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Abstract

Fractional calculus is allowing integrals and derivatives of any positive order (the term ‘fractional” kept only for historical
reasons), which can be considered a branch of mathematical physics which mainly deals with integro-differential equations,
where integrals are of convolution form with weakly singular kernels of power-law type. In recent decades fractional calculus
has won more and more interest in applications in several fields of applied sciences. In this line, our main object to investigate
image formulas of generalized fractional hypergeometric operators involving the product of Mathieu-type series and generalized
Mittag-Leffler function. We also consider some interesting special cases of derived results by specializing suitable value of the
parameters.
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1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary non-
integer order. The subject is as old as the differential calculus, and goes back to the time when Leibnitz
and Newton invented differential calculus. The idea of fractional calculus has been a subject of interest
not only among mathematicians, but also among physicists and engineers. During the past few years,
a super deal of interest in existence of solution to several classes of fractional differential equations has
been shown. In particular, various researchers investigated the existences of mild solution of fractional
differential equations with nonlocal conditions. For instance, fractional differential equations with non-
local conditions are often used for modeling various phenomena arising in control, electrochemistry,
viscoelastic, and electromagnetic. We refer the reader to the papers [11, 27, 42] and cited therein. Since
last few decades, many authors like Saigo [30], Saigo and Maeda [31], Srivastava and Saxena [37], Kilbas
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and Saigo, etc., have extensively studied the properties, applications, and extensions of various fractional
integral and differential operators of FC. It is notable that Gurmeet et al. [34] established the images
of Mathieu type series of thereby providing an extension of several earlier results due to Kilbas and
Sebastian [18]. Thus, many authors have explored new approach of applications by making use of FC
operators to investigate image formula involving special functions of one and more variables, which are
useful in the problem of applied science in recent years, such as fractional diffusion, fractional reaction,
fractional stochastic theory, dynamical systems theory and anomalous diffusion in complex systems, etc.,
for example, see, [1, 2, 4, 5, 12-16, 19, 23-25, 28, 29, 37].

Throughout this paper we have used C, R, R", Z; and N to be the set of complex number, real and
positive real numbers, positive set of integers and set of natural numbers, respectively.

We recall the generalized hypergeometric fractional integrals and derivatives, introduced by Marichev
[19] and later extended by Saigo and Maeda [31]. These operators are known as the Marichev-Saigo-
Maeda operators. The generalized FC operators involving the Appell function or the Horn F3(-) function
in the kernel are defined as follows: ) o

Let u, [i, ¢, €,y € C. Then left and right fractional integral operators If’ J’f’a’e’y and I§""“*Y for R(y) > 0
are respectively defined by (see [31]):

o —n (u )
(134”’5’8”1‘) (u) = % JO (W—t)Y """ F (e, &1 — t/u, 1 —u/t) f(t)dt

and

o — (oo
(15'“'5'”1‘) (1) = FL(—y) J (w—t)Y M (1, e, v 1 —u/t, 1 —t/u) F(H)dt,
uw

where F3 is one of the Appell series defined by (see [36])

Falhfe, i) = 3 (melImlEn B g, v < 1)

m,n=0

These operators reduce to the following Saigo fractional integral operators (see [30]):

(12708 ) (W = (1) (W), (v eQ), (1.1)

and
(e 07 ORE) () = (I%7) (w), (v € C). (12)

Let u, i, ¢, ¢,y € C with R(y) > 0 and u € R*. Then left and right generalized fractional differential
operators D{H"““Y and D{""“*Y, respectively, for R(y) > 0 involving the Appell function F3 in the
kernel are defined as follows (see [31]):

(DR 1) (w) = (1 fm ) ()

_ (i) (Igfr—“'—”“'—&”*“f) (u)  (Ry) >0n =Ryl +1)

(13)
xF3 (=, —mn—¢—en—y;1-t/ul—u/t)f(t)dt
and
(DrAeeve) () = (IR oe) () (1.4)

(_;L) (I:p,—u,—é,—e+nn/+nf> (u) (Rly)>0n=[MR>Al+1)
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1 d\", 5. (® I
=y () W o

xF3(—f,—u,n—e¢,—e,n—vy;1—u/t,1—t/u) f(t)dt. (1.5)

These operators reduce to the following Saigo fractional differential operators (see [30]):
<D5‘j£'°'—T'°'“f) (u) = (D7) (u), (y€C) (1.6)

and
(Dﬁ“’o’”’o’”ﬂ (W) = (D**7f) (W), (v Q). (1.7)

Furthermore, we also have the following useful relation to prove our main results (see [31, p.394]):

7

ey o FE)M(p+y—pn—f—el(p+£é—{ iy
(Igf,s,s,ytp 1> (W) = (PMp+y—n—f—el(p W) e—u—pty—1

Me+y—pn—mlNp+y—p—el(p+¢€) (1.8)
(}’L/ lil &, é/Y € C with m(Y) >0 and m(p) > max{O, m(u—i_ }1_"/)/ %(ﬂ_ é)})
and ) ”
(Ip,ﬁ,s,é,ytp71> (W) = M+p+p—vy—pMl+p+é—y—pfl—ec— p)up,u,wy,l,
0~ Fl—p)F(A+p+a+é—y—p)F(1+un—e—p) (1.9)

(e v e CGR(Y) >0and R(p) < 1+min{R(—¢), R(u+a—7v), Rlu+E—v)}).

The generalized Wright hypergeometric function W[x] also called Fox-Wright function ([8, 44]) is
defined as:

Vi), ... Vs); =T vik), ..., T(ye +7sk) Xk
W] = W |: Y1, Y1), -+, (e, Vs); ]_Z (Y1+Y1 ) (y + Vs )L

(W, 4, (U L) = T+ GK), e T+ k) K
= (1.10)

-

(1 _Y1/Y1)l~~~-/ (1 _YT/YT)(Orl)/ (1_1111,1)1/(1 _I'S/ls) s

1,
= Hr,erl [_X
where Hig 41[x] denotes the Fox-H function [8], coefficients vy,..., vy, l,..., 1l € R™", and the series
absolutely converges for all x € C when 1+ 37 ;U —3 | vy, >0.

The Mathieu series appeared in the study of elasticity of solid bodies in the work of Emile Leonard
Mathieu. Since then numerous authors have studied various type of problems arising from the Mathieu
series in several diverse ways.

The following familiar infinite series was introduced by Mathieu [20] as

s=)_ (kf}:lz) (le R™). (1.11)
k=1

Integral representation of (1.11) is given by (see [7])

dt.

1 J"O tsin(lt)

S() =~
() 10 et —1

Numerous interesting problems and solutions handling with integral representations and bound for
the following generalization of the Mathieu series with fractional power

— 2k
Se(l) = Z 02ty leR*Y0<1)
k=1

can be found in the works by Cerone and Lenard [6] and Tomovski and Trencevski [41]. Succeeding the
work of Cerone and Lenard [6], Srivastava and Tomovski in [38] defined a family of generalized Mathieu



O. Khan, S. Araci, M.Saif, ]. Math. Computer Sci., 20 (2020), 122-130 125

series

o B
(o,B) _ 5loB) -y 2dy
S0’ (l/ d) - SO‘ {dk}k 1 — do‘+l2 1 d/ X, B/O- € RJr)r (112)
where the positive sequence d={dy}y._;={d1,d2,...} (hm dx = o0) is to prefer the infinite series

1
Y ey Fre= is convergent.

In the sequel Tomovski and Mehrez [39] proposed a generalization of definition (1.12) in the following
power series

0 k
S (L ) = S (L [ s w) Z d“ +12 s (LdoBocR <) (1.13)

Evidently, the case dx =k, « =2, 3,7 =1 and o with o + 1 corresponds to the Mathieu series defined
by Tomovski and Pogany [40] of the form

2kuk

Serta(Llw) =So 211yt

(Lo e R;[ul <1).

I
TMs

In recent decades, the Mittag-Leffler function plays an important role in several branches of mathemat-
ics and engineering sciences, such as statistics, chemistry, mechanics, quantum physics, informatics and
others. In particular, it is an explicit formula for the resolvent of Riemann-Liouville fractional integrals
by Hille and Tamarkin. On this and similar formulas many results are based still for solving fractional
integral and differential equations. For numerous applications of the Mittag-Leffler function to fractional
calculus see [1-4, 13-16, 24, 26, 29]. Due to many useful applications it was crowned by Goreno and
Mainardi in [9] as a Queen function of Fractional Calculus. Besides fractional calculus the Mittag-Leffler
function also plays an important role in various branches of applied mathematics and engineering sci-
ences, such as chemistry, biology, statistics, thermodynamics, mechanics, quantum physics, informatics,
signal processing and others.

For our present investigation, we also need to recall the following definitions: Gosta Mittag-Leffler in

1903 introduced the so-called Mittag-Leffler function (see [22])

o0 ZT

We choose to recall some of extensions of the Mittag-Leffler function. Wiman [43] introduced

Esq ZO oy (min{R(5), R(v)} > 0; z € C).

Prabhakar [26] presented

T

E7,(2) ZW%, (min{91(8), R(v)} > 0,m; z € C),

where (A), denotes the Pochhammer symbol which is defined (for A, v € C), in terms of Gamma function
as:

(A ;:W:{ 1, (v=0; A e C\{0}),

r'(A) AA+1)---(A+n—1), (v=neN; AeQC),

it is understood conventionally that (0)o := 1.
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Shukla and Prajapati [33] gave further extension of Mittag-Laffler function as:

By T(or 1’”5 (min{R(n), R(8), R(v)} >0, q€ (0,1)UN; z € C). (1.14)

Due to the great importance of fractional calculus operators involving various types of special func-
tions, in this paper, we establish certain integral and derivation formulas of the product of Mathieu-type
series and generalized Mittag-Leffler function by using generalized fractional hypergeomrtric operators.
Moreover, we also find out some special cases of our main results.

2. Fractional integral formulas

In this section, we establish fractional integral formulas involving the product of generalized Mittag-
Leffler function and Mathieu-type series using left and right Marichecv-Saigo-Maeda operators, which
are expressed in terms of Fox-Wright function under the given conditions of (1.10).

Theorem 2.1. Let u, [i,¢,€,v,p € C be such that R(o+Ak+ (r) > max{0; R(pn+ ft+ e —Aky)} R(p— Ak —
(r—e¢) >0 R(p) >0,R(0) >0and «,,0,1 € RT,q € (0,1) UIN. Then left fractional integral formula holds
true:

{agfee ey (s8R, G ER () ) (w
uPty—p—pn-1
I'm)

4 (p+y—u—f—e+Ak 0, (p+Eé—n+Ak, ¢), (p+Ak,C), (n,q)
(p+v—un—n+Ak, Q), (p+E+AKk, 0), (p+v+e—n+Ak, 0),(v,d)

stPI, a;ut) @.1)

zuc} .

Proof. To prove the above result, using (1.13) and (1.14) as series form, and then arranging the order of
integration and summation (which is valid under the given condition of Theorem 2.1), left hand side of
(2.1) becomes

o B = 24P (1), 1
{2 (s L e ) ) = 3 e

Wwi,e +AK+Cr—1
XZonSrJrv r'{10+ (e ' )}(u)'
‘

Applying (1.8), we have

Z P () 1Z (M)qr 2" xF(P+7\k+CT)r(p+7\k+Cr+Y—u—l’l—s)

— d“+12 Skl =Tr+v)r! T(p+Ak+lr+ 6 (p+vy—p— i+ Ak+ Cr)

1 F(P+€—H+7\T<+CT) z" P HY B AR L1
MO Tt Akt by i/ —e)rl

Finally, solving the above expression, in view of using definition (1.10), we achieve the required result
(2.1). O
In view of the relation (1.1), we construct the consequence of Theorem 2.1.
Corollary 2.2. Let u,¢,v,p € C be such that R(oc+Ak+ Cr) > max{0;R(e —v)} R(p) > 0,%R(8) > 0 and
o, B,0,1€RT,q € (0,1) UN. Then following holds true:
e (01860 0, G MERI () b ()

_upe! (p+v—e+Ak ), (p+Ak, &), (n,q)

(e,3) A
: ‘%
Fy oo (hdw)xa 3[(p+xks, O, (p+AK+v 41, Oy (v,8)

zuc} .
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Theorem 2.3. Let w, (1, ¢,¢,v,p € C be such that R(c+Ak—(r) < 14+ min{0; R+ 1 —n), R+ € —mn),
R(—¢)}, Rp) > 0,R%(8) > 0and o, B,0,1 € RY,q € (0,1) UN. Then the following right fractional integral
formula holds true:

{apeer (0786 1, G ERS () )

uPty—u—pn-1
=T stBI, a;ut) 22
.y I+p+ia—y—p—AkQ),(1+u+é—vy—p—2Ak, (), (1—e—p—2Ak,(),(n,q) 0l

4 (I+p+pa+é—y—2Ak Q) (1+p—e—p—2Ak (), (1—p—2Ak, &), (v,) '

Proof. To prove that above result, using (1.13) and (1.14) as series form, and than arranging the order of
integration and summation (which is valid under the given condition of Theorem 2.3), left hand side of
(2.2) becomes

a z _ - S ZdB 1
{Igt;u,e,s,v (tp 15&?‘45)(1, d; t)‘)EQ:ﬂ(zt C)} Z (dx +12k0 k!
el

uussv p+Ak+Cr—1
X;}l“ér—{—v r'{o_ (t )}(u).

Now, applying the relation (1.2), we have
_ i 2df (D 1 o (M)qr 2"
- (d¥ +12)0 k! = T(or+v)r!
FM+p+p —y—p—Ak+q) Tl+p+p+é—y—p—Ak+(1)
Ml+p+a+é—y—Ak+ ) T1+p—E—-Ak+(r)
" 1 NMl—e—p—Ak+ar) Zup+y+“ A k—r1
NoTr(l+p—e¢/—p—Ak+r) 1!
Finally, solving the above expression with the help of (1.10), we achieve the required result (2.2). [

In view of the relation (1.2), we get the following consequence of Theorem 2.3.
Corollary 2.4. Let y,¢,y,p € C be such that R(oc+Ak+ Cr) < 14+ min{0; R(e), R(y)}, R(p) > 0,R(8) >0
and «, B,0,1 € RY,q € (0,1) UN. Then following formula holds true:

{17 (186580, BT (2t ) (W
up—e! (1—p—=Ak+e0),(1—p—Ak+y, C), (0,q)

_ (o,B) A
= ) Sor “'d'“)“%[(l—p—?\k, O (1—p—Ak+v+u+te Q)5

.

3. Fractional derivative formulas

Here, we compute fractional derivative formulas involving product of generalized Mittag-Leffler func-
tion and Mathieu-type series using left and right Marichecv-Saigo-Maeda operators, which are expressed
in terms of Fox-Wright function under the given conditions of (1.10).

Theorem 3.1. Let y, [1,¢,€,v,p € C be such that R(o+Ak+{r) > max{0;R(y—pn+i+e), Rle—u)},
R(p), R(8) > 0and o, B,0,1 € RT,q € (0,1) UIN. Then following formula holds true:

{Dg'j"g'é” (tpflsfy‘f‘{m (1, d; tMEQY (ztc) } (w)
uPty—p—pn-1

_ (e, 3) A
— e SeP) (1, d; uM) 3.1

S [ (p—v+u+a+e+Ak ), (p—Eé+pn+Ak, 0), (p+Ak,C),(1,q)

(p—v+u—p+Ak Q) (p—E+AK, 0), (p—yv+un—pn+Ak Q),(v,d)

zuc] .
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Proof. In order to prove that above result, using (1.3) and (1.14) as series form, and then arranging the
order of integration and summation (which is valid under the given condition of Theorem 3.1), left hand
side of (3.1) becomes

{D”””V(tp 1S“ﬁ(ldt7‘)E“qth)} - 2di (D 1
e d“+12 okt
XZ e (tp+?\k+CT—1) ()
r:OFSr—f—v ) ! o+ '
Applying the result (1.6), we get
:i 24P (1) li M) qr 2" 1L Tlp—etptAk+a) 2 o iiwikier 1
— (d¥ +12)9 k! — Frer+v)rt (O T(p+Ak+r—y+pn —¢’) r!

Tl H+AK+ NP+ Ak Cr—y 4+ fi—¢)
FMp+Ak+lr—e)lMp—y+pu+pn+Ak+ar)

Finally, using Definition (1.10), we achieve the desired result (3.1). O]

According to the relation (1.6), we get the following consequence of Theorem 3.1.

Corollary 3.2. Let w,¢,v,p € C be such that R(o +Ak+ (1) > min{0; R(n+ e +v)}, R(p) > 0,R(8) > 0and
o, B,0,1€RT,q € (0,1) UN. Then following relation holds true:
{Die (0185 1, 4 ERE () b (w)

p+e—1
=B sleB)(, diut) x sWs [ (P+AK+Y+pte ), (p+Ak+Y,0),

(
I'm) (p+Ak+y, O (p+Ak+e 0Q), (v,

Theorem 3.3. Let w, (i, ¢,€,v,p € C be such that R(o+Ak+ (1) < 1+ min{0;R(y—pn+a), Rly—p—e),
R(€)} R(p) > 0and R(d) >0, p,0,l€RT,q € (0,1) UN. Then following holds true:

{Dtee (1P (L, 4 EY (e ¢) | (W

n,4q)
)

yPHutri—y-1
T T S (1, ) (3.2)
(I—p+y—pn—f—e—=Ak 0 (I1-p—=2Ak, Q), (1—p—p+Eé—Ak, Q),(v,d) '

Proof. Applying (1.14) and (1.5), and then arranging the order of integration and summation (which is
valid under the condition of Theorem 3.3), left hand side of (3.2) can be writen as

o - - > 24P (1) 1
(o (s et ) - 5 G

X Z r(or 122 eR L i Cat) I

Now in view of (1.4) and (1.9), we obtain the following expression

Z i (M)qr 2" ><F(l—p p—A—Ak+Cr)T(1—p—fi—e—Ak+vy+(r)
d"‘—i—lz‘fk' F(ér—i—v)r! M—-p—p—p—e—Ak+)Ml1—p—pn+£é—Ak+(r)

" 1 F(l—p—i—e—?\k—i—Cr)
Nt T(l—p—Ak—2(r) 7!

Solving the above expression with the help of (1.10), we achieve the desired result (3.2). O]

Z yPrutri—y—1
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In view of the relation (1.7), we get the following consequence of Theorem 3.3.
Corollary 3.4. Let p,e,v,p € C be such that R(oc+Ak+(r) < 1+ min{0; R(—e —R(1) —1, R(y+uw)},
R(p) >0,R(8) >0and «,B,0,1 € RT,q € (0,1) UN. Then following relation holds:
{Df (07188, R (2t ¢) b ()

upben (1—p—Ak+y+m12),(1—p—Ak—e ), (,q)

(e,3) A
— 730‘1 1«, d; \y
G u)x33[ﬂ—p—Ak+v—u—aCH1—p—M@Q,Wﬁ)

zul} .

4. Conclusion

In this research, we investigate four image formulas of generalized fractional hypergeometric (of
Marichev-Saigo-Maeda) operators involving the product of Mathieu-type series and generalized Mittag-
Leffler function in the kernel, which are expressed in terms of Fox-Wright function. The results presented
in this paper are extensions of the known results given by various authors (see, e.g., [2, 21, 32, 34]).
Moreover, the results derived in this paper correspond to Saigo hypergeometric fractional calculus oper-
ators as special cases and it can be easily seen that, if we set ¢ = —p and ¢ = 0 in (1.1) and (1.2), they
yield the Erdelyi-Kober, the Riemann-Liouville, and the Weyl fractional integral and derivative operators.
Thereby, the results presented here can also be obtained corresponding to the above well known frac-
tional operators. Therefore, the results derived in this article would at once give way a large number of
results involving a many diversity of special functions occurring in the problems of mathematical physics,
science, and engineering, etc..
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