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Abstract
Assume that (W,g1,∞) is a nonautonomous discrete dynamical system given by sequences (gm)∞m=1 of continuous maps

on the space (W,d). In this paper, it is proven that if g1,∞ is topologically weakly mixing and satisfies that gn1 ◦ g
m
1 = gn+m

1 for
any n,m ∈ {0, 1, . . .}, then it is distributional chaos in a sequence. This result extends the existing one.
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1. Introduction

Since Li and Yorke [16] first introduced the term of “chaos” which is known as Li-Yorke chaos today,
the dynamical complexity of a dynamical system is a central subject of research. In [3], another definition
of chaos, from the viewpoint of topology, was proposed by Devaney. Nonautonomous discrete systems
were introduced in [7] (see also [6]). Chaos of nonautonomous discrete dynamical systems has been
extensively studied (see [2, 4, 6, 7, 21, 25]). For some related concepts and properties for autonomous
discrete dynamical systems we refer the reader to [8–15, 17–19]. A continuous self-map on a metric space
is said to be chaotic in the sense of Devaney [1] if it satisfies the following three properties are satisfied: (1)
topological transitivity; (2) the denseness of periodic points; (3) sensitive dependence on initial conditions.
Similarly, a nonautonomous discrete system is called to be chaotic in the sense of Devaney if the following
three properties are satisfied: (1) topological transitivity; (2) the denseness of periodic points; (3) sensitive
dependence on initial conditions. The definition of a distributional scrambled set was given for the first
time in [24]. In [26], Wang et al. defined distributional chaos in a sequence. Huang and Ye [5] proved
that a transitive continuous selfmap from a compact metric space into itself with a fixed point (or a
periodic point) is Li-Yorke chaotic. Mai [22] obtained that a scrambled set stronger than that in Li-Yorke’s
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original definition when the transitive system with fixed points is sensitive. In [23], it was showed that
Devaney chaotic backward shifts are uniformly distributionally chaotic. In [20] the authors considered
the relation between Devaney’s chaos and distributional chaos in a sequence for continuous selfmaps on a
complete metric space without isolated points. They deduced that if a continuous selfmap on a complete
metric space is transitive and has a periodic point of period p, then it is distributionally chaotic in a
sequence. In particular, for continuous selfmaps on a complete metric space, Devaney’s chaos is stronger
than distributional chaos in a sequence. In [27], Wang et al. obtained that if a given continuous selfmap
g :W →W on a separable metric space W containing at least two points is topologically weakly mixing,
then it is distributional chaos in a sequence. In this paper we extend the result of [27] to nonautonomous
discrete systems. In particular, it is shown that for a given a nonautonomous discrete dynamical system
(W,g1,∞) given by sequences (gm)∞m=1 of continuous maps on the space W, if it is topologically weakly
mixing and satisfies that gn1 ◦ gm1 = gn+m

1 for any n,m ∈ {0, 1, · · · }, then it is distributional chaos in a
sequence. Thus, our result extends the existing one.

The organization of this paper is as follows. In Section 2, we recall and give some notations and basic
concepts. The main results are proved in Section 3.

2. Preliminaries

Throughout this paper, we always assume that (G, δ) is a complete metric space without isolated
points, and that (G,h1,∞) is a nonautonomous discrete dynamical system given by sequences (hj)

∞
j=1 of

continuous self-maps hj : G→ G of the space G, where hmj = fm+j−1 ◦ · · · ◦ fj for every integer j > 0 and
every integer m > 0 and f0

j = idX for every integer j > 0. For any C,C ′ ⊂ G with C,C ′ 6= ∅ and any s > 0,
we write δ(C,C ′) = inf{δ(a,b) : a ∈ C,b ∈ C ′}, D(C) = sup{δ(a,b) : a,b ∈ C}, δ(a,C) = inf{δ(a,b) : b ∈ C}
and B(C, s) = {a ∈ G : δ(a,C) < δ}. If C = {c} then we write B(c, s) (resp. δ(C,C ′)) for B(C, s) (resp.
δ(c,C ′)).

A point w ∈ G is said to be a transitive point of (G,h1,∞) or h1,∞ if the orbit

O(w,h1,∞) = {h
j
1(w) : j ∈ {0, 1, · · · }}

of w under (G,h1,∞) or h1,∞ is dense in G. It is well known that a nonautonomous discrete dynamical
system (G,h1,∞) on a compact metric space is transitive if there is a transitive point of (G,h1,∞), and that
the system (G,h1,∞) is transitive if and only if for every pair of nonempty open subsets S, T ⊂ G, there
exists an integer m > 0 such that hm1 (S) ∩ T 6= ∅. A nonautonomous discrete dynamical system (G,h1,∞)
or h1,∞ is said to be minimal if each point of G is a transitive point of (G,h1,∞) or h1,∞. A point u ∈ G is
said to be almost periodic if the closure of its orbit under (G,h1,∞) or h1,∞ is a minimal subset of (G,h1,∞)
or h1,∞.

Let {qj}∞j=1 be a sequence of positive integers with qj+1 > qj for every integer j > 0, and let u, v ∈ G
and t > 0. Write

Fuv(h1,∞, t, {qj}∞j=1) = lim inf
m→∞ 1

m

m∑
j=1

χ[0,t)(δ(h
qj

1 (u),hqj

1 (v)))

and

F∗uv(h1,∞, t, {qj}∞j=1) = lim sup
m→∞

1
m

m∑
j=1

χ[0,t)(δ(h
qj

1 (u),hqj

1 (v))),

where χE(x) = 1 for any x ∈ E and χE(x) = 0 for any x /∈ E.
Let S ⊂ G and u, v ∈ S with u 6= v. If the following conditions hold:

(1) Fuv(h1,∞,α, {qj}∞j=1) = 0 for some α > 0;
(2) F∗uv(h1,∞, t, {qj}∞j=1) = 1 for any t > 0,

then we say that S is a distributively chaotic set of a nonautonomous discrete dynamical system (G,h1,∞)
or h1,∞ in a sequence, and u, v are said to be a pair of points of a nonautonomous discrete dynamical
system (G,h1,∞) or h1,∞ displaying distributional chaos in a sequence.
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A nonautonomous discrete dynamical system (G,h1,∞) or h1,∞ is called to be distributively chaotic in
a sequence if it has a distributively chaotic set in a sequence which is uncountable.

Definition 2.1. A nonautonomous discrete dynamical system (W,g1,∞) or g1,∞ is called to be distribu-
tional chao in a sequence if there exists a residual set C ⊂W×W (i.e., C contains a countable intersection
of everywhere dense sets) satisfying that any (a,b) ∈ C×C with a 6= b is a distributively chaotic point
pair in a sequence.

Definition 2.2. Let {pj}
∞
j=1 be an increasing sequence of positive integers and write PR(g1,∞, {pj}) =

{(a,b) ∈W ×W : for any ε > 0, there is an integer j > 0 with d(gpj

1 (a),gpj

1 (b)) < ε}. The set PR(g1,∞, {pj})
is called to be the proximal relation with respect to {pj}

∞
j=1 and (W,g1,∞).

Definition 2.3. Let {pj}∞j=1 be an increasing sequence of positive integers and write

AR(g1,∞, {pj}) = {(a,b) ∈W ×W : lim
j→∞d(gpj

1 (a),gpj

1 (b)) = 0}.

The set AR(g1,∞, {pj}) is called to be the asymptotic relation with respect to {pj}
∞
j=1 and (W,g1,∞).

Definition 2.4. Let {pj}∞j=1 be an increasing sequence of positive integers and write

DR(g1,∞, {pj}) = (W ×W) − PR(g1,∞, {pj}).

The set DR(g1,∞, {pj}) is called to be the distal relation with respect to {pj}
∞
j=1 and (W,g1,∞).

Definition 2.5. Let {pj}
∞
j=1 be an increasing sequence of positive integers and write DCR(g1,∞, {pj}) =

{(a,b) ∈ W ×W : (a,b) is a distributively chaotic point pair of g1,∞ in the sequence {pj}
∞
j=1}. The set

DCR(g1,∞, {pj}) is called to be the distributively chaotic relation with respect to {pj}
∞
j=1 and (W,g1,∞).

3. Main results

The proof of the following theorem is similar to that of Lemma 2 in [28]. For completeness, we give
its proof.

Theorem 3.1. Let {mj}
∞
j=1 ⊂ {1, 2, . . .} and let {pj}

∞
j=1 ⊂ {mj}

∞
j=1 and {qj}

∞
j=1 ⊂ {mj}

∞
j=1 be two infinitely

increasing sequences. Then, for any nonautonomous discrete dynamical system (W,g1,∞) on a separable metric
space with at least two points (W,d), there is an infinitely increasing subsequence {tj}∞j=1 ⊂ {mj}

∞
j=1 with

AR(g1,∞, {pj}∞j=1)∩DR(g1,∞, {qj}∞j=1) ⊂ DCR(g1,∞, {tj}∞j=1).

Proof. Write {sj}
∞
j=1 = {pj}

∞
j=1 ∩ {rj}∞j=1. Clearly,

AR(g1,∞, {pj}∞j=1)∩DR(g1,∞, {qj}∞j=1) ⊂ AR(g1,∞, {sj}∞j=1)∩DR(g1,∞, {sj}∞j=1).

If {sj}∞j=1 is an infinite set, then

AR(g1,∞, {pj}∞j=1)∩DR(g1,∞, {qj}∞j=1) = ∅ ⊂ DCR(g1,∞, {tj}∞j=1).

If {sj}∞j=1 is a finite set, then, without loss of generality, one can assume that {sj}∞j=1 = ∅.
It is easily seen that for any

(a,b) ∈ AR(g1,∞, {pj}∞j=1)∩DR(g1,∞, {qj}∞j=1),

lim
j→∞d(gpj

1 (a),gpj

1 (b)) = 0
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and
inf{d(gqj

1 (a),gqj

1 (b)) : j ∈ {1, 2, . . .}} > 0.

So, one has that for any ε > 0, there is an integer M > 0 such that d(gpj

1 (a),gpj

1 (b)) < ε for any integer
j > M, and that there is δ > 0 such that d(gqj

1 (a),gqj

1 (b)) > δ for any integer j > M.
Pick

{nj}
∞
j=1, {kj}∞j=1 ⊂ {1, 2, . . .}

with n1 = 1, nj+1 = 2jnj and kj = j2 for any j ∈ {1, 2, . . .}. Also, one can choose an infinitely increasing
subsequence {tj}

∞
j=1 ⊂ {mj}

∞
j=1 such that for any j ∈ {1, 2, . . .},

{tj : nkj−1 < i 6 nkj
} ⊂ {pj}

∞
j=1 and {tj : nkj

< i 6 nkj+1} ⊂ {qj}
∞
j=1.

Therefore, one has that for any ε > 0 and any sufficiently large j ∈ {1, 2, . . .} with nkj−1 < i 6 nkj
,

d(gti1 (a),gti1 (b)) < ε.

Hence, one can get that

1 >
1
nkj

nkj∑
l=1

χ[0,ε)(d(g
tl
1 (a),gtl1 (b))) >

nkj
−nkj−1

nkj

= 1 −
1

2j2 − 2
.

This means that

lim
j→∞ 1

nkj

nkj∑
l=1

χ[0,ε)(d(g
tl
1 (a),gtl1 (b))) = 1.

Clearly, for any sufficiently large i ∈ {1, 2, . . .}, if nki
< l 6 nki+1 , then we have that

d(gtl1 (a),gtl1 (b)) > δ.

Hence, one can get that

0 >
1

nki+1

nki+1∑
l=1

χ[0,ε)(d(g
tl
1 (a),gtl1 (b))) 6

nki

nki+1
=

1
2j2

.

This means that

lim
i→∞ 1

nki+1

nki+1∑
l=1

χ[0,ε)(d(g
tl
1 (a),gtl1 (b))) = 0.

Thus, (a,b) ∈ DCR(g1,∞, {tj}∞j=1).

Motivated by Lemma 2 in [20] and its proof we can extend this lemma to nonautonomous discrete
dynamical systems and establish the following result.

Theorem 3.2. Suppose that (W,g1,∞) is a transitive nonautonomous discrete dynamical system, where W is a
separable metric space with at least two points. If g1,∞ is topologically weakly mixing and satisfies that gn1 ◦ gm1 =
gn+m

1 for any n,m ∈ {0, 1, . . .}, then it is distributional chaos in a sequence.

Proof. By Theorem 3.1, it is enough to show that there is a residual set S ⊂W with

S× S ⊂ AR(g1,∞, {tj}∞j=1)∩DR(g1,∞, {tj}∞j=1).

Let p ∈W be a transitive point of the system (W,g1,∞). Then the positive semiorbit

O+
g1,∞(p) = {x,g1(p), . . . ,gn1 (p), . . .}



Y. Zhao, R. Li, H. Wang, H. Liang, J. Math. Computer Sci., 20 (2020), 14–20 18

of p under g1,∞ is dense in W, where gni = gi+n−1 ◦ · · · ◦ gi and g0
i is the identity map. So, for any

nonempty open set U ⊂W, the set

{n : gn1 (b) ∈ U,n ∈ {0, 1, . . .}}

is not bounded above. Let a ∈W and M > 0, set

Sa(M) = {gs1(a) : 0 6 s 6M, s ∈ {0, 1, . . .}}.

Assume that U ⊂W is an open set and that M0 > 0 is given. In the following, we will prove that there is
an integer M > M0 such that gM1 (a) ∈ U. Let V = W − Sa(M0). If V 6= ∅, then V is nonempty and open.
As g1,∞ is topologically weakly mixing, g1,∞ is topologically transitive. So, there are v ∈ V and an integer
sv > 0 with gsv1 (v) ∈ U. If v ∈ Sa(M0), then there is s0 > M0 with v = gs0

1 (a). Set s = s0 + sv. Then one
has that s > M0 and

gs1(a) = g
s0+sv
1 (a) = gsv1 (gs0

1 (a)) = gsv1 (v) ∈ U.

Assume that V = ∅ and let b ∈ W. Then b ∈ O+
g1,∞(a). That is, there is sb > 0 with b = gsb1 (a). So, there

is a periodic positive semiorbit P with gs1(b) ∈ P for some s > 0. Put

s = {s > 0 : gs1(b) ∈ P, s ∈ {0, 1, . . .}}

and
Ab = {gs1 : s >

1
2
s, s ∈ {0, 1, . . .}}.

Set V1 =W − Sa(
1
2s+ sb) and V2 =W −Ab. If s > 0, then V1 ⊂W and V2 ⊂W are nonempty open sets.

Then, for any q ∈ V1, there is sq > 1
2s with q = g

sq
1 (b). As, sq + s > 1

2s for any integer s > 0,

gs1(q) = g
s
1(g

sq
1 (b)) = g

sq+s

1 (b) ∈ Ab

for any integer s > 0. By the definition of V2, one can see that gs1(q) /∈ V2 for any integer s > 0. That is,
gs1(V1)∩ V2 = ∅ for any integer s > 0. This contradicts the transitivity of g1,∞. Consequently, one has that
s = 0. That is, g0

1(b) = b ∈ P. Obviously, there exists M >M0 with gM1 (a) = b ∈ U.
Let S = {(x,y) ∈ W ×W : {(gs1(x),g

s
1(y)) : s ∈ {0, 1, . . .}} is dense }. As W is a separable metric space,

W ×W is a separable metric space. So, W ×W has a countable base {U1,U2, . . .}. It is easily seen that

∞⋂
m=1

∞⋃
s=0

g−s
1 × g−s

1 (Um),

where g−s
1 × g−s

1 (Um) = (gs1 × gs1)−1(Um). It is clear that for any integer m > 1,

∞⋃
s=0

g−s
1 × g−s

1 (Um) ⊂W ×W

is nonempty and open. By the the topologically weak mixing of g1,∞,

∞⋃
s=0

g−s
1 × g−s

1 (Um)

is dense. This shows that S ⊂ W ×W is a residual set. Choose x0,y0 ∈ W with x0 6= y0. By the above
argument, for any (x,y) ∈ S there exist increasing sequences {si}

∞
i= ⊂ {1, 2, . . .} and {s ′i}

∞
i= ⊂ {1, 2, . . .} of

integers with

lim
i→+∞d(gsi1 (x),gsi1 (y)) = d(x0, x0) = 0 and lim

i→+∞d(gs
′
i

1 (x),gs
′
i

1 (y)) = d(x0,y0) > 0.
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Therefore,
(x,y) ∈ AR(g1,∞, {sj}∞j=1)∩DR(g1,∞, {s ′j}

∞
j=1).

By Theorem 3.1, there is {ti}
∞
i=1 ⊂ {sj}

∞
j=1 ∪ {s ′j}∞j=1 with

AR(g1,∞, {sj}∞j=1)∩DR(g1,∞, {s ′j}
∞
j=1) ⊂ DCR(g1,∞, {tj}∞j=1).

Consequently, S is the set of distributional chaos in the sequence {ti}
∞
i=1. This means that g1,∞ is distribu-

tional chaos in a sequence.
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