
kA

6
FijLξ(F

ij) −
B

3
Lξ(R)

]
.

(5.6)

Again, using the definitions of Lie derivative for metric and electromagnetic field tensors in equation (5.6),
we get

LξP
h
bcd = ALξW

h
bcd −

kA

6

[
δhd(Fbm;µξ

µ + Fbµξ
µ
;m + Fmµξ

µ
b)F

m
c + δhc Fbm(Fmc;µξ

µ

+ Fmµ ξ
µ
;c − F

µ
cξ
m
;µ) − δ

h
c (Fbm;µξ

µ + Fbµξ
µ
;m + Fmµξ

µ
;b)F

m
d − δhc Fbm(Fmd;µξ

µ

+ Fmµ ξ
µ
;d − Fµdξ

m
;µ)

]
−
kA

2

[
(ξb;c + ξc;b)F

h
mF
m
d + gbc(F

h
m;µξ

µ + Fhµξ
µ
;m

− Fµmξ
h
;µ)F

m
d + gbcF

h
m(Fmd;µξ

µ + Fmµ ξ
µ
;d − Fµdξ

m
;µ) − (ξb;d + ξd;b)F

h
mF
m
c (5.7)

− gbd(F
h
m;µξ

µ + Fhµξ
µ
;m − Fµmξ

h
;µ)F

m
c − gbdF

h
m(Fmc;µξ

µ + Fmµ ξ
µ
;c − F

µ
cξ
m
;µ)

]
+

[
δhd(ξb;c + ξc;b) − δ

h
c (ξb;d + ξd;b)

][
kA

6
FijF

ij −
BR

3

]
+

[
δhdgbc − δ

h
cgbd

]
×
[
kA

6
(Fij;µξ

µ + Fi;µξ
µ
;j + Fj;µξ

µ
i;µ)F

ij +
kA

6
Fij(F

ij
;µξ
µ − Fiµξj;µ − Fjµξ

i
;µ) +

B

3
Lξ(R)

]
.

Moreover, for non-null electromagnetic fields, the semiconformal curvature tensor can be expressed as

Phbcd = A[Mh
bcd −

k

2
(gbcF

h
mF

m
d − δhc FbmF

m
d + δhdFbmF

m
c − gbdF

h
mF

m
c )]

+ (
kA

4
FijF

ij +
RA

12
−
BR

3
)(δhdgbc − δ

h
cgbd).

(5.8)

Taking the Lie derivative on both sides of the equation (5.8), we get

LξP
h
bcd = ALξM

h
bcd −

kA

2

[
Lξ(gbc)F

h
mF
m
d + gbcLξ(F

h
m)Fmd + gbcF

h
mLξ(F

m
d )

− δhcLξ(Fbm)Fmd − δhc FbmLξ(F
m
d )
]
+
kA

2

[
δhdLξ(Fbm)Fmc + δhdFbmLξ(F

m
c )

−Lξ(gbd)F
h
mF
m
c − gbdLξ(F

h
m)Fmc − gbdF

h
mLξ(F

m
c )

]
+

[
kA

4
Lξ(Fij

+
kA

4
FijLξ(F

ij) +
A

12
Lξ(R) −

B

3
Lξ(R)

][
δhdgbc − δ

h
cgbd

]
+

(
kA

4
FijF

ij +
RA

12
−
BR

3

)[
δhdLξ(gbc) − δ

h
cLξ(gbd)

]
,

(5.9)
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which on using the definitions of Lie derivative of metric and electromagnetic field tensors leads to

LξP
h
bcd = ALξM

h
bcd −

kA

2

[
(ξb;c + ξc;b)F

h
mF

m
d + gbc(F

h
m;µξ

µ + Fhµξ
µ
;m − Fµmξ

h
;µ)F

m
d

+ gbcF
h
m(Fmd;µξ

µ + Fmµ ξ
µ
;d − F

µ
dξ
m
;µ) − δ

h
c (Fbm;µξ

µ + Fbµξ
µ
;m + Fmµξ

µ
;b)F

m
d

− δhc Fbm(Fmd;µξ
µ + Fmµ ξ

µ
;d − F

µ
dξ
m
;µ)

]
−
kA

2

[
δhd(Fbm;µξ

µ + Fbµξ
µ
;m

+ Fmµξ
µ
;b)F

m
c + δhdFbm(Fmc;µξ

µ + Fmµ ξ
µ
;c − F

µ
cξ
m
;µ) − (ξb;d + ξd;b)F

h
mF

m
c

− gbd(F
h
m;µξ

µ + Fhµξ
µ
;m − Fµmξ

h
;µ)F

m
c − gbdF

h
m(Fmc;µξ

µ + Fmµ ξ
µ
;c − F

µ
cξ
m
;µ)

]
+

[
kA

4
(Fij;µξ

µ + Fiµξ
µ
;j + Fjµξ

µ
;i)F

ij +
kA

4
Fij(F

ij
;µξ

µ − Fiµξj;µ − Fjµξi;µ)

+
A

12
Lξ(R) −

B

3
Lξ(R)

][
δhdgbc − δ

h
cgbd

]
+

(
kA

4
FijF

ij +
RA

12
−
BR

3

)[
δhd(ξb;c + ξc;b) − δ

h
c (ξb;d + ξd;b)

]
.

(5.10)

Remark 5.3. Making use of the definition of motion 2.1, Maxwell collineation (2.14), semiconformal cur-
vature collineation (3.2), and Lemma 5.1, equations (5.7) and (5.10) give the similar result as in Theorem
5.2.

Also it is known that

Lemma 5.4 ([19]). If a non-null electromagnetic field, under certain geometric conditions, admits Maxwell collinea-
tion along vector field ξ, then ξ is Killing.

Theorem 5.5. A non-null electromagnetic field admits semiconformal curvature collineation if it admits Maxwell
collineation.

Proof. From the equations (2.4), (5.7), and (5.10) in the framework of Lemma 5.4 we can establish the proof
of the theorem.

Further, the energy momentum tensor Tab, for a null electromagnetic field is defined as

Tab = FanF
n
b , (5.11)

where Fij = sitj − tisj and sisi = siti = 0, titi = 1, vectors s and t are the propagation and polarization
vectors, respectively.

Lemma 5.6 ([2]). A null electromagnetic field admits a Maxwell collineation along the propagation (polarization)
vector if the propagation (polarization) vector is Killing and expansion-free.

Theorem 5.7. A null electromagnetic field admits semiconformal curvature collineation along a propagation (po-
larization) vector if propagation (polarization) vector is killing and expansion-free.

Proof. Making use of the equations (5.2) and (5.11) in equation (3.6), we have

Phbcd = A[Rhbcd −
k

2
(gbcF

h
nF
n
d − δhc FbnF

n
d + δhdFbnF

n
c − gbdF

h
nF
n
c )] −

BR

3
(δhdgbc − δ

h
cgbd).

Taking Lie derivative of this equation, we get

LξP
h
bcd = ALξR

h
bcd −

kA

2

[
Lξ(gbc)F

h
nF
n
d + gbcLξ(F

h
n)F

n
d + gbcF

h
nLξ(F

n
d)
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− δhcLξ(Fbn)F
n
d − δhc FbnLξ(F

n
d)

]
−
kA

2

[
δhdLξ(Fbn)F

n
c + δhdFbnLξ(F

n
c )

−Lξ(gbd)F
h
nF
n
c − gbdLξ(F

h
n)F

n
c − gbdF

h
nLξ(F

n
c )

]
−
B

3
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−
BR

3

[
δhdLξ(gbc) − δ

h
cLξ(gbd)

]
,

which on using the definition of Lie derivative reduces to

LξP
h
bcd = ALξR

h
bcd −

kA

2

[
(ξb;c + ξc;b)F

h
nF
n
d + gbc(F

h
n;µξ

µ + Fhµξ
µ
;n − Fµnξ

h
;µ)F

n
d

+ gbcF
h
n(F

n
d;µξ

µ + Fnµξ
µ
;d − F

µ
dξ
n
;µ) − δ

h
c (Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
d

− δhc Fbn(F
n
d;µξ

µ + Fnµξ
µ
;d − F

µ
dξ
n
;µ)

]
−
kA

2

[
δhd(Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
c

+ δhdFbn(F
n
c;µ + Fnµξ

µ
;c − F

µ
cξ
n
;µ) − (ξb;d + ξd;b)F

h
nF
n
c − gbd(F

h
n;µξ

µ + Fhµξ
µ
;n

− Fµnξ
h
;µ)F

n
c − gbdF

h
n(F

n
c;µξ

µ + Fnµξ
µ
;c − F

µ
cξ
n
;µ)

]
−
B

3
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−
BR

3

[
δhd(ξb;c + ξc;b) − δ

h
c (ξb;d + ξd;b)

]
.

(5.12)

Thus, using the definitions of motion, Maxwell collineation, semiconformal collineation, Lemma 5.6 and
equation (5.12), we establish the proof of the Theorem 5.7.

From equations (5.2) and (5.11), equation (3.11) can be expressed as

Phbcd = A[Wh
bcd +

k

6
(δhc FbnF

n
d − δhdFbnF

n
c ) +

k

2
(FhnF

n
c gbd − F

h
nF
n
dgbc)] −

BR

3
(δhdgbc − δ

h
cgbd).

Operating the Lie derivative on this equation, we get

LξP
h
bcd = ALξW

h
bcd +

kA

6

[
δhcLξ(Fbn)F

n
d + δhc FbnLξ(F

n
d) − δ

h
dLξ(Fbn)F

n
c

− δhdFbnLξ(F
n
c )

]
+
kA

2

[
Lξ(gbd)F

h
nF
n
c + gbdLξ(F

h
n)F

n
c + gbdF

h
nLξ(F

n
c )

−Lξ(gbc)F
h
nF
n
d − gbcLξ(F

h
n)F

n
d − gbcF

h
nLξ(F

n
d)

]
−
B

3
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−
BR

3

[
δhdLξ(gbc) − δ

h
cLξ(gbd)

]
,

which on using the definition of Lie derivative of tensors leads to

LξP
h
bcd = ALξW

h
bcd +

kA

6

[
δhc (Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
d + δhc Fbn(F

n
d;µξ

µ

+ Fnµξ
µ
;d − F

µ
dξ
n
;µ) − δ

h
d(Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
c − δhdFan(F

n
c;µξ

µ

+ Fnµξ
µ
;c − F

µ
cξ
n
;µ)

]
+
kA

2

[
(ξb;d + ξd;b)F

h
nF
n
c + gbd(F

h
n;µξ

µ + Fhµξ
µ
;n

− Fµnξ
h
;µ)F

n
c + gbdF

h
n(F

n
c;µ + Fnµξ

µ
;c − F

µ
cξ
n
;µ) − (ξb;c + ξc;b)F

h
nF
n
d

− gbc(F
h
n;µξ

µ + Fhµξ
µ
;n − Fµnξ

h
;µ)F

n
d − gbcF

h
n(F

n
d;µξ

µ + Fnµξ
µ
;d − F

µ
dξ
n
;µ)

]
−
B

3
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−
BR

3

[
δhd(ξb;c + ξc;b) − δ

h
c (ξb;d + ξd;b)

]
.

(5.13)
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Further using equations (5.2) and (5.11) in equation (3.14), we get

Phbcd = AMh
bcd +

1
2
(δhc FbnF

n
d − δhdFbnF

n
c ) +

1
2
(gbdF

h
nF
n
c − gbcF

h
nF
n
d) +

(
AR− 4BR

12

)
(δhdgbc − δ

h
cgbd).

Operating Lie derivative on this equation, we have

LξP
h
bcd = ALξM

h
bcd +

1
2

[
δhcLξ(Fbn)F

n
d + δhc FbnLξ(F

n
d) − δ

h
dLξ(Fbn)F

n
c

− δhdFbnLξ(F
n
c )

]
+

1
2

[
Lξ(gbd)F

h
nF
n
c + gbdLξ(F

h
n)F

n
c + gbdF

h
nLξ(F

n
c )

−Lξ(gbc)F
h
nF
n
d − gbcLξ(F

h
n)F

n
d − gbcF

h
nLξ(F

n
d)

]
−

(
A− 4B

12

)
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−

(
AR− 4BR

12

)[
δhdLξ(gbc) − δ

h
cLξ(gbd)

]
,

now, using the expressions of Lξgab and LξFab above equation can be expressed as

LξP
h
bcd = ALξM

h
bcd +

1
2

[
δhc (Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
d + δhc Fbn(F

n
d;µξ

µ + Fnµξ
µ
;d

− Fµdξ
n
;µ) − δ

h
d(Fbn;µξ

µ + Fbµξ
µ
;n + Fnµξ

µ
;b)F

n
c − δhdFbn(F

n
c;µξ

µ + Fnµξ
µ
;c − F

µ
cξ
n
;µ)

]
+

1
2

[
(ξb;d + ξd;b)F

h
nF
n
c + gbd(F

h
n;µξ

µ + Fhµξ
µ
;n − Fµnξ

h
;µ)F

n
c + gbdF

h
n(F

n
c;µ + Fnµξ

µ
;c (5.14)

− Fµcξ
n
;µ) − (ξb;c + ξc;b)F

h
nF
n
d − gbc(F

h
n;µξ

µ + Fhµξ
µ
;n − Fµnξ

h
;µ)F

n
d − gbcF

h
n(F

n
d;µξ

µ

+ Fnµξ
µ
;d − F

µ
dξ
n
;µ)

]
−

(
A− 4B

12

)
Lξ(R)

[
δhdgbc − δ

h
cgbd

]
−

(
AR− 4BR

12

)[
δhd(ξb;cξc;b) − δ

h
c (ξb;d + ξd;b)

]
.

Remark 5.8. From the definitions of motion, Maxwell collineation, semiconformal collineation, Lemma 5.6
and equations (5.13) and (5.14), we may get the similar results as in Theorem 5.7.
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