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Abstract
In this paper, we investigate the invertibility of n× n skew circulant matrix involving the product of Fibonacci and Lucas

numbers, whose determinant and inverse can be expressed by the (n− 1)th, nth, (n+ 1)th, (n+ 2)th product of Fibonacci and
Lucas numbers. Some norms and bounds for the spread of these matrices are given, respectively. In addition, we generalize
these results to skew left circulant matrix involving the product of Fibonacci and Lucas numbers. Finally, several numerical
examples are illustrated to show the effectiveness of our theoretical results.
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1. Introduction

Circulant matrices play a vital role in nonlinear control systems, preconditioners, signal processing,
image processing, Toeplitz matrix problems and various differential equations [3, 7, 8, 19, 23, 26–28]. Jin
et al. [14] proposed the GMRES (Generalized Minimal Residual) method with the Strang-type block-
circulant preconditioner for solving singular perturbation delay differential equations. Next, Pelletier and
Cooperstock [22] put forward preconditioners based on circulant operators for speeding up the solution
of edge-preserving image super resolution problems. Besides, circulant matrices have an important appli-
cation in the optimization design of digital filters. Narasimha [21] decomposed linear convolution into a
sum of skew circulant convolutions, which perform filtering procedure in approximately half of compu-
tational cost for real signals. Shortly afterwords, based on circulant, Toeplitz and shift circulant matrices,
Daher et al. [1] developed a fast algorithm for optimal design of block digital filters, which reduced the
computational complexity of the design process as well as decreased the memory requirements. Better
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yet, Fu et al. [4] proposed a skew circulant filter, which achieves the above advantages of [1] and even
greater efficiency with only approximately half of the computational cost for the real signals.

On the other hand, Fibonacci sequences are shining stars in the vast array of integer sequences and
Fibonacci numbers appear in many unexpected places, such as electrical networks, nature (earth, optics
and botany), even music and so on. For centuries, they amaze engineers with their charm and applications
such as electrical engineering, geometry, graph theory, physics, physiology, psychology, neurophysiology,
biology, chemistry, stock market trading, water treatment, snow plowing, and trigonometry [6, 16, 17].

Recently, some authors have done some research on circulant matrices involving some famous num-
bers about their determinants, inverses, some norms, and spreads [2, 5, 10, 11, 13, 18, 20, 24, 25]. Recently,
Zheng and Shon [30] studied the exact determinants and inverses of generalized Lucas skew circulant
type matrices, while Jiang and Hong [12] gave that of Tribonacci r-circulant type matrices. What’s more,
AhmetÍpek [9] investigated an improved estimation for spectral norms of circulant matrices with classical
Fibonacci and Lucas number entries.

We present, therefore, the results on the combination of skew circulant matrix, skew left circulant
matrix, Fibonacci numbers and Lucas numbers. More specifically, we study the invertibility, determinant,
multiple norms, lower and upper bounds for the spread of these matrices, which are going to have
potential to be useful for realistic application.

The main aims we study in the paper are as follows. Fibonacci numbers Fn and Lucas numbers Ln
are often defined recursively [16] as

Fn = Fn−1 + Fn−2, where F1 = 1, F2 = 1 and Ln = Ln−1 + Ln−2, where L1 = 1,L2 = 3.

The product Fn of Fibonacci and Lucas numbers satisfies the following recurrence relations [20]:

Fn+2 = 3Fn+1 −Fn, where F1 = 1,F2 = 3. (1.1)

The sequence {Fn} is also given by the formula

Fn =
αn −βn

α−β
, (1.2)

where α and β are the roots of the characteristic equation x2 − 3x+ 1 = 0. The first few values of the
sequence are given in the following table:

n 1 2 3 4 5 6 7 8 · · ·
Fn 1 3 8 21 55 144 377 987 · · ·

The product Fn of Fibonacci and Lucas numbers recurrence relations play a vital role in the following
paper.

Consider a skew circulant matrix involving the product of Fibonacci and Lucas numbers

SCirc(F1,F2, ...,Fn) =


F1 F2 . . . Fn

−Fn
. . . . . .

...
...

. . . . . . F2
−F2 . . . −Fn F1


n×n

. (1.3)

Besides, define a skew left circulant matrix involving the product of Fibonacci and Lucas numbers

SLCirc(F1,F2, ...,Fn) =


F1 . . . Fn−1 Fn
... . . . . . . −F1

Fn−1 . . . . . .
...

Fn −F1 . . . −Fn−1


n×n

. (1.4)
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2. Preliminaries

In this section, we list some lemmas that play a vital role in the proofs of main theorems.

Lemma 2.1. Let {Fn} be the product of Fibonacci and Lucas numbers. Then

(i)
n∑
i=1

Fi = 2Fn −Fn−1 − 1, (2.1)

(ii)
n∑
i=1

iFi = (n+ 2)Fn+1 − (n+ 3)Fn − 2, (2.2)

(iii)
n∑
i=1

F2
i =

F2
n+1 −F2

n − 8n− 7
5

, (2.3)

(iv)
n∑
i=1

Fia
i =

Fna
n+2 −Fn+1a

n+1 + a

a2 − 3a+ 1
, (a 6= 3±

√
5

2
). (2.4)

Proof.

(i) According to (1.1)

n∑
i=1

Fi = F1 +F2 + · · ·+Fn = F1 + (3F1 −F0) + · · ·+ (3Fn−1 −Fn−2) = 2
n∑
i=1

Fi − 2Fn +Fn−1 +F1 −F0.

It is easy to check that
n∑
i=1

Fi = 2Fn −Fn−1 − 1. (2.5)

(ii) From (1.1), we also get that

n∑
i=1

iFi = F1 + 2F2 + · · ·+nFn = F1 + 2(3F1 −F0) + · · ·+n(3Fn−1 −Fn−2)

= 2
n∑
i=1

iFi +

n∑
i=1

Fi − (2n+ 1)Fn + (n+ 1)Fn−1 +F1 − 2F0.

(2.6)

By (2.5) and (2.6), we have

n∑
i=1

iFi =(n+ 2)Fn+1 − (n+ 3)Fn − 2.

(iii) Let Xi =
(

Fi−1 Fi
Fi Fi+1

)
. By Lemma 1 in [29], for i > 1, we get

|Xi| = Fi−1Fi+1 −F2
i = −1.

For {Fn}, the following equation is satisfied,

Fi =
Fi+1 +Fi−1

3
. (2.7)

Therefore, using (2.7), we obtain that

n∑
i=1

F2
i =

n∑
i=1

(
Fi+1 +Fi−1

3
)2 =

∑n
i=1 F

2
i+1 +

∑n
i=1 F

2
i−1 + 2

∑n
i=1 Fi+1Fi−1

9
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=

∑n
i=1 F

2
i+1 +

∑n
i=1 F

2
i−1 + 2

∑n
i=1 F

2
i − 2n

9

=
4
∑n
i=1 F

2
i +F2

n+1 −F2
n −F2

1 +F2
0 − 2n

9
.

Hence
n∑
i=1

F2
i =

F2
n+1 −F2

n − 8n− 7
5

.

(iv) Let

Sn =

n∑
i=1

Fia
i = F1a+F2a

2 + · · ·+Fna
n. (2.8)

From (1.1) and (2.8), we get

(a2 − 3a+ 1)Sn = Fna
n+2 −Fn+1a

n+1 + a.

Thus

Sn =
Fna

n+2 −Fn+1a
n+1 + a

a2 − 3a+ 1
, (a 6= 3±

√
5

2
).

Lemma 2.2. Let the form of the matrix H = [hij]
n−2
i,j=1 be as follows:

hij =


1 +Fn+1, i = j,
−Fn, i = j+ 1,
0, otherwise.

Then H−1 = [h ′i,j]
n−2
i,j=1 is given by

h ′ij =

{
Fi−jn

(1+Fn+1)i−j+1 , i > j,

0, i < j.

Proof. Let eij =
n−2∑
k=1

hikh
′
kj. For i < j, eij = 0. For i = j, eii = hiih

′
ii = (1 + Fn+1) · 1

1+Fn+1
= 1. For

i > j+ 1, we obtain

eij =

n−2∑
k=1

hikh
′
kj = hi,i−1h

′
i−1,j + hiih

′
ij =

−Fn · Fi−j−1
n

(1 +Fn+1)i−j
+

(1 +Fn+1) · Fi−jn
(1 +Fn+1)i−j+1 = 0.

We get HH−1 = In−2, where In−2 is (n− 2)× (n− 2) identity matrix. Similarly, we can verify H−1H =
In−2. Thus, the proof is completed.

Lemma 2.3 ([5]). Let the orthogonal skew left circulant matrix ∆ = SLCirc(1, 0, 0, ..., 0). Then

SCirc(a1,a2, . . . ,an) = ∆SLCirc(a1,a2, . . . ,an).

Lemma 2.4 ([15]). Let A = SLCirc(a1,a2, ...,an) be a skew left circulant matrix and n be odd. Then

λj = ±

∣∣∣∣∣
n∑
k=1

akω
(j− 1

2 )(k−1)

∣∣∣∣∣ , (j = 1, 2, · · · ,
n− 1

2
), λn+1

2
=

n∑
k=1

∣∣ak(−1)k−1∣∣ ,
where ω = cos 2π

n + i sin 2π
n = e

2πi
n and λj(j = 1, 2, · · · , n−1

2 , n+1
2 ) are the eigenvalues of A.
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3. Determinant, inverse, norms, and spread of skew circulant matrix involving the product of Fi-
bonacci and Lucas numbers

In this section, let An = SCirc(F1, ...,Fn) be an n×n skew circulant matrix. We do some work on the
determinant and inverse of An. Meanwhile, we also investigate the properties of skew circulant matrices
involving the product of Fibonacci and Lucas numbers, such as their norms, lower and upper bounds for
their spread.

3.1. Determinant and inverse of skew circulant matrix involving the product of Fibonacci and Lucas numbers
In this subsection, we first obtain an expression for the determinant of An in the following Theorem

3.1. Afterwards, we prove that An is invertible for every positive integer n in Theorem 3.2, and then we
compute the inverse of An in Theorem 3.3.

Theorem 3.1. Let An = SCirc(F1, ...,Fn) be a matrix as in (1.3) for a positive integer n. Then

detAn =
Fnn + (1 +Fn+1)

n

1 −Fn−1 +Fn+1
, (3.1)

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. Clearly, detA1 = 1, detA2 = 10, and detA3 = 558 meet (3.1). Under the circumstances (n > 3),
construct two matrices

Σ =



1 0 . . . . . . . . . . . . 0

3
... . . . 1

−1
... . . . . . . −3

0
... . . . . . . . . . 1

...
... . . . . . . . . . . . . 0

... 0 . . . . . . . . . . . .
...

0 1 − 3 1 0 . . . 0


n×n

and

Ω1 =



1 0 0 · · · · · · 0

0 ( Fn
1+Fn+1

)n−2 ... . . . 1
...

...
... . . . . . . 0

... ( Fn
1+Fn+1

)2 0 . . . . . .
...

... Fn
1+Fn+1

1 . . .
...

0 1 0 · · · · · · 0


n×n

.

Multiplying A by Ω1 and Σ from right and left, respectively,

ΣAnΩ1 =



F1 l
′
n Fn−1 Fn−2 · · · · · · F2

0 ln Fn−2 Fn−3 · · · · · · F1
... 0 F1 +Fn+1 0 · · · · · · 0
...

... −Fn
. . . . . .

...
...

... 0
. . . . . . . . .

...
...

...
...

. . . . . . . . . 0
0 0 0 · · · 0 −Fn F1 +Fn+1


n×n

, (3.2)
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where

l ′n =

n−1∑
k=1

Fk+1(
Fn

1 +Fn+1
)n−1−k, ln = 1 + 3Fn +

n−2∑
k=1

Fk(
Fn

1 +Fn+1
)n−1−k.

We further simplify the above results using (2.4) as follows:

l ′n =
−1 +Fn−1 +Fn(1 +Fn+1)

n−2

(1 −Fn−1 +Fn+1)(1 +Fn+1)n−2 , (3.3)

ln =
Fnn + (1 +Fn+1)

n

(1 −Fn−1 +Fn+1)(1 +Fn+1)n−2 . (3.4)

So it holds that

det(ΣAnΩ1) =ln(1 +Fn+1)
n−2 =

Fnn + (1 +Fn+1)
n

1 −Fn−1 +Fn+1
.

Clearly, detΣ = detΩ1 = (−1)
(n−1)(n−2)

2 , we have

detAn =
Fnn + (1 +Fn+1)

n

1 −Fn−1 +Fn+1
.

Theorem 3.2. LetAn = SCirc(F1, ...,Fn) be a matrix as in (1.3) for every positive integer n. ThenAn is invertible.

Proof. In Theorem 3.1, detA1 = 1 6= 0, hence A1 is invertible. For n > 1, according to [13], we have the
eigenvalues of An

f(ωkη) =

n∑
j=1

Fj(ω
kη)j−1, (k = 1, 2, ...,n− 1),

where ω = exp( 2πi
n ),η = exp(πi

n ).
Note that Fn = αn−βn

α−β , where α+β = 3,αβ = 1, we get

f(ωkη) =
1

α−β

n∑
j=1

(αj −βj)(ωkη)j−1, (k = 1, 2, . . . ,n− 1).

Since |ωkη| = 1, and |α| 6= 1, |β| 6= 1, we have ωkη 6= α and ωkη 6= β, and hence,

f(ωkη) =
α

α−β
· 1 +αn

1 −αωkη
−

β

α−β
· 1 +αn

1 −αωkη

=
α−β+αn+1 −βn+1 −αβωkη(αn −βn)

(α−β)(1 −αωkη)(1 −βωkη)
=

1 +Fn+1 −Fnω
kη

1 − 3ωkη+ω2kη2 , (k = 1, 2, . . . ,n− 1).

Assume to the contrary that there exists ωlη (l = 1, 2, . . . ,n− 1) such that f(ωlη) = 0. We obtain
1 + Fn+1 − Fnω

lη = 0, and hence it follows that ωlη = 1+Fn+1
Fn

is a real number. That is to say, the

imaginary part of ωlη is sin (2l+1)π
n = 0. Therefore, ωlη = ±1, and 1 + Fn+1 − Fnω

lη 6= 0 (n > 0).
Consequently, we obtain f(ωkη) 6= 0 for any ωkη (k = 1, 2, . . . ,n− 1).

Theorem 3.3. Let An = SCirc(F1, . . . ,Fn) be a matrix as in (1.3) for a positive integer n > 1. Then

A−1
n = SCirc(y1,y2, . . . ,yn), (3.5)
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where

y1 =
(Fn−1 − 1)Fn−2

n + (1 +Fn+1)
n−1

Fnn + (1 +Fn+1)n
, (3.6)

y2 =−
Fn−1
n + (3 +Fn+2)(1 +Fn+1)

n−2

Fnn + (1 +Fn+1)n
, (3.7)

yk =
(1 −Fn−1 +Fn+1)F

k−3
n (1 +Fn+1)

n−k

Fnn + (1 +Fn+1)n
, (k = 3, 4, . . . ,n). (3.8)

Proof. Let

Ω2 =



1 − l
′
n

F1
ω3 ω4 · · · ωn

0 1 −Fn−2
ln

−Fn−3
ln

· · · −F1
ln

...
. . . 1 0 · · · 0

...
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · · · · 0 1


n×n

,

where

ωj =
l ′n
ln

Fn+1−j −Fn+2−j, (j = 3, 4, . . . ,n),

l ′n and ln are respectively given by (3.3) and (3.4). Multiplying (3.2) by Ω2 from right,

ΣAnΩ1Ω2 =



F1 0 · · · · · · · · · · · · 0

0 ln
. . .

...
... 0 F1 +Fn+1

. . .
...

...
... −Fn

. . . . . .
...

...
... 0

. . . . . . . . .
...

...
...

...
. . . . . . . . . 0

0 0 0 · · · 0 −Fn F1 +Fn+1


n×n

,

where Σ and Ω1 are the same as Theorem 3.1.
Let ΣAnΩ1Ω2 = D⊕H, where D = diag(1, ln) is a diagonal matrix, H is as defined in Lemma 2.2,

and D⊕H is the direct sum of D and H. Denote Ω = Ω1Ω2, then we obtain A−1
n = Ω(D−1 ⊕H−1)Σ.

Since the last row elements of the matrixΩ are (0, 1,−Fn−2
ln

,−Fn−3
ln

, . . . ,−F2
ln

,−F1
ln

), the last row elements
of the matrix Ω(D−1 ⊕H−1) are (0, 1

ln
, T3, T4, . . . , Tn ), where

Tk =

n+1−k∑
i=1

−
Fn+2−k−iF

i−1
n

ln(1 +Fn+1)i
, (k = 3, 4, . . . ,n).

Using (2.4), we simplify the above equation as

Tk =−
Fn+2−k
n (1 +Fn+1)

k−3 + [Fn+1−k(1 −Fn−1) + Fn−kFn](1 +Fn+1)
n−2

Fnn + (1 +Fn+1)n
, (k = 3, 4, . . . ,n). (3.9)

The last row of A−1
n = SCirc(y1,y2, . . . ,yn) is ( −y2,−y3, . . . ,−yn,y1), which is given by the following

equations:

−y2 =
3
ln

− T3,
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−y3 =Tn,
−y4 =Tn−1 − 3Tn,
−yk =Tn−k+3 − 3Tn−k+4 + Tn−k+5, k = 5, 6, . . . ,n,

y1 =
1
ln

− 3T3 + T4.

Applying (3.9) into above equations, we compute

y1 =
(Fn−1 − 1)Fn−2

n + (1 +Fn+1)
n−1

Fnn + (1 +Fn+1)n
,

y2 =−
Fn−1
n + (3 +Fn+2)(1 +Fn+1)

n−2

Fnn + (1 +Fn+1)n
,

yk =
(1 −Fn−1 +Fn+1)F

k−3
n (1 +Fn+1)

n−k

Fnn + (1 +Fn+1)n
, (k = 3, 4, . . . ,n).

3.2. Norms and spread of skew circulant matrix involving the product of Fibonacci and Lucas numbers

In this subsection, we further investigate the properties of skew circulant matrices involving the prod-
uct of Fibonacci and Lucas numbers, such as their norms, lower and upper bounds for their spread.

Theorem 3.4. Let An = SCirc(F1, . . . ,Fn) be a matrix as in (1.3). Then the maximum column sum matrix norm,
the maximum row sum matrix norm and the Frobenius norm of An are given by

‖An‖1 = ‖An‖∞ = 2Fn −Fn−1 − 1, (3.10)

‖An‖F =

√
n(F2

n+1 −F2
n − 8n− 7)

5
, (3.11)

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. According to the Definition 4 in [18], (2.1), and (2.3), we have

‖An‖1 =

n∑
i=1

|Fi| = 2Fn −Fn−1 − 1,

‖An‖∞ =

n∑
i=1

|Fi| = 2Fn −Fn−1 − 1,

‖ An ‖F=

√√√√n n∑
i=1

|Fi|2 =

√
n(F2

n+1 −F2
n − 8n− 7)

5
.

Theorem 3.5. Let A
′
n = SCirc(F1,−F2, . . . ,−Fn−1,Fn) be an odd-order alternative skew circulant matrix. Then

‖A ′n‖2 = 2Fn −Fn−1 − 1,

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. In [13], we have the eigenvalues of A
′
n

λj(A
′
n) =

n∑
i=1

(−1)i−1Fi(ω
jη)i−1, (j = 0, 1, · · · ,n− 1).
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Using the absolute value inequality,

|λj(A
′
n)| 6

n∑
i=1

∣∣(−1)i−1Fi
∣∣ · ∣∣(ωjη)i−1∣∣ = n∑

i=1

Fi, (j = 0, 1, . . . ,n− 1).

Since n is odd,
n∑
i=1

Fi is an eigenvalue of A
′
n, which is

F1 −F2 F3 · · · Fn

−Fn
. . . . . . . . .

...

Fn−1
. . . . . . . . . F3

...
. . . . . . . . . −F2

F2 · · · Fn−1 −Fn F1


n×n



1
−1
1
−1

...
1


n×1

=

n∑
i=1

Fi ·



1
−1
1
−1

...
1


.

To sum up, we obtain

max
06j6n−1

∣∣∣λj(A ′n)∣∣∣ = n∑
i=1

Fi. (3.12)

Since skew circulant matrices A
′
n satisfies (A

′
n)
HA

′
n = A

′
n(A

′
n)
H
(
(A
′
n)
H is the conjugate transpose of

A
′
n

)
, skew circulant matrices are normal. By Lemma 7 in [18], (2.1), and (3.12), we have

‖A ′n‖2 =

n∑
i=1

Fi = 2Fn −Fn−1 − 1.

Theorem 3.6. Let An = SCirc(F1, . . . ,Fn) be a matrix as in (1.3). Then a lower bound and an upper bound for
the spread s(An) of An are given as follows:∣∣∣2 − 2n+ (n+ 4)Fn − (n+ 2)Fn+1

∣∣∣
n− 1

6 s(An) 6

√
2n(F2

n+1 −F2
n − 8n− 7)

5
− 2n, (3.13)

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. Note that the trace of An is trAn = nF1 = n. The sum of the off-diagonal of An is

`(An) =

n∑
k=2

(n− k+ 1)Fk −
n∑
k=2

(k− 1)Fk = (n+ 2)
n∑
k=2

Fk − 2
n∑
k=2

kFk.

By (2.1) and (2.2), we have

`(An) = 2 − 2n+ (n+ 4)Fn − (n+ 2)Fn+1.

Since skew circulant matrix An satisfies AHnAn = AnA
H
n

(
AHn is the conjugate transpose of An

)
, skew

circulant matrix is normal. Since An is a normal and real matrix, by Definition 5 and Lemma 6 in [18]
and (3.11), we get∣∣∣2 − 2n+ (n+ 4)Fn − (n+ 2)Fn+1

∣∣∣
n− 1

6 s(An) 6

√
2n(F2

n+1 −F2
n − 8n− 7)

5
− 2n.
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4. Determinant, inverse, norms and spread of skew left circulant matrix involving the product of
Fibonacci and Lucas numbers

In this section, let A ′′n = SLCirc(F1, . . . ,Fn) be a skew left circulant matrix. According to Lemma 2.3,
we know that skew circulant matrix and skew left circulant matrix can be transformed into each other.
Therefore, using the obtained conclusions in Section 3.1, we get a determinant explicit formula for A ′′n.
Besides, we prove that A ′′n is invertible for every positive integer n and compute the inverse of A ′′n. We
also study the properties of skew left circulant matrices involving the product of Fibonacci and Lucas
numbers.

4.1. Determinant and inverse of skew left circulant matrix involving the product of Fibonacci and Lucas numbers

In this subsection, we get a determinant explicit formula for A ′′n in Theorem 4.1. Besides, we prove
that A ′′n is invertible for every positive integer n and compute the inverse of A ′′n in Theorems 4.2 and 4.3,
respectively.

Theorem 4.1. Let A ′′n = SLCirc(F1, . . . ,Fn) be a matrix as in (1.4) for a positive integer n. Then

detA ′′n = (−1)
n(n−1)

2
Fnn + (1 +Fn+1)

n

1 −Fn−1 +Fn+1
, (4.1)

where Fn is the nth product of Fibonacci and Lucas numbers.

Theorem 4.2. Let A ′′n = SLCirc(F1, . . . ,Fn) be a matrix as in (1.4) for every positive interger n. Then A ′′n is
invertible.

Theorem 4.3. Let A ′′n = SLCirc(F1, . . . ,Fn) be a matrix as in (1.4) for a positive integer n > 1. Then

(A ′′n)
−1 = SLCirc(y ′′1 ,y ′′2 , . . . ,y ′′n), (4.2)

where

y ′′1 =
(Fn−1 − 1)Fn−2

n + (1 +Fn+1)
n−1

Fnn + (1 +Fn+1)n
, (4.3)

y ′′k =−
Fn−1−k
n (1 +Fn+1)

k−2[F2
n + (1 −Fn−1)(1 +Fn+1)]

Fnn + (1 +Fn+1)n
, (k = 2, 3, . . . ,n− 1), (4.4)

y ′′n =
Fn−1
n + (3 +Fn+2)(1 +Fn+1)

n−2

Fnn + (1 +Fn+1)n
. (4.5)

4.2. Norms and spread of skew left circulant matrix involving the product of Fibonacci and Lucas numbers

Like Section 3.2, we study some properties of skew left circulant matrices involving the product of
Fibonacci and Lucas numbers.

Theorem 4.4. Let A ′′n = SLCirc(F1, . . . ,Fn) be a matrix as in (1.4). Then three kinds norms of A ′′n are given by

‖A ′′n‖1 = ‖A ′′n‖∞ = 2Fn −Fn−1 − 1, (4.6)

‖A ′′n‖F =

√
n(F2

n+1 −F2
n − 8n− 7)

5
, (4.7)

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. Using the similar method in Theorem 3.4, the conclusion is obtained.
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Theorem 4.5. Let A
′′′
n = SLCirc(F1,−F2, . . . ,−Fn−1,Fn) be an odd-order alternative skew left circulant matrix.

Then
‖A ′′′n‖2 = 2Fn −Fn−1 − 1,

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. By Lemma 2.4, we have

λj(A
′′′
n) = ±

∣∣∣∣∣
n∑
i=1

(−1)i−1Fiω
(j− 1

2 )(k−1)

∣∣∣∣∣ , (j = 1, 2, . . . ,
n− 1

2
), λn+1

2
(A
′′′
n) =

n∑
i=1

Fi. (4.8)

Therefore,

|λj(A
′′′
n)| 6

n∑
i=1

|(−1)i−1Fi(−1)i−1| =

n∑
i=1

Fi, (j = 1, 2, . . . ,
n− 1

2
). (4.9)

By (4.8) and (4.9), we gain

max
06i6n+1

∣∣∣λi(A ′′′n)∣∣∣ = n∑
i=1

Fi. (4.10)

Since skew left circulant matrix A
′′′
n satisfies (A

′′′
n)
HA

′′′
n = A

′′′
n(A

′′′
n)
H
(
(A
′′′
n)
H is the conjugate transpose

of A
′′′
n

)
, skew circulant matrix is normal. By Lemma 7 in [18], (2.1), and (4.10), we obtain

‖A ′′′n‖2 = 2Fn −Fn−1 − 1.

Theorem 4.6. Suppose that A ′′n = SLCirc(F1, . . . ,Fn) be a matrix as in (1.4). The lower and upper bounds for the
spread of A ′′n are

2Fn 6 s(A ′′n) 6


√

2n(F2
n+1−F2

n−8n−7)
5 −

2(Fn+1+Fn+1)2

25n , if n is odd,√
2n(F2

n+1−F2
n−8n−7)

5 , if n is even,

where Fn is the nth product of Fibonacci and Lucas numbers.

Proof. Since A ′′n is a symmetric matrix, by Definition 5 and Lemma 6 in [18],

2 max |A ′′i | 6 s(A
′′
n) 6

√
2‖A ′′n‖2

F −
2
n
|trA ′′n|

2.

For A ′′n,
2 max |A ′′i | = 2Fn.

On the other hand, according to Theorem 4.4,

‖A ′′n‖F =

√
n(F2

n+1 −F2
n − 8n− 7)

5
.

If n is odd, we have

tr(A ′′n) = F1 −F2 +F3 − · · ·+Fn =

n−1
2∑
i=0

F2i+1 −

n−1
2∑
i=1

F2i.

Note that
Fn+1 = 3Fn −Fn−1, where F1 = 1,F2 = 3,
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we conclude that
n−1

2∑
i=0

F2i+1 −

n−1
2∑
i=1

F2i = 2

n−1
2∑
i=1

F2i −

n−1
2∑
i=0

F2i+1 +F1 +Fn,

n−1
2∑
i=1

F2i = 3

n−1
2∑
i=0

F2i+1 − 3F1 − 3Fn −

n−1
2∑
i=1

F2i +F2 +Fn−1.

Hence

tr(A ′′n) =
1
5
(Fn+1 +Fn + 1).

If n is even, then

tr(A ′′n) = F1 −F1 +F3 −F3 + · · ·−Fn−1 = 0.

So the result is as follows:

2Fn 6 s(A ′′n) 6


√

2n(F2
n+1−F2

n−8n−7)
5 −

2(Fn+1+Fn+1)2

25n , if n is odd,√
2n(F2

n+1−F2
n−8n−7)

5 , if n is even.

5. Algorithms and numerical examples

In this section, we give two algorithms for computing inverses of skew circulant and skew left circulant
matrices involving the product of Fibonacci and Lucas numbers. Then, several examples are given to show
the correctness of these algorithms. Besides, we compute determinants, three kinds of norms and lower
& upper bounds for spread of these matrices.

Based on Theorem 3.1, given the skew circulant matrix involving the product of Fibonacci and Lucas
numbers An = SCirc(F1, . . . ,Fn), the algorithm for finding its inverse is as follows.

Algorithm 5.1.

Step 1: Input n and generate the product of Fibonacci and Lucas numbers by (1.2).
Step 2: Compute yi (i = 1, 2, · · · ,n) via (3.6)-(3.8).
Step 3: Output A−1

n = SCirc(y1,y2, . . . ,yn) by (3.5).

Example 5.2. Consider a 5× 5 skew circulant matrix involving the product of Fibonacci and Lucas num-
bers A5

A5 =


1 3 8 21 55

−55 1 3 8 21
−21 −55 1 3 8

8 −21 −55 1 3
3 8 −21 −55 1

 .

Above all, according to (3.1), detA5 = 516805000. In particular, by (3.10) and (3.11), the three kinds
norms of A5 are given by

‖A5‖1 = ‖A5‖∞ = 88, ‖A5‖F =
√

17664.

By (3.13), the lower and upper bounds for spread of A5 are

521
4

6 s(A5) 6
√

35318.



Y. Wei, Y. Zheng, Z. Jiang, S. Shon, J. Math. Computer Sci., 20 (2020), 64–78 76

As for A−1
5 , according to Algorithm 5.1, we have

y1 =
142521

20672200
, y2 = −

373641
20672200

, y3 =
841

20672200
, y4 =

319
20672200

, y5 =
121

20672200
.

Finally,

(A5)
−1 =



142521
20672200 − 373641

20672200
841

20672200
319

20672200
121

20672200

− 121
20672200

142521
20672200 − 373641

20672200
841

20672200
319

20672200

− 319
20672200 − 121

20672200
142521

20672200 − 373641
20672200

841
20672200

− 841
20672200 − 319

20672200 − 121
20672200

142521
20672200 − 373641

20672200

373641
20672200 − 841

20672200 − 319
20672200 − 121

20672200
142521

20672200


.

Meanwhile, based on Theorem 4.3, given a skew left circulant matrix involving the product of Fi-
bonacci and Lucas numbers A ′′n = SLCirc(F1, . . . ,Fn), the algorithm for finding its inverse is as follows.

Algorithm 5.3.

Step 1: Input n and generate the product of Fibonacci and Lucas numbers by (1.2).
Step 2: Compute y ′′i (i = 1, 2, · · · ,n) via (4.3)-(4.5).
Step 3: Output A ′′−1

n = SLCirc(y ′′1 ,y ′′2 , . . . ,y ′′n) by (4.2).

Example 5.4. Consider a 5× 5 skew left circulant matrix involving the product of Fibonacci and Lucas
numbers A ′′5 :

A ′′5 =


1 3 8 21 55
3 8 21 55 −1
8 21 55 −1 −3
21 55 −1 −3 −8
55 −1 −3 −8 −21

 .

Firstly, we get detA ′′5 = 516805000 from (4.1) and the three kinds norms of A ′′5 by (4.6) and (4.7)

‖A ′′5 ‖1 = ‖A ′′5 ‖∞ = 88, ‖A ′′5 ‖F =
√

17664.

In Theorem 4.6, the lower and upper bounds for spread of A ′′5 are

110 6 s(A ′′5 ) 6
√

34688.

As for A ′′−1
5 , according to Algorithm 5.3, compute

y ′′1 =
142521

20672200
, y ′′2 = −

121
20672200

, y ′′3 = −
319

20672200
, y ′′4 = −

841
20672200

, y ′′5 =
373641

20672200
.

Finally,

(A ′′5 )
−1 =



142521
20672200 − 121

20672200 − 319
20672200 − 841

20672200
373641

20672200

− 121
20672200 − 319

20672200 − 841
20672200

373641
20672200 − 142521

20672200

− 319
20672200 − 841

20672200
373641

20672200 − 142521
20672200

121
20672200

− 841
20672200

373641
20672200 − 142521

20672200
121

20672200
319

20672200

373641
20672200 − 142521

20672200
121

20672200
319

20672200
841

20672200


.
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6. Conclusions

We discuss the invertibility of the skew circulant and skew left circulant matrices involving the product
of Fibonacci and Lucas numbers and present the determinant and inverse matrices by constructing the
transformation matrices. The four kinds of norms and bounds for the spread of these matrices are given,
respectively. To test the validity of our method, we design two algorithms (Algorithms 5.1 and 5.3), and
then conduct two examples.
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[9] A. İpek, On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries, Appl. Math.

Comput., 217 (2011), 6011–6012. 1
[10] X. Y. Jiang, K. C. Hong, Exact determinants of some special circulant matrices involving four kinds of famous numbers,

Abstr. Appl. Anal., 2014 (2014), 12 pages. 1
[11] X. Y. Jiang, K. C. Hong, Explicit inverse matrices of Tribonacci skew circulant type matrices, Appl. Math. Comput., 268

(2015), 93–102. 1
[12] X. Y. Jiang, K. C. Hong, Explicit form of determinants and inverse matrices of Tribonacci r-circulant type matrices, J.

Math. Chem., 56 (2018), 1234–1249. 1
[13] Z. L. Jiang, Z. X. Zhou, Circulant Matrices, Chengdu Technology University Publishing Company, Chengdu, (1999).

1, 3.1, 3.2
[14] X.-Q. Jin, S.-L. Lei, Y.-M. Wei, Circulant preconditioners for solving singular perturbation delay differential equations,

Numer. Linear Algebra Appl., 12 (2005), 327–336. 1
[15] H. Karner, J. Schneid, C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl., 367

(2003), 301–311. 2.4
[16] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, (2001). 1
[17] T. Koshy, Pell and Pell-Lucas numbers with applications, Springer, New York, (2014). 1
[18] J. Li, Z. L. Jiang, F. L. Lu, Determinants, norms, and the spread of circulant matrices with Tribonacci and generalized Lucas

numbers, Abstr. Appl. Anal., 2014 (2014), 9 pages. 1, 3.2, 3.2, 3.2, 4.2, 4.2
[19] V. C. Liu, P. P. Vaidyanathan, Circulant and skew circulant matrices as new normal-form realization of IIR digital filters,

IEEE Trans. Circuits and Systems, 35 (1988), 625–635. 1
[20] F. L. Lu, Z. L. Jiang, The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers

representation by matrix method, Wseas Trans. Math., 12 (2013), 449–458. 1
[21] M. J. Narasimha, Linear convolution using skew-cyclic convolutions, IEEE Signal Process. Lett., 14 (2007), 173–176. 1
[22] S. Pelletier, J. R. Cooperstock, Preconditioning for edge-preserving image super resolution, IEEE Trans. Image Process.,

21 (2012), 67–79. 1
[23] J. Shao, Z. W. Zheng, F. W. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Adv.

Difference Equ., 2013 (2013), 9 pages. 1
[24] S.-Q. Shen, J.-M. Cen, Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers,

Appl. Math. Comput., 217 (2011), 9790–9797. 1

https://doi.org/10.1109/LSP.2008.2003988
https://doi.org/10.1109/LSP.2008.2003988
http://cds.cern.ch/record/99361
https://doi.org/10.1016/j.ijleo.2016.05.147
https://doi.org/10.1016/j.ijleo.2016.05.147
https://doi.org/10.1049/iet-spr.2013.0384
https://doi.org/10.1049/iet-spr.2013.0384
https://pdfs.semanticscholar.org/7dcf/e297a6434050eacffc86db7c39db853c29ce.pdf
https://pdfs.semanticscholar.org/7dcf/e297a6434050eacffc86db7c39db853c29ce.pdf
https://doi.org/10.1002/9781118159743
https://doi.org/10.1109/TSP.2015.2395992
https://doi.org/10.1109/TSP.2015.2395992
https://doi.org/10.1137/0613048
https://doi.org/10.1137/0613048
https://doi.org/10.1016/j.amc.2010.12.094
https://doi.org/10.1016/j.amc.2010.12.094
http://dx.doi.org/10.1155/2014/273680
http://dx.doi.org/10.1155/2014/273680
https://doi.org/10.1016/j.amc.2015.05.103
https://doi.org/10.1016/j.amc.2015.05.103
https://doi.org/10.1007/s10910-017-0843-8
https://doi.org/10.1007/s10910-017-0843-8
https://scholar.google.com/scholar?as_q=&as_epq=Circulant+Matrices&as_oq=&as_eq=&as_occt=title&as_sauthors=Jiang&as_publication=&as_ylo=1999&as_yhi=1999&hl=en&as_sdt=0%2C5
https://doi.org/10.1002/nla.420
https://doi.org/10.1002/nla.420
https://doi.org/10.1016/S0024-3795(02)00664-X
https://doi.org/10.1016/S0024-3795(02)00664-X
https://doi.org/10.1002/9781118033067
https://doi.org/10.1007/978-1-4614-8489-9
http://dx.doi.org/10.1155/2014/381829
http://dx.doi.org/10.1155/2014/381829
https://doi.org/10.1109/31.1800
https://doi.org/10.1109/31.1800
http://users.dimi.uniud.it/~giacomo.dellariccia/Glossary/Pell-Lucas/LuJang2013.pdf
http://users.dimi.uniud.it/~giacomo.dellariccia/Glossary/Pell-Lucas/LuJang2013.pdf
https://doi.org/10.1109/LSP.2006.884034
https://doi.org/10.1109/TIP.2011.2160188
https://doi.org/10.1109/TIP.2011.2160188
https://doi.org/10.1186/1687-1847-2013-323
https://doi.org/10.1186/1687-1847-2013-323
https://doi.org/10.1016/j.amc.2011.04.072
https://doi.org/10.1016/j.amc.2011.04.072


Y. Wei, Y. Zheng, Z. Jiang, S. Shon, J. Math. Computer Sci., 20 (2020), 64–78 78

[25] S. Solak, On the norms of circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 160 (2005),
125–132. 1

[26] Y. G. Sun, F. W. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities,
Appl. Math. Comput., 198 (2008), 375–381. 1

[27] J. Wang, F. W. Meng, Interval oscillation criteria for second order partial differential systems with delays, J. Comput.
Appl. Math., 212 (2008), 397–405.

[28] R. Xu, F. W. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations,
J. Inequal. Appl., 2016 (2016), 16 pages. 1

[29] Y. Yazlik, N. Taskara, On the norms of an r-circulant matrix with the generalized k-Horadam numbers, J. Inequal. Appl.,
2013 (2013), 8 pages. 2

[30] Y. P. Zheng, S. G. Shon, Exact determinants and inverses of generalized Lucas skew circulant type matrices, Appl. Math.
Comput., 270 (2015), 105–113. 1

https://doi.org/10.1016/j.amc.2003.08.126
https://doi.org/10.1016/j.amc.2003.08.126
https://doi.org/10.1016/j.amc.2007.08.042
https://doi.org/10.1016/j.amc.2007.08.042
https://doi.org/10.1016/j.cam.2006.12.015
https://doi.org/10.1016/j.cam.2006.12.015
https://doi.org/10.1186/s13660-016-1015-2
https://doi.org/10.1186/s13660-016-1015-2
https://doi.org/10.1186/1029-242X-2013-394
https://doi.org/10.1186/1029-242X-2013-394
https://doi.org/10.1016/j.amc.2015.08.021
https://doi.org/10.1016/j.amc.2015.08.021

	Introduction
	Preliminaries
	Determinant, inverse, norms, and spread of skew circulant matrix involving the product of Fibonacci and Lucas numbers
	Determinant and inverse of skew circulant matrix involving the product of Fibonacci and Lucas numbers
	 Norms and spread of skew circulant matrix involving the product of Fibonacci and Lucas numbers

	 Determinant, inverse, norms and spread of skew left circulant matrix involving the product of Fibonacci and Lucas numbers
	 Determinant and inverse of skew left circulant matrix involving the product of Fibonacci and Lucas numbers
	 Norms and spread of skew left circulant matrix involving the product of Fibonacci and Lucas numbers

	 Algorithms and numerical examples
	Conclusions

