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Abstract

In this research, the problem of scheduling flexible flowshop system with machine breakdown,
machine eligibility, machine-dependent setup time and sequence-dependent setup time to minimizing
total weighted earliness and tardiness is studied. Firstly, the problem is formulated as a Mixed
Integer Linear Programming model. With this mathematic model, small-sized instances are solved
to optimality. The considered problem is too difficult to be optimally solved for large problem sizes,
and hence two metaheuristics algorithms namely genetic algorithm (GA) and imperialist competitive
algorithm (ICA) are proposed to afford large-sized instances. Due to the sensitivity of the proposed
algorithms to parameter’s values, the taguchi method as an optimization technique to widespread
tune different parameters of applied algorithms is employed to improve solutions authenticity. These
proposed algorithms were coded and tested on randomly generated examples, then to accredit the
effectiveness of them computational results are examined in terms of relative percentage deviation.
Moreover, some sensitive analyses are executed for comparing the performance of algorithms in
various conditions. The computational evaluations expressly confirm the high performance of the
proposed genetic algorithm against imperialist competitive algorithm for related scheduling problem.
c©2016 All rights reserved.

Keywords: Flexible flowshop, mixed integer linear programming, genetic algorithm, imperialist
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1. Introduction

Scheduling is a kind of decision-making that has a prominent figure in industrial and manufacturing
systems. In fact, scheduling and sequencing allocate the available resources to perform certain
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activities in an efficient manner. Flexible flowshop is one of the most applied scheduling problem
which has begun to be taken seriously in modern industry and received remarkable consideration
from researchers in recent years [6, 7, 22, 28].
The flexible flowshop scheduling problem (FFSS), also called compound flowshop, multi-processor
flowshop, or hybrid flowshop, consists of two or more processing stages in series with at least one
stage having two or more parallel machines. Because of duplication of the number of machines in
some stages additional flexibility is created, buffer between any two successive stages is unlimited,
the overall capacities are increased and bottlenecks if some operations be too long are avoided [21].
In FFSS each job has to undergo a series of operations and visit all stages in the same order. Moreover,
a machine can process at most one job at a time and a job has to be processed at each stage only
on one of the machines. The problem consists of assigning the jobs to machines at each stage and
sequencing the assigned jobs to the same machine so that some optimality criteria are minimized.
FFSS is known to be a NP-hard problem [41].Therefore many algorithms based on computational
intelligence are proposed for FFSSs [18, 19, 24]. Arthanari & Ramamurthy [2] and Salvador [31] are
among the first who define the flexible flowshop problem. They applied a branch-and-bound method
to optimization problem.
Botta-Genoulaz [8] used six new heuristics approach to solve the hybrid flowshop (HFS) scheduling
problem with precedence constraints and time lags. The purpose was to minimize maximum lateness.
Moursli &Pochet [25] presented a branch and bound algorithm to minimize makespan. Yang et al.
[39] defined and analyzed three heuristic ways based on decomposition methods and local search to
minimize the total weighted tardiness of jobs with release dates for the hybrid flowshop scheduling
problem. Gupta et al. [15] proposed heuristics to solve the HFS problem where the processing times
of the operations on some machines might be different and a due date assignment cost was included
into the objective function. The aim was to minimize makespan.
Su [33] studied a two-stage hybrid flowshop problem with a batch processor in stage 1 and a single
processor in stage 2. Engin & Döyen [10] used a computational method based on clonal selection
principle and affinity maturation mechanism of the immune response for the hybrid flowshop schedul-
ing problem. Tang et al. [34] proposed a neural network model and algorithm to solve the dynamic
HFS scheduling problem. They employed a two stages approach to tackle the problem. Xie & Wang
[38] considered the two-stage flexible flowshop scheduling problem with availability constraints. They
discussed the complexity and the assessments of the problem and provided some approximation al-
gorithms. Ruiz & Maroto [30] presented a metaheuristic, in the form of a genetic algorithm, for a
complex generalized flowshop scheduling problem that results from the addition of unrelated parallel
machines at each stage, sequence dependent setup times and machine eligibility. Tang et al. [35]
investigated the problem of scheduling n jobs in s-stage hybrid flowshops with parallel identical
machines at each stage. The objective was to minimize the sum of weighted completion times of the
jobs. Jin et al.[19] considered the multistage hybrid flowshop scheduling problem, in which each stage
consisted of parallel identical machines. The problem was to determine a schedule that minimizes
the makespan for a given set of jobs over a finite planning horizon. They proposed two metaheuristic
algorithms that the procedure of them was based on simulated annealing and the variable-depth
search.
Vob & Witt [36] considered a real-world multi-mode multi-project scheduling problem in which the
resources form a hybrid flowshop consisting of 16 production stages. Allahverdi et al. [1] had put
together a much more updated and comprehensive review of scheduling research with setup times
in which other relevant papers related to the sequence dependent setup flowshop can be found.
Naderi et al. [26] studied general hybrid flow shops with the NSDST and transportation times to
separately minimize total completion and tardiness times. They consider a single-transporter sys-
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tem with job-dependent transportation times and then propose a simulated annealing (SA) with
advanced operators to solve the problem. Figielska [11] proposed a heuristic that combined column
generation technique with a genetic algorithm or a simulated annealing algorithm for solving the
problem of scheduling in a two-stage flowshop with parallel unrelated machines and additional re-
newable resources at the first stage and a single machine at the second stage. The objective was the
minimization of makespan.
Jungwattanakit et al. [20] proposed a GA for bi-objective hybrid flowshop with unrelated machines
and setup times. Gholami & Zandieh [13] presented an immune algorithm for SDST hybrid flow shops
scheduling with machines suffering stochastic breakdowns to optimize expected makespan. Yaurima
et al. [40] considered an important production scheduling problem and presented a genetic algorithm
to solve it. They focused on suboptimal scheduling solutions for the hybrid flowshop with unrelated
machines, sequence-dependent setup time, availability constraints, and limited buffers. Wang & Tang
[37] investigated the hybrid flowshop scheduling with finite intermediate buffers, whose objective was
to minimize the sum of weighted completion time of all jobs and proposed a tabu search heuristic.
Behnamian et al. [5] considered the problem of sequence-dependent setup time hybrid flowshop
scheduling with the objectives of minimizing the makespan and sum of the earliness and tardiness
of jobs. They presented a multi-phase method to solve the problem. Nishi et al. [27] addressed a
new Lagrangian relaxation method for solving the hybrid flowshop scheduling problem to minimize
the total weighted tardiness. Heydari & Mohammadi [16] generalized Johnson’s results for more
than two-machine flow shop problems with the objective of minimizing makespan and used a fuzzy
heuristic algorithm.
Choi et al. [9] developed a real time scheduling algorithm with a decision tree selecting one of multiple
dispatching rules for a flexible flowshop with reentrant flows for the objectives of the throughput, the
mean flow and tardiness, and the number of tardy jobs. Behnamian & Fatemi Ghomi [4] considered
sequence-dependent setup time hybrid flowshop scheduling problems. They presented a new solution
presentation method and a robust hybrid metaheuristic for combination of two multiple objective
decision-making methods, min–max and weighted techniques. Bellanger et al. [7] studied a three-
stage hybrid flowshop problem that the first stage corresponded to the receiving docks, the second
stage corresponded to the sorting stations, and the third stage corresponded to the shipping docks.
The objective of the problem was to find a schedule that minimizes the completion time of the
latest batch. They proposed a branch-and-bound algorithm to solve the problem. Seidgar et al.,
[32] considered a two stages HFS problem with sequence dependent set up times. The objective was
to minimize the weighted sum of completion time and maximum tardiness. They used a genetic
algorithm approach to solve the problem.
Pan et al. [28] present an effective discrete artificial bee colony algorithm for hybrid flowshop schedul-
ing with the objective of minimizing the make span. Figielska [12] proposes a heuristic for solving
a two-stage hybrid flowshop with one machine at the first stage and parallel unrelated machines at
the second stage. The heuristic first sequences jobs on the machine at stage 1 and then solves the
preemptive scheduling problem at stage 2.
To the best of our knowledge, FFSS problems considering machine breakdown constraint, machine-
dependent setup time and sequence-dependent setup time, machine eligibility at the same time
have not been investigated. Hence, in this research two metaheuristic algorithms namely genetic
algorithm (GA) and imperialist competition algorithm (ICA) for solving the FFSS to minimizing the
total weighted earliness and the total weighted tardiness are proposed. The remainder of this study
is arranged as follows: in Section 2 the problem outline and assumptions are presented. Section 3
formulates the problem as a mixed integer linear program. In Section 4 the proposed algorithms
for solving the considered problem is elaborated. Section 5 addresses the computational evaluation
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including parameter calibration, data generation and experimental results. Finally, the conclusion
and some further research suggestions are presented in Section 6.

2. Problem definition

In this section, first the assumptions of the studied problem are elaborated then the notations which
are used to describe the problem are defined.

2.1. Assumptions

The FFSS with machine and sequence dependent setup times, machine breakdown and machine
eligibility can be described as follows:
This problem consists of performing a set of n independent jobs, J= {1,...,j,...,n} which have to
process through k subsequent stages. There is a due date dj and rj for each job j. The number of
machines in parallel at each stage k is shown by mt. Processing time of job j on machine i is described
by Pij. A setup time of a job is machine-dependent if it depends on the machine to which the job
is assigned. It is assumed to occur only when the job is the first job assigned to the machine. chtij
denotes the machine-dependent setup time of job j if job j be the first job assigned to the machine
i at stage t . Sequence-dependent setup time between job j and job l at stage t is depicted by Stjl.
Each machine maybe breakdown after processing each job and probability of breakdown depends on
the type of job and complexity of operation. The probability of breakdown for machine at stage t
after processing job j is denoted by pdtj . All m machines are not capable of processing job j. Set
Mj (M j ? Mi) denotes the set of machines that can process job j.
It is also assumed that machine at stage t requires a constant time Rt to repair after breakdown.
The characteristics of the considered problem are as follows:

1. Preemption of processing is not allowed. It means that, when a job is started on the first
machine, it must be processed through all machines without any preemption and interruption.

2. Each stage has at least one machine and at least one stage must have more than one machine.

3. Each machine can process only one job at a time.

4. Each job can be performed by at most one machine at a time.

5. There is an unlimited buffer between every two consecutive stages.

6. Machines may not always be available during the scheduling period.

7. Setup times depend on sequencing of jobs which means the setup times are sequence dependent
and the length of time required to do the setup depends on the previous and current jobs and
the machine in mentioned stage to be processed (Stjl).

8. Machine-dependent setup time will be occurring only when the job is the first job assigned to
the machine (chtij).

9. The penalty weights could be different for jobs based on their priority importance.

The scheduling problem under consideration has objective, namely minimizing the cost criterion
consisting of the total weighted earliness and the total weighted tardiness.

2.2. Notations

The notations are defined as below:
n The number of jobs to be scheduled (j=1, 2, ..., n)
t The number stage (t = 1, 2, 3,..., k)
mt The number of parallel machines at stage t, (i = 1, 2, 3,...,mt)
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rj Release date of job j
dj Due date of job j
Pij Processing time of job j on machine i
Stjl Setup time of job l if l is immediately processed after job j at stage t

chtij Setup time of job j if job j is sequenced as the first job on machine i at stage t
pdtj Probability of machine breakdown at stage t after processing job j
Rt Repair time of machine at stage t after breakdown
avti Ready time for machine i at stage t
Ct
j Completion time of job j at stage t

Ct
l Completion time of job l at stage t

Ej Earliness of job j, Ej =max {0,dj − Ck
j }

Tj Tardiness of job j, Tj =max {0,Ck
j − dj}

αj Earliness penalty for job j
βj Tardiness penalty for job j
M ′ A large positive integer number

M t
ij=

{
1 if job j can be processed on machine i at stage t
0 otherwise

X t
ij =

{
1 if job j is sequenced on machine i at stage t
0 otherwise

Y t
ijl =

{
1 if job j is sequenced on machine i before job l at stage t
0 otherwise

3. The mathematical model

The objective function and constraints can be formulated as follows:
Minimize Z=

∑n
j=1 (αjEj + βjTj)

Subject to:

mt∑
i=1

X t
ij = 1, j = 1. . .n, t = 1. . .k (3.1)

n∑
l=1

Y t
ijl ≤X t

ij, i = 1. . .m, j = 1. . .n, t = 1. . .k (3.2)

n∑
j=0

Y t
ijl = X t

il, i = 1. . .m, l = 1. . .n, t = 1. . .k (3.3)

n∑
l=1

Y t
i0l = 1, i = 1. . .m, t = 1. . .k (3.4)

X t
ij ≤ M t

ij, i = 1. . .m, j = 1. . .n, t = 1. . .k (3.5)

Ct
l − Ct

j ≥ Stjl + P t
il ∗ Y t

ijl + pdtj ∗Rt +
(
Y t
ijl − 1

)
∗ Ḿ, j = 1. . .n, i = 1. . .m, t = 1. . .k (3.6)
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Ct
j ≥ 0, j = 1. . .n, t = 1. . .k (3.7)

Ct
l − Ct−1

l ≥
mt∑
i=1

n∑
j=1

Y t
ijl ∗ Stjl +

mt∑
i=1

chil ∗ Y t
i0l +

mt∑
i=1

n∑
j=1

Pil ∗ Y t
ijl +

mt∑
i=1

Pil ∗ Y t
i0l

+
n∑
j=1

pdj ∗Rt ∗ Y t
ijl, l = 1. . .n, t = 1. . .k, j6=l

(3.8)

Ct
l ≥

mt∑
i=1

avti ∗ Y t
i0l +

mt∑
i=1

chtil ∗ Y t
i0l +

mt∑
i=1

Pil ∗ Y t
i0l, l = 1. . .n, t = 1. . .k (3.9)

C0
j ≥ rj, j = 1. . .n (3.10)

Tj ≥ Ck
j − dj, j = 1. . .n (3.11)

Tj ≥ 0, j = 1. . .n (3.12)

Ej ≥ dj − Ck
j , j = 1. . .n (3.13)

Ej ≥ 0, j = 1. . .n (3.14)

In the above formulation, constraints (3.1)–(3.5) ensure that the partial schedule on each machine
at each stage is feasible. Constraint (3.1) states that each job can be processed by only one machine
at each stage. Constraints (3.2) and (3.3) ensure that each job be processed immediately before and
immediately after only one job on each machine at each stage. Constraint (3.4) specifies the first
job that is assigned to each machine at stage t. Relation (3.5) introduces the machine eligibility. As
mentioned in notation part, M t

ij will be 1 if job j can be processed on machine i at stage t ; otherwise
the value of this parameter will be zero. The possibility of processing job j on machine i at stage
t specifies by processing set of job j ( M t

j). Set Mj (M j ? Mi) denotes the set of machines that
can process job j. This constraint stipulates model to allocate machine i for job j and considering
M t

ij. If M t
ij be 1, value 1 will be assigned to decision variable X t

ij. Constraints (3.6)–(3.10) find
the completion time of every job. Constraint sets (3.11) and (3.12) determine the correct value of
the tardiness (Tj). Constraint set (3.11) determines the correct value of the lateness (Lj) and (3.12)
specifies only the positive lateness as the tardiness (Tj=max {0, Ck

j − dj}). In relations (3.13) and
(3.14) the correct value of the earliness (Ej) are determined (Ej=max {0,dj − Ck

j }).

4. Proposed algorithms

In this section, two proposed algorithms, entitled genetic algorithm and imperialist competitive
algorithm are elaborated respectively for solving the addressed problem.The frameworks of these
algorithms are explained in the following:
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4.1. Genetic algorithm

Genetic algorithm (GA) as a search process, is more general and synopsis than the other optimization
methods that can be used to solve the scheduling problems. The interested reader can consult
Goldberg [14] and Reeves [29] for more details about the GA approach and its applications. In this
study a convenient representation is used in order to apply GA to determine a special problem. The
solution is represented by a set of parameters known as genes joined together and referred to as
chromosomes or individuals. The chromosomes define the current population. The quality of each
chromosome is defined by a fitness function. New population is obtained from the current one using
selection, crossover and mutation mechanisms in iterations. Only fittest chromosomes are selected
from new and current population and used in next iteration [17, 23]. The factors which characterize
the applied GA to the considered problem in this study are determined as follows.

4.1.1. Solution representation: The proposed representation for the GA to solve the scheduling
problem is based on decoding all n jobs and t stages as chromosomes in a t-by-(n +M t–1) matrix
witch M t is the maximum number of machine in the problem. In this type of representation, in each
row, (mt– 1) genes (mt is the number of machine in each row) consist of ‘*’s used to differentiate
from one machine to the other one. i-th gene at t-th row contains 1 if job j was processed on machine
i.

4.1.2. The initial Population: An Initial population contains chromosomes that the quantity of
these chromosomes is equivalent to population size (Popsize), is generated by the mentioned method.

4.1.3. Decoding method: Decoding process is based on a heuristic way. In this method, firstly,
number of jobs that can be processed on every machine at each stage is specified. Afterward, jobs
are randomly allocated on the machines. An example for chromosome decoding is shown in Fig. 1
In this example; there are 6 jobs, 3 identical parallel machines at the first stage and 2 machines at
second stage. As shown in Figure jobs 5, 2 and 1 with order 5→2→1 are assigned to machine 1;
jobs 6 and 4 are assigned to machine 2 and Job 3 is assigned to the last machine at stage 1. It is
important to note that, the sequence of jobs is represented by the numbers of genes from the left
side to the right side.

Figure 1: Decoding chromosome scheme

4.1.4. Evaluation: Fitness function for allocating the selecting probability of chromosomes is
defined as follow:

fk =
1

1 +
∑n

j=1 αjEj + βjTj
(4.1)

The defined fitness function is according to the objective function of the proposed problem.
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4.1.5. Selection strategy: The Roulette wheel selection procedure is used for selecting individuals.
A probability of selection is assigned to each chromosome based on its fitness value. Not only better
individuals will have a higher probability for selection but also all individuals in the population will
have a chance to be selected. After ranking individuals based on their corresponding fitness and
giving weighted probability of selection to each individual in the population, the parents will be
randomly selected.

4.1.6. Crossover: A random crossover operator with probability Pc(crossover rate) is applied to
each pair of parent chromosomes. According to the number of the stage of the problem, one or more
row of parents is randomly selected and exchanged for each other (Fig. 2).

Figure 2: Crossover operation

4.1.7. Mutation: One individual in the population and one stage of it is randomly considered.
Then two jobs in the considered stage are randomly selected. Mutation operator is worked by
swapping two jobs in the selected chromosome with a probability Pm (mutation rate). Selected jobs
may be on one machine or two different machines. The selected jobs on two different machines can
be exchanged if can be processed on the other machines. Mutation operation is shown at Fig. 3.

Figure 3: Mutation operation

4.2. Imperialist competitive algorithm

Imperialist competitive algorithm (ICA) is a new evolutionary algorithm to solve the optimization
problems. ICA uses the sociopolitical evolution of humans as a source of revelation for expanding a
strong optimization strategy [3]. This algorithm starts with an initial population named ‘Country’
in which these countries are divided into two types of colonies and imperialists according to their
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power. Some of the best (most powerful) countries are selected to be the imperialist and the rest of
the colonies are dispensed among the imperialists. The more powerful imperialists will have more
colonies. The power of each country is a simulation of its objective function value in the considering
model. Following this approach, initial empires are created and competition will begin. Imperialists
endeavor to get more colonies and colonies tend to move towards their imperialists. This competition
leads to the decline of weak empires and the development of more powerful ones. At the end just
one imperialist will remain which has the same position as its colonies.

4.2.1. Generating initial empires: In this algorithm solution is denoted by a 2-dimension matrix
(similar to chromosome in applied GA)

country = [p1, p2, . . . , pN ]. (4.2)

Where Pi is a socio-political specific of a country and is considered to be optimized. In this model
N is equal to (n +M t–1). The power of an empire which is the counterpart of the fitness value in
GA is reversely proportionate to its cost. To evaluate the cost of each solution, a cost function (f )
at the variables (p1, p2, . . . , pN) is used as follows:

Costi = f(countryi) = f(p1, p2, p3, . . ., piN). (4.3)

In this algorithm f is defined as follows:

f = min

(
n∑
j=1

ejEj + tjTj

)
. (4.4)

For creation of the initial empires, the number of Nimp countries are selected which have the mini-
mum cost as imperialists and consider all remaining countries as colonies with the number of Ncol,
where these colonies are dispensed among the imperialists according to each imperialist normalized
cost.The normalized cost of each imperialist represents imperialist power to absorb colonies and will
be computed as follows:

Cn = max {ci} − cn . (4.5)

Where cn is the cost of nth imperialist and Cn is its normalized cost of all imperialists. The
remaining Ncol (Ncol = Npop –Nimp) of the population will be the colonies of these empires.
To calculate the proportionate power for each imperialist (Pn) the following equation is used:

pn =

∣∣∣∣∣ Cn∑Nimp

i=1 Ci

∣∣∣∣∣ . (4.6)

Then the initial number of colonies which could be belonged to nth imperialist is:

N.Cn = round{Pn..(Ncol)}. (4.7)

The number of N.Cn of colonies are randomly selected to allocate them to each imperialist in which
the more powerful imperialists have the more colonies.

4.2.2. Assimilation: In each empire, colonies tend to improve their power moving toward their
imperialist which is called assimilating. To execute assimilating, crossover and mutation operators
(similar to crossover and mutation operators in proposed GA) are used. Two countries are randomly
selected, so that the first country is the imperialist and second one is the colony. After implementing
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crossover operation two new countries will be generated and the objective value of them and the
colonial country will be computed. If the objective value of the generated countries be better (lower
cost) than current solution, the country with lower cost will be replaced as the colonial country. Now
the mutation operation on the new solution (like proposed GA) will be implemented and the new
cost of it will be computed. If the computed objective value be lower than the current solution, the
mutant country will be replaced.

4.2.3. Exchanging positions between imperialists and colonies: During the competition and
moving colonies towards the imperialists a colony might keep improving and get a cost less than
the imperialist. It leads to swapped positions between the imperialist and the improved colony and
creation of a new empire. This process will proceed during the algorithm (see Fig. 4).

4.2.4. Total Power of an Empire: Total power of an empire is basically affected by the power
of imperialist country. In order to measure total power of an empire both the imperialist’s power
and cumulative power of colonies are considered, but the main affect effected by imperialist’s power
through the cumulative power of the colonies has a partial share with a positive constant factor
between 0 and 1 called ξ. So, the equation of total cost is defined as follows:

T.Cn = Cost(imperialistn) + ξmean{Cost(coloniesofempiren) (4.8)

Figure 4: A: Exchanging the positions of a colony B: The entire empire after position exchange.

Where T .Cn is the total cost of the nth empire and ξ is a positive number which is considered to
be less than 1. A little value for ξ causes the total power of the empire to be determined by just the
imperialist and increasing it will increase the role of the colonies in determining the total power of
an empire. We have used the value of 0.1 for ξ in most of our implementation.

4.2.5. Imperialistic competition: As all empires tend to take the attainment of the colonies of
the other empires and control them, the imperialistic competition gradually brings about a decrease
in the power of weaker empires and an increase in the power of the more powerful one. Imperialistic
competition executes by picking one (or some) colony or colonies. By this procedure, the most
powerful empires will be more likely to possess weak colonies according to the possession probability of
each empire. Possession probability of each empire is calculated based on its total power. Normalized
total cost of nth empire is obtained by

N.T.C.n = maxi (T.C.i)− T.C.n , i = 1; 2; ...;Nimp. (4.9)

Where T.C.n and N.T.C.n are normalized total cost and total cost of nth empire respectively. Now
the possession probability of each empire is as

PPn =

∣∣∣∣∣ N.T.C.n∑Nimp

i=1 N.T.C.i

∣∣∣∣∣ . (4.10)
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To distribute colonies among empires based on their possession probability based on [3] a new method
that has less computational effort than Roulette Wheel selection can be used. For this at the
beginning vector P is formed as

P = [Pp1, Pp2, . . ., PpNimp
]. (4.11)

Now a vector with the same size as P is created and its elements must be uniformly distributed
random numbers between 0 and 1.

R = [r1, r2, . . ., rNimp
]. (4.12)

Then vector D will be obtained by

D = P −R =
[
D1, D2, D3, . . . , DNimp

]
= [Pp1 − r1, Pp2 − r2, . . . , PpN imp

− rNimp
]. (4.13)

Referring to vector D the mentioned colonies to an empire will be given with maximum index in D.

4.2.6. Eliminating the powerless empires: During imperialistic competition, powerless empires
will collapse so that their colonies will be allocated to other powerful empires. Many criteria can be
assumed to expurgate the powerless empires. In this research an empire will be collapsed when it
misses all of its colonies.

4.2.7. Convergence: After a while all empires except the most powerful one will be terminated
and all colonies will be under control of this unique empire. In such a situation, an end will be placed
to the imperialistic competition and the algorithm will be stopped.

5. Computational experiments

5.1. Generation of test data

To inquire the effectiveness of the proposed approaches, 10 test problems are considered and each
algorithm is run ten times. The problem data can be specified by eight factors in terms of the number
of jobs, number of stages, distribution of number of machines at each stage, distribution of processing
time, distribution of due dates, distribution of release date, distribution of weight of earliness and
tardiness, distribution of processing speed of machines. (Uniform distribution is used to generate
these parameters.) All parameters and their distributions are shown in Table 1 concisely.

Table 1: Factors and their levels

factor Level
Processing times U∼ [10,30]
Release dates U∼ [0,8]
Number of machines in
each stage

U∼ [1,6]

Number of jobs 4, 6, 10, 20, 40, 60
Due dates d

j = (1 + U ∼ [0, 1]×3)×
(

k
mintεk

(mt)
)
× (si + pi)

i = 1 . . . n
Weight of earliness and
tardiness

U∼[1,5]

Machines’s speed U∼[2,8]
Number of stages 3,5,7
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The total processing time of each job on all k stages, average setup time for all possible subsequent
jobs and sum of them for all k stages and due date for each job are computed as follow:

pj =
k∑
t=1

ptj, j = 1. . .n, t = 1. . .k , (5.1)

sj =
k∑
t=1

∑n
l=1,j 6=l s

t
jl

n− 1
, j = 1. . .n, (5.2)

dj = (rj + random× 3)× (k/mintεk (mt))× (si + pi). (5.3)

Where random is a random number from a uniform distribution over range [0, 1].

5.2. Parameter tuning
It is known that how to choose the parameters has a considerable influence on the performance of
algorithms. In this study the configuration of parameters is down by the Taguchi method. The
taguchi method accentuates a mean performance specification value close to the objective value
rather than a value within certain characteristic limits, hence prospering the final quality .This is
the supremacy of Taguchi method on the other calibrations methods. Additionally, this method for
experimental design is straight and easy to apply for many engineering situations. This makes it a
powerful yet simple tool. In order to procure preferable and more sturdy results for the proposed
algorithms, 7 parameters are considered for tuning. These parameters are PopGA, Pc, Pm, Gmax,
PopICA, decade and PICA.
Some primary tests are run to find proportionate parameter levels before calibration of the applied
algorithms. These parameters and their levels, which appertain to two algorithms, are given in Table
2.
All combination test problems based on the taguchi method, solutions and computation times of the
proposed algorithms are presented in Table 3.
By computing all of the experimental results in the Taguchi method, the average S/N ratio and
average solution have been acquired for both algorithms and are shown in Figs 5–8, respectively.

Table 2: Algorithm parameters and their levels

factor level

PopGA 200, 300, 400

Pc 0.6, 0.7, 0.8

Pm 0.10, 0.12,
0.15

Gmax 200, 300, 400

Pmu 0.1, 0.15, 0.2

PopICA 300, 400, 500

decade 300, 200, 400

PICA 0.08, 0.10,
0.12
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Figure 5: The S/N ratio plot for GA in Taguchi methodology.

Figure 6: The S/N ratio plot for ICA in Taguchi methodology
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Table 3: Results of the proposed algorithms and CPU times (in seconds) for 27 test problems.

PopGA PopICA PICA P c Pm Pmu Gmax decade Solution
(GA)

Solution
(ICA)

GA.CPU
time(s)

ICA.CPU
time(s)

200 300 0.08 0.6 0.10 0.10 200 200 164.00 85.2 6.56 0.66
200 300 0.08 0.6 0.10 0.10 300 200 42.00 40.6 11.80 0.82
200 300 0.08 0.6 0.10 0.10 400 200 46.70 40.2 13.73 1.13
200 300 0.10 0.7 0.12 0.15 200 300 40.00 36.0 8.50 0.65
200 300 0.10 0.7 0.12 0.15 300 300 13.67 23.0 12.60 0.83
200 300 0.10 0.7 0.12 0.15 400 300 32.33 27.8 13.75 1.14
200 300 0.12 0.8 0.15 0.20 200 400 66.33 46.2 12.45 0.65
200 300 0.12 0.8 0.15 0.20 300 400 26.33 31.4 16.58 0.80
200 300 0.12 0.8 0.15 0.20 400 400 27.00 30.8 20.70 1.15
300 400 0.10 0.6 0.12 0.20 200 200 20.67 19.0 14.17 1.29
300 400 0.10 0.6 0.12 0.20 300 200 14.33 19.0 23.07 1.86
300 400 0.10 0.6 0.12 0.20 400 200 48.33 25.6 12.80 0.98
300 400 0.12 0.7 0.15 0.10 200 300 20.33 30.6 16.21 1.27
300 400 0.12 0.7 0.15 0.10 300 300 21.67 37.8 22.89 1.87
300 400 0.12 0.7 0.15 0.10 400 300 44.67 36.2 13.21 0.99
300 400 0.08 0.8 0.10 0.15 200 400 18.67 19.0 22.58 1.28
300 400 0.08 0.8 0.10 0.15 300 400 22.33 21.8 23.54 1.92
300 400 0.08 0.8 0.10 0.15 400 400 49.10 23.0 12.51 0.98
400 500 0.12 0.6 0.15 0.15 200 200 15.00 21.4 28.12 2.55
400 500 0.12 0.6 0.15 0.15 300 200 45.20 24.6 14.30 1.25
400 500 0.12 0.6 0.15 0.15 400 200 26.57 19.0 20.01 1.77
400 500 0.08 0.7 0.10 0.20 200 300 14.87 22.6 27.95 2.59
400 500 0.08 0.7 0.10 0.20 300 300 14.65 26.0 27.80 1.24
400 500 0.08 0.7 0.10 0.20 400 300 13.00 23.4 29.14 1.66
400 500 0.10 0.8 0.12 0.10 200 400 8.60 32.2 34.00 2.60
400 500 0.10 0.8 0.12 0.10 300 400 9.20 28.2 31.23 1.30
400 500 0.10 0.8 0.12 0.10 400 400 7.60 22.6 31.46 1.74

Table 4: S/N ratio table for GA and ICA.

Level PopGA P c Pm Pmu Gmax PopICA decade P ICA

1 14.33 13.51 12.92 13.30 14.02 22.79 22.20 22.07
2 15.20 16.18 16.41 15.59 15.74 23.17 22.75 23.17
3 13.98 13.82 14.18 14.62 13.74 21.77 22.78 21.77
Delta 1.22 2.67 3.49 2.29 2.00 1.40 0.59 1.15
Rank 5 2 1 3 4 1 3 2

As illustrated in Figs 5–8, optimal levels of PopGA, Pc, Pm, Pmu, Gmax, PopICA, decade and PICA
are 300, 0.6, 0.12, 0.15, 300, 400, 300, 0.10 respectively.
Moreover, Table 4 exhibits the order of factor in minimizing objective function in rank row for used
algorithms.
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Figure 7: Diagram of mean effect of parameters for GA.

Figure 8: Diagram of mean effect of parameters for ICA.
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Table 5: Received values from different runs of lingo for two proposed algorithm.

Lingo GA ICA GA ICA

job stage Global
Optimal
Time

Best Worst Mean Time Best Worst Mean Time RPD Average
compu-
tation
time(s)

RPD Average
compu-
tation
time(s)

3 1 0:00:06 1 1 1 0:00:16 1 1 1 0:00:14 0.00 0:00:16 0.00 0:00:14

4 5 4 0:00:09 4 4 4 0:00:17 4 4 4 0:00:17 0.00 0:00:17 0.00 0:00:17

7 9 0:00:11 9 9 9 0:00:20 9 9 9 0:00:19 0.00 0:00:20 0.00 0:00:19

3 6 0:00:10 6 6 6 0:00:30 6 6 6 0:00:30 0.00 0:00:30 0.00 0:00:30

6 5 12 0:05:42 12 12 12 0:00:37 11 12 11.33 0:00:33 0.00 0:00:37 0.00 0:00:33

7 11 0:19:11 11 11 11 0:00:43 11 11 11 0:00:43 0.00 0:00:43 0.00 0:00:43

3 15 0:56:01 15 15 15 0:01:21 15 15 15 0:01:47 0.00 0:01:21 0.00 0:01:47

10 5 − − 20 26 21.2 0:02:33 21 26 22.2 0:02:29 0.06 0:02:33 0.06 0:02:29

7 − − 18 22 19.4 0:03:00 14 17 15.6 0:03:21 0.08 0:03:00 0.11 0:03:21

3 − − 47 51 47.66 0:21:36 48 51 49.8 0:23:04 0.01 0:21:36 0.04 0:23:04

20 5 − − 46 48 46.2 0:29:58 49 50 49.5 0:27:50 0.004 0:29:58 0.01 0:27:53

7 − − 19 25 22 0:28:46 19 24 23.33 0:28:49 0.16 0:28:46 0.23 0:28:49

3 − − 35 40 36.2 0:32:16 35 39 37.8 0:30:10 0.03 0:32:16 0.03 0:30:10

40 5 − − 34 37 35.6 0:38:36 36 40 39.6 0:39:23 0.05 0:38:36 0.10 0:39:23

7 − − 16 18 17.2 0:36:34 15 17 16.8 0:37:12 0.08 0:36:34 0.12 0:37:12

3 − − 70 86 72.2 0:37:45 69 73 71.2 0:36:19 0.03 0:37:45 0.03 0:36:19

60 5 − − 55 61 56.6 0:38:44 58 64 63.6 0:40:55 0.07 0:38:44 0.10 0:40:55

7 − − 68 73 70 0:40:08 68 74 70.2 0:41:17 0.03 0:40:08 0.03 0:41:17

5.3. Computational evaluation

In this section, the efficiency of employed GA and ICA are appraised. These algorithms are imple-
mented in MATLAB 11 and run on PC with 1.6 GHZ processor and 4 GB RAM memories. The
comparison of algorithms is accomplished with a common performance measure which is known as
RPD (relative percentage deviation) to evaluate them. In order to evaluate performance of suggested
algorithms, a number of random problems in three types of small, medium and large size are used.
The algorithms will be finished after 100 seconds. The best obtained solution, worst obtained so-
lution, mean of obtained solutions and mean run times for each instance are calculated (see Table
5).
RPD is computed by the given formula as below:

RPD =
solavg − solmin

solmin
× 100 (5.4)

Where solavg is the average of the obtained solutions for given algorithms and solmin is the best value
through algorithms in a related problem. It could be inferred from Table 5 that, GA yields more
proper solutions than ICA.
In order to have a significant statistical analysis of difference between algorithms, the 95% confidence
interval for computed values in RPD is calculated in two algorithms. Fig. 9 illustrates the 95%
confidence interval for related RPD to each algorithm. As it can be seen in Fig. 9, GA works better
than ICA. Also, to scrutinize algorithms a sensitivity analysis for ARPD values by considering
variations of the number of jobs and the number of stages are shown in Fig. 10 and 11, respectively.
The results demonstrate that there exist some insignificant difference between performances of the
algorithms with increasing the number of jobs and stages.
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Figure 9: Means plot and LSD intervals (at the 95% confidence level) for algorithms.

Figure 10: Interaction between performances of algorithms and number of jobs in terms of RPD.

Figure 11: Interaction between performances of algorithms and number of stages in terms of RPD.

6. Conclusion

This study has considered solving a flexible flowshop scheduling problem with sequence and ma-
chine dependent setup times, machine breakdown and machine eligibility. In order to find proper
schedules that minimize sum of the weighted earliness and tardiness, genetic algorithm (GA) and
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imperialist competitive algorithm (ICA) are studied for mentioned problem. In order to reinforce
the algorithm and achieve reliable results, also to prevent carrying out extensive experiments to find
optimum parameters of the algorithm, the Taguchi method was applied for these goals. To assess the
effectiveness of our proposed algorithms some random problems were generated and results obtained
by algorithms were analyzed and compared with each other. Furthermore, sensitive analysis of the
performance of the proposed algorithms demonstrated that GA in all cases was better than ICA.
As an interesting future research, some practical assumptions can be added, including unrelated
machine in each stage, limited buffer, preemption and job permutation. Moreover, hybridization of
these algorithms could be addressed in future.
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