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Abstract

In this paper, we provide a mathematical model with a fractional-order to investigate the dynamics of oncolytic virotherapy.
We focus on how the dynamics of oncolytic virotherapy models can rely on the burst size of the virus. The burst size of a virus is
the number of new viruses released from the lysis of an infected cell. Different viruses have different burst sizes. The numerical
simulations confirm that the fractional-order differential models have the ability can provide accurate descriptions of oncolytic
virotherapy models and capture the memory of the dynamics.
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1. Introduction

Oncolytic viruses are viruses that can selectively replicate in cancer cells but leave healthy normal
cells unharmed. In oncolytic viral therapy, oncolytic viruses infect tumor cells and replicate themselves
in tumor cells; upon analysis of infected tumor cells, new virion particles burst out and proceed to infect
additional tumor cells. This idea was initially tested in the middle of the last century and merged with
renewed ones over the last 30 years due to the technological advances in virology and in the use of
viruses as vectors for gene transfer. Over the last decade, great efforts have been made for understanding
dynamics and molecular mechanics of viral cytotoxicity of oncolytic viruses. Those efforts provided an
interesting possible alternative therapeutic approach to help cure cancer patients. However, the outcomes
of virotherapy depends in a complex way on interactions between viruses and tumor cells [4].

During the last two decades, several mathematical models have been applied to understanding on-
colytic virotherapy. For example, Wu et al. [18] and Wein et al. [15] proposed and analyzed some partial
differential equations models to study some aspects of cancer virotherapy. For ordinary differential equa-
tions models, Wodarz in [17] and [16], Komarova and Wodarz [9], Novozhilov et al. [11], Bajzer et al.
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[2], and Tian [14] studied ODE models. Tian [14] analyzed a mathematical model for oncolytic virother-
apy that includes burst size. Most of biological systems have long-range temporal memory. Modeling
such systems by fractional models provides the systems with a long-time memory and extra degrees of
freedom. Despite of the fact that differential equations with integer-orders have long been used in mod-
eling cancer [3, 8], the fractional-order differential equations (FODEs) have been recently used to model
many biological phenomena. One of the advantages of using FODEs to model such phenomena is that
models become more consistent with the biological model. This is due to the fact that fractional order
derivatives can capture the memory and hereditary properties of those models [13]. Also, it is worth
mentioning that classical mathematical models with integer-orders ignore the intermediate cellular in-
teractions and memory effects. For example, the kinetic of the viral decline in patients responding to
interferon-is characterized by bi-phase shape following a delay about 8-9 hours, likely to be the sum of
interferon α-pharmacokinetics and pharmacodynamics as well as the intracellular delay of the ciral life
cycle [11]. Therefore, modeling of the biological systems by fractional order differential equations has
more advantages than classical integer-order mathematical modeling, in which such effects are neglected.

In this paper, we study dynamics of a fractional-order oncolytic virotherapy model discussed in [14].
The focus here is on describing dynamics of oncolytic models when fraction-order derivatives are imple-
mented. We also aim to show how can fractional-order models give more insight into the memory of
the derivative and hence to the memory of the dynamics incoded. The organization of the paper is as
follows. In Section 2, we provide a very brief preliminary to fractional calculus. In Section 3, we study the
fractional-order oncolytic virotherapy model by focusing on the formulation of the fractional-order model,
parameters, and the invariant. In section Section 4 we summarized the main stability results for model
(3.2). In Section 5 we provide numerical simulations to the solutions using Matlab and we compare solu-
tions obtained from applying fractional derivatives to the results obtained from the integer derivative. We
discuss parameter values and provide numerical simulations with biological interpretations. Conclusions
are given in Section Section 6.

2. Preliminaries

This section contains some preliminary definitions from fractional calculus and the associated nota-
tion. We first give the definition of fractional-order integration and fractional order. Let L1 = L1[a,b] be
the class of Lebesgue integrable functions on [a,b], a < b <∞. The fractional integral of order ν ∈ R+ of
the function f(t), t > 0 (f : R→ R) is defined by

Iva =
1
Γ(v)

∫t
q

(t− s)v−1f(s)ds, t > 0, (2.1)

where Γ(.) is the Gamma function.
The fractional derivative of order α ∈ (n− 1,n) of the function f(t) is defined by several ways, the

most common ones are:
(i) Riemann-Liouville fractional derivative: Take the fractional integral of order (n−α) and then apply

the nth derivative
Daαf(t) = D

a
αI
a
n−α,

where D∗n = dn

dtn ,n = 1, 2, . . .;
(ii) Caputo’s fractional derivative: Start with a nth derivative of the function, then take a fractional

integral of order (n−α)
Daαf(t) = I

a
n−αD

a
nf(t),n = 1, 2, . . . .

We notice that the definition of time-fractional derivative of a function f(t) at t = tn involves an integra-
tion and calculating time-fractional derivative that requires all the past history, that is, all the values of f(t)
from t = 0 to t = tn. Caputo’s definition, which is a modification of the Riemann-Liouville definition, has
the advantage of dealing properly with initial value problems and it solves the problem of the derivative
of constants. For more properties of the fractional derivatives and integrals we refer to [12].
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3. A model of oncolytic virotherapy

The basic model under study was proposed and studied by Tian [14], the integer-order model is given
by

dx

dt
= λx(1 −

x+ y

K
) −βxν,

dy

dt
= βxν− δy,

dν

dt
= bδy−βxν− γν,

(3.1)

where x stands for uninfected tumor cells, y for infected tumor cells, and ν for free viruses. The parameter
λ is the tumor growth rate, K is the carrying capacity of tumor cell population, β is the infected rate of
the virus, δ is the death rate of infected tumor cells, b is the burst size, αy models the release of virions by
infected tumor cells, and γν is the clearance rate of free virus particles. This model emphasizes the rule
of burst size of viruses in virus replication ability. The burst size of a virus is the number of new viruses
released from a lysis of an infected cell. Viruses of same type have almost the same burst size.

After non-dimensionalizing the system by setting τ = δt, x = Kx∗, y = Ky∗,ν = Kν∗, r = λ
δ , a = βK

δ ,
and c = γ

δ and dropping the stars over variables,and replacing the ordinary derivative by the Caputo
fractional derivative, the fractional-order version of the model is given by

Dαt x = r
αx(1 − x− y) − aαxν,

Dαt y = aαxν− y,
Dαt ν = bαy− aαxν− cαν,

(3.2)

where Dαt is the Caputo fractional derivative and 0 < α 6 1. We assume that all parameters are nonneg-
ative. Next, we prove that the positive invariant domain of system (3.2) is

D = {(x,y,ν) : x > 0,y > 0,ν > 0, 0 6 x+ y 6 1}.

This is a biological meaningful range of variables.

Theorem 3.1. Assume that the parameters r, s, b, and c are all positive and real and denote R3
+ = {X ∈ R3 : X > 0}

and let X(t) = (x(t),y(t),ν(t))t. Then for any X(0) > 0, the solution X(t) of (3.2) on t > 0 will remain in R3
+.

Moreover, if 0 < x(0) + y(0) < 1, then lim sup t −→ +∞ν(t) 6 (bc )
α.

Proof. We will prove this result by contradiction. Assume that the there exists t∗ at which of the compo-
nents of the solution will be zero and all other components are positive.

If x(t∗) = 0 holds, then y(t) > 0, ν(t) > 0 when t ∈ [0, t∗] and x(t) > 0 when t ∈ [0, t∗). Now
Dαt x(t) > −aαm1x, where m1 = mint∈[0,t∗] ν(t), t ∈ [0, t∗]. Hence,

x(t) > x(0)Eα(−am1t
α), t ∈ [0, t∗],

where Eα(t) =
∑∞
k=0

tk

Γ(kα+1) is the Mittag Leffler function. Since x(0) > 0, then x(t∗) > 0 which is a
contradiction.

If y(t∗) = 0 holds, then x(t) > 0, ν(t) > 0 when t ∈ [0, t∗] and y(t) > 0 when t ∈ [0, t∗). From the
second equation of the system (3.2) we have Dαt y(t) > −y(t), t ∈ [0, t∗] which implies

y(t) > y(0)Eα(−tα), t ∈ [0, t∗].

Since y(0) > 0, we get y(t∗) > 0 which is a contradiction.
If ν(t∗) = 0 holds, then x(t) > 0, y(t) > 0 when t ∈ [0, t∗] and ν(t) > 0 when t ∈ [0, t∗). Letting
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m2 = mint∈[0,t∗] x(t), t ∈ [0, t∗] and k = aαm2 + c
α, we get Dαt ν(t) > −kν(t), t ∈ [0, t∗] which implies

ν(t) > ν(0)Eα(−ktα), t ∈ [0, t∗].

Since ν(0) > 0, we get ν(t∗) > 0 which is a contradiction.
Similar arguments can be used to check the other cases; if two components are zero simultaneously at

t∗ and if all of the components are zero simultaneously at t∗.
Now adding the first two equations in (3.2) we get

Dαt {x(t) + y(t)} = r
αx(1 − x− y) − y 6 rαx(1 − (x+ y)) 6 rα(1 − (x+ y)).

Since x(0) 6 1, by the comparison theorem, we have x(t) 6 1. Also, since 0 6 x(0) + y(0) 6 1, by
comparison theorem, we have 0 6 x(t) + y(t) 6 1 for t > 0. It also follows that 0 6 y(t) 6 1.

Under the assumptions of nonnegativity of the solution components x(t) and y(t) and being smaller
than 1, we have

x(t) + y(t) 6 (x(0) + y(0))Eα(−rαtα) + (1 − Eα(−r
αtα)),

and so lim supt−→∞ (x(t) + y(t)) 6 1. The last equation of (3.2) then leads to

Dαt = bαy− aαxν− cαν 6 bα − cαν,

so

ν(t) 6 ν(0)Eα(−cαtα) +
bα

cα
(1 − Eα(−c

αtα)).

Hence
lim sup
t−→∞ ν(t) 6 (

b

c
)α.

4. Equilibria and stability

To evaluate the equilibrium points we set

Dαt x = 0, Dαt y = 0, Dαt ν = 0.

The system (3.2) has always two equilibrium points in the positive invariant domain D, namely, E0 =
(0, 0, 0) and E1(1, 0, 0). When b > 1 + ( ca)

α it has a new equilibrium point in addition to E0 and E1. The
third equilibrium point is given by

E2 = (
cα

aα(bα − 1)
,

rαcα(aαbα − aα − cα)

aα(bα − 1)(aαbα − aα + rαcα)
,
rα(aαbα − aα − cα)

aα(aαbα − aα + rαcα)
).

The Jacobian matrix of system (3.2) is as followsrα − 2rαx− rαy− aαν −rαx −aαx
aαν −1 aαx

−aαν bα −aαx− cα

 .

The Jacobian matrices at E0, E1, and E2 are given as

rα 0 0
0 −1 0
0 bα −cα

 ,

−rα −rα aα

0 −1 aα

0 bα −(aα + cα)

 , and


−

(rc)α

aα(b−1)α −
(rc)α

aalpha(b−1)α − cα

(b−1)α
rα(aαbα−aα−cα)
(ab)α−aα+(rc)α −1 cα

bα−1

−
rα(aαbα−aα−cα)
(ab)α−aα+(rc)α bα −

(bc)α

bα−1

 ,
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respectively. Stability analysis shows that the nave equilibrium E0 is unstable (because of the positivity of
r). However, the memory state E1 is (globally) asymptotically stable if bα < 1 + ( ca)

α and in this case the
virotherapy always fails, and unstable if bα > 1 + ( ca)

α. Here, B1 = 1 + ( ca)
α is the first threshold value

for the burst size. The memory E1 is also unstable at B1. The proof is analogous to the integer-order
derivative case in [14] .

To state the result about stability of E2 we need to know the second threshold value. Let us first define
a function Φ(x),

Φ(x) = −a3αx4 + a2α(3cα + c2α + rα − aα − (ac)α + 1)x3 + (ac)α(3(rc)α + 3aα + rc2α

+ 3(ac)α + rα + r2α − a2α)x2 + c2α(3(ar)α + 2(acr)α + r2αcα + 2a2α)x+ rαc3α(rα + aα).

So we can see that

H(b) =
(rc)αΦ(bα − 1)

a2α(bα − 1)3((ab)α − aα + (rc)α)
.

This function can be derived from one of the Routh-Hurwitz stability conditions (H2 > 0) [1]. The second
threshold B2 is given by

B2 = min{b > B1 : H(b) = 0}. (4.1)

The equilibrium E2 is locally asymptotically stable when B1 < b < B2, [14]. The characteristic equation of
the linearized system of (3.2) at E2 is

P(λ) = λ3 + a1λ
2 + a2λ+ a3,

where

a1 =
(rc)α + (ab)α − aα + (abc)α

aα(bα − 1)
, a2 =

(rc)α((bc)α + bα − 1)
aα(bα − 1)2 +

(rc)α((ab)α − aα − cα)(rα − aα)

aα(bα − 1)((ab)α − aα + (rc)α)
,

and

a3 =
(rc)α((ab)α − aα − cα)

aα(b− 1)α
.

The discriminant of P(λ) is given by

D(P) =

∣∣∣∣∣∣∣∣∣∣
1 a1 a2 a3 0
0 1 a1 a2 a3
3 2a1 a2 0 0
0 3 2a1 a2 0
0 0 3 2a1 a2

∣∣∣∣∣∣∣∣∣∣
.

That is, D(P) = 18a1a2a3 + (a1a2)
2 − 4a3a

3
1 − 4a3

2 − 27b2
3.

According to the stability conditions in [12, 14] we have the following proposition.

Proposition 4.1. E2 is locally asymptotically stable if all eigenvalues of the Jacobian matrix at E2 satisfy

|arg(λi)| >
απ

2
, i = 1, 2, 3.

Considering the stability conditions in [1], the following proposition can be stated.

Proposition 4.2.

1. If B1 < b < B2, then E2 is asymptotically stable.
2. If D(P) > 0 and the conditions of the Routh-Hurwitz are satisfied, i.e., a1 > 0, a3 > 0, and a1a2 > a3, then
E2 is locally asymptotically stable.

3. If D(P) < 0, a1 > 0,a2 > 0, a1a2 > a3, α ∈ (0, 1), then E2 is locally asymptotically stable.
4. If D(P) < 0, a1 > 0,a2 > 0, a3 > 0, α ∈ (0.5, 2

3), then E2 is locally asymptotically stable.
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5. If D(P) < 0, a1 < 0,a2 < 0, α > 2
3 , then E2 is unstable.

Given a biological FODEs system
DαY = F(t, Y,P), (4.2)

where t ∈ [0, T ], 0 < α 6 1, Y(0) = Y0, and Y(t) = [x(t),y(t),ν(t)]T . Also P is the set of parameters appear
in model (3.2). If F(t, Y) satisfies Lipschitz condition

‖F(t, Y1(t),P) − (t, Y2(t),P)‖ 6 k‖Y1(t) − Y2(t)‖, (4.3)

where Y is the solution for the perturbed system, then system (3.2) has a unique solution provided that
the Lipschitz condition (4.2) is satisfied and

KTα

Γ(α+ 1)
< 1.

5. Simulation and discussion

We use Matlab to demonstrate our results about fractional-order of the oncolytic virothrapy. The
code used here implements predictor-corrector method proposed by Diethelm and Freed in [7]. Stability
properties of this method is discussed in [5]. To demonstrate the dynamical behavior of model (3.2) we
use data of parameter values from [14] to perform numerical simulations of the dynamics of the system.
To illustrate the affect of the fractional-order derivative, we use different values of α as shown in the
figures. The parameter values are r = 0.36, a = 0.11, and c = 0.2. By considering b = 9, the following
equilibrium points can be obtained for model (3.2)

E0 = (0, 0, 0, 0),E1 = (1, 0, 0),E2 = (0.6, 0.0730, 2.5729).

It is known that the burst size is not affected by the choice of the initial conditions [14]. Stability
analysis shows that equilibrium point E0 is unstable. Figure 1 shows that E1 is locally asymptotically
stable equilibrium point of the system. This is consistent with the analytic results that is obtained from
studying the model analytically.

For our models, based on the above data, there are two threshold values for the burst size; B1 = 5
and B2 = 27.766. If the burst size is between the thresholds, then the virotherapy is partially successful
due to E1 being unstable and E2 being asymptotically stable. When the burst size b is smaller than B1
the virotherapy fails due to the fact that there will not be enough newly produced viruses to infect tumor
cells. The threshold B1 has a transcritical bifurcation with respect to the equilibrium E1 and the threshold
B2 has a Hopf bifurcation. If the burst size is greater than B2 there is a family periodic solutions to the
system for α = 1. For α close to 1, the amplitude of the oscillation decays as time increases. However, as
the fractional-order α gets closer and closer to 1 the solution behavior looks much similar to the periodic
solution at α = 1.

When b = 25 and α = 1, periodic solutions around the equilibrium point E2 appear. For a fractional-
derivative close to 1, oscillations appear with an amplitude that decays as time increases. Note that in the
figures of this paper we use the word ’relative’ to label the horizontal axis. The reason is that for the sake
of simplicity and demonstration we conduct numerical simulations based on the nondimensionalized
model rather than the original one. Therefore, the units of the tumor cells, infected tumor cells, and
viruses are not absolute numbers. For instance, the quantity of tumor cells in all figures is the portion
of tumor cells over the tumor carrying capacity. Other quantities including ’relative time’ have similar
interpretation.

Figure 1 shows that E1 is locally asymptotically stable when b = 4. In fact, this is true for all values of
b < 5. It is unstable for b > 5.

Figure 2 shows E1 is locally unstable since b = 25 > B∞ = 5. The virotherapy treatment will eventually
reach the equilibrium E2 after a damped oscillation when b = 25. There will be a similar behavior for all
values of b between 5 and 27.766. Figure 3 shows periodic solutions rising from Hopf bifurcation. We
notice that the dynamical behavior of the system becomes very sensitive to small changes in the order of
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the fractional derivative (e.g. the damped oscillators can be observed). Also, one can notice the sensitivity
of the model to changes in the value of burst size (amplitude changes significantly due to this change).
For example, we need a fractional derivative that is as close to 1 as possible to get a similar behavior to
the integer-order case ( e.g. α = .999) in Figure 3. It is worth mentioning that the solution in Figure 3 is
Lyapunov stable. Figure 3 shows that E2 is locally unstable.

Figure 1: Dynamics of virotherapy when b = 4 and initial values x = 0.5, y = 0.5, and ν = 1.5, for α = 1, α = .8, and α = .9.

Figure 2 shows E1 is locally unstable since b = 9 > B1 = 2.82.

Figure 2: Damped oscillators when b = 27 and initial values x = 0.5, y = 0.5, and ν = 1.5, for α = .96, α = .98, and α = 1.

The equilibrium point E2 is asymptotically stable as long as b ∈ (2.82, 19.012). Figure 3 shows this fact
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for b = 9.

Figure 3: Dynamics of model when b = 28 and initial values x = 0.5, y = 0.5, and ν = 1.5, for α = .96, α = .98, and α = 1.

Figure 4 shows the dynamics for tumor cells vs the infected ones.

Figure 4: Dynamics of Tumor cells vs infected tumor cells of the model when α = .98.

6. Conclusion

A fractional-order Oncolytic Virotherapy model was studied in the work. The main goal was to
show that the fractional-order derivative can play an important rule in understanding the memory of the
derivatives and can be an efficient tool of studying dynamics of different oncolytic virotherapy models.
Since fractional-order models possess memory, FODE gives us a more realistic way to model oncolytic
virotherapy and study their dynamics. The presence of a fractional derivative in a differential equation
can lead to an increase in the complexity of the observed behavior. On the other hand, it can show how
the solution is continuously dependent on all the previous states.
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