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Abstract

In this work, we establish some coincidence and common fixed point theorems in symmetrical G-metric space via simulation
functions. In the presented work, we extend the results of Argoubi et al. [H. Argoubi, B. Samet, C. Vetro, J. Nonlinear Sci. Appl.,
8 (2015), 1082–1094] by using the concept of G-metric space. An illustrative example is also given to show the genuineness of
our results. We also apply our results to derive some coincidence and common fixed point results for right monotone simulation
function in the framework of G-metric space.
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1. Introduction

One of the earliest and most important results in fixed point theory is Banach contraction principle
[7] which states that every contraction mapping defined on a complete metric space possesses a unique
fixed point. Due to its applications in many disciplines within mathematics and outside it, several authors
have improved, generalized and extended this principle in nonlinear analysis (e.g. [1–3, 8–10, 12, 15, 22]).
In this regard, Khojasteh et al. [14], in 2015, introduced the notion of simulation functions and utilized
the same to generalize Banach contraction principle. Thereafter, Roldán-López-de Hierro et al. [21] and
Argoubi [6] modified the notion of simulation functions and proved some coincidence and common fixed
point theorems utilizing the newly larger class of simulation functions. Mustafa and Sims (see [17, 18])
introduced a new notion of generalized metric spaces known as G-metric spaces as follows:

Definition 1.1. Let X be a non-empty set and G : X3 → [0, ∞) a mapping which satisfies the following
properties: (for all x, y, z, a ∈ X:)
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(i) G(x, y, z) = 0, if x = y = z;

(ii) 0 < G(x, x, y) whenever x 6= y, for all x,y ∈ X;

(iii) G(x, x, y) 6 G(x, y, z), y 6= z;

(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = G(z, x, y) = G(y, z, x) = G(z, y, x);

(v) G(x, y, z) 6 G(x, a, a) +G(a, y, z).

Then the function G is said to be G-metric on X and the pair (X, G) is known as G metric space.

The following definitions and auxiliary results in G-metric spaces given by Mustafa and Sims (see
[17, 18]) will be used in the sequel.

Definition 1.2. Let (X,G) be a G-metric space and {xn} be a sequence of points in X.

• If there exists x ∈ X such that {xn} if limn,m→∞G(x, xn, xm) = 0, then x is said to be the limit point
of {xn} and we say that the sequence {xn} is G-convergent to x.

• The sequence {xn} is said to be G-Cauchy, if given any ε > 0 there is N ∈N such that

G(xn, xm, xl) < ε, ∀n,m, l > N.

• If every G-Cauchy sequence in (X,G) is G-convergent in X, then (X,G) is called G-complete.

Definition 1.3. Let (X,G) be a G-metric space. If G(x,y,y) = G(x, x,y) for all x,y ∈ X, then (X,G) is called
symmetric.

Example 1.4. The following are some examples of G-metric spaces.

• Let (X,d) be a metric space. Define G : X3 → [0, ∞) by

G(x,y, z) = d(x,y) + d(y, z) + d(x, z), ∀x,y, z ∈ X.

Then it is clear that (X,G) is a symmetric G-metric space.

• Let X = {a,b}. Define G by

G(a,a,a) = G(b,b,b) = 0;
G(a,a,b) = 1;
G(a,b,b) = 2.

Now, extend G to X3 by using the symmetry in the variables. Then it is clear that (X,G) is a
symmetric G-metric space.

In this paper, we establish some coincidence and common fixed point theorems in symmetrical G-
metric space via simulation functions. In the presented work, we extend the results of Argoubi [6] by
using the concept of G-metric space. We also apply our main theorem to derive coincidence and common
fixed point results for metric space.

2. Simulation functions

Khojasteh et al. [14] introduced the class of simulation functions as under.

Definition 2.1. A simulation function ζ is a function ζ : [0,∞)× [0,∞)→ R satisfying the following:

(ζ1) ζ(0, 0) = 0;
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(ζ2) ζ(a,b) < b− a, ∀a,b > 0;

(ζ3) if {an}, {bn} ⊆ (0,∞) satisfying limn→∞{an} = limn→∞{bn} = `, then

lim
n→∞ sup ζ(an,bn) < 0.

The authors in [14] utilized the above class of auxiliary functions to define Z-contractions as follows.

Definition 2.2. Let (X;d) be a metric space, T : X → X and ζ ∈ Z. Then T is called a Z-contraction with
respect to ζ if the following condition is satisfied

ζ(d(Tx; Ty);d(x;y)) > 0, ∀x,y ∈ X.

Khojasteh et al. [14] proved the following result.

Theorem 2.3. Every Z-contraction mapping defined on a complete metric space admits a unique fixed point.

In 2015, Roldan et al. [21] gave some observations on the class of Z-functions. His observations leaded
him to enlarge the class of Z-functions by modify the condition ζ3 as follows:

(ζ′3) if {an}, {bn} ⊆ (0,∞) such that limn→∞{an} = limn→∞{bn} = `, and an < bn for all n ∈N, then

lim
n→∞ sup ζ(an,bn) < 0.

Next, we present some examples of simulation functions.

Example 2.4 (see [5, 11, 14, 21]). We define the mappings ζi : [0,∞)× [0,∞) → R for i = 1, 2, 3, 4, 5, as
follows:

1. ζ1(a,b) = λb− a, ∀a,b ∈ [0,∞), where λ ∈ [0, 1).
2. ζ2(a,b) = b

b+1 − a, ∀a,b ∈ [0,∞).
3. ζ3(a,b) = ψ(b) −φ(a), ∀a,b ∈ [0,∞), where φ,ψ : [0,∞) → [0,∞) are two continuous functions

such that ψ(a) = φ(a) = 0 if and only if a = 0 and ψ(a) < a 6 φ(a), ∀a > 0.
4. ζ4(a,b) = b− η(b) −a, ∀a,b ∈ [0,∞), where η : [0,∞)→ [0,∞) is a lower semi continuous function

such that η(a) = 0 if and only if a = 0.
5. ζ5(a,b) = b−

∫a
0 ϕ(u)du, ∀a,b ∈ [0,∞), where ϕ : [0,∞)→ [0,∞) is a function such that

∫ε
0 ϕ(a)da

exists and
∫ε

0 ϕ(a)da > ε, for each ε > 0.

3. Main results

In this section, we prove our main results as follows.

Theorem 3.1. Let (X,G) be a symmetric complete G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) ∃x0 ∈ X with Tx0 6 Sx0;

(v) if {Txn} ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and
Txn 6 Tu, for all n ∈ N;
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(vi) there exists a simulation function ζ such that for every (x,y) ∈ X×X with Tx 6 Ty, we have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0, (3.1)

where

H(S, T , x,y, z) = max{G(Tx, Ty, Tz),G(Tx,Sy, Tz),G(Ty,Sx, Tz),G(Tx,Sx, Tz),G(Ty,Sy, Tz)}.

Then S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Before proving Theorem 3.1, we prove the following lemmas which are needed in the sequel.

Lemma 3.2. Let (X,G) be a symmetric G-metric space and S, T satisfies the conditions of Theorem 3.1. Let {xn} be
a sequence in X such that Txn+1 = Sxn for all n ∈ N. If Txn 6= Txn+1 for all n ∈ N, then

lim
n→∞G(Txn, Txn, Txn+1) = 0.

Proof. Using (iii) and (iv) of Theorem 3.1, we have

Tx0 6 Tx1 6 Tx2 6 · · · 6 Txn 6 Txn+1.

It follows from (vi) of Theorem 3.1 that

0 6 ζ(G(Sxn−1,Sxn−1,Sxn),H(S, T , xn−1, xn−1, xn)),

that is,
0 6 ζ(G(Txn, Txn, Txn+1),H(S, T , xn−1, xn−1, xn)),

where

H(S, T , xn−1, xn−1, xn) = max{G(Txn−1, Txn−1, Txn),G(Txn−1,Sxn−1, Txn),
G(Txn−1,Sxn−1, Txn),G(Txn−1,Sxn−1, Txn),G(Txn−1,Sxn−1, Txn)}.

Again, using the assumption of Lemma 3.2, we get

H(S, T , xn−1, xn−1, xn) = max{G(Txn−1, Txn−1, Txn),G(Txn−1, Txn, Txn),
G(Txn−1, Txn, Txn),G(Txn−1, Txn, Txn),G(Txn−1, Txn, Txn)}

= max{G(Txn−1, Txn−1, Txn),G(Txn−1, Txn, Txn)}.

As (X,G) is symmetric G-metric space, we have

H(S, T , xn−1, xn−1, xn) = G(Txn−1, Txn−1, Txn).

From the condition ζ2, we have

0 6 ζ(G(Txn, Txn, Txn+1),G(Txn−1, Txn−1, Txn))
< G(Txn−1, Txn−1, Txn) −G(Txn, Txn, Txn+1)

G(Txn, Txn, Txn+1) < G(Txn−1, Txn−1, Txn).

The above inequality proves that {G(Txn−1.Txn−1, Txn)} is a monotonic decreasing sequence of non-
negative reals and hence it must be convergent. So, there exists u > 0 such that

lim
n→∞G(Txn, Txn, Txn+1) = u.
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Claim u = 0. Assume that u > 0. Using the condition ζ3, we obtain

0 6 sup ζ(G(Txn, Txn, Txn+1),G(Txn−1, Txn−1, Txn)) < 0,

a contradiction. Hence, it must be u = 0. Therefore,

lim
n→∞G(Txn, Txn, Txn+1) = 0.

As required.

Lemma 3.3. Let (X,G) be a symmetric G-metric space and S, T satisfy the conditions of Theorem 3.1. Let {xn} be
a sequence in X such that Txn+1 6= Txn for each n ∈ N. Then, the sequence {Txn} is bounded.

Proof. Suppose that {Txn} is not bounded. Then there exists {xnj} ⊆ {xn} such that n1 = 1 and for each
k ∈ N,nj+1 is the minimum integer satisfying

G(Txnj+1 , Txnj , Txnj) > 1,

and
G(Txk, Txnj , Txnj) 6 1,

for nj 6 k 6 nj+1 − 1. By using the triangle inequality, we get

1 < G(Txnj+1, Txnj , Txnj)

6 G(Txnj+1, Txnj+1−1, Txnj+1−1) +G(Txnj+1−1, Txnj , Txnj)

6 G(Txnj+1, Txnj+1−1, Txnj+1−1) + 1.

Letting j→∞ and making use of Lemma 3.2, we obtain

G(Txnj+1, Txnj , Txnj) = 1.

By applying the triangle inequality, we have

1 < G(Txnj+1, Txnj , Txnj)

6 G(Txnj+1 − 1, Txnj−1, Txnj−1)

6 G(Txnj+1 − 1, Txnj , Txnj) +G(Txnj , Txnj−1, Txnj−1)

6 1 +G(Txnj , Txnj−1, Txnj−1).

By making use of Lemma 3.2 and letting j→∞, we get

lim
j→∞G(Txnj+1 − 1, Txnj−1, Txnj−1) = 1. (3.2)

Again, due to the triangle inequality, we have

| G(Txnj+1 − 1, Txnj , Txnj) −G(Txnj , Txnj+1, Txnj+1) |6 G(Txnj+1−1, Txnj+1 , Txnj+1).

By making use of Lemma 3.2 and tending j→∞, we obtain

lim
j→∞G(Txnj+1 − 1, Txnj , Txnj) = 1. (3.3)

Using similar argument, we obtain

| G(Txnj−1, Txnj+1 , Txnj+1) −G(Txnj−1, Txnj+1−1, Txnj+1−1) |6 G(Txnj+1 , Txnj+1−1, Txnj+1−1).
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Letting j→∞ and using Lemma 3.2, we obtain

lim
j→∞G(Txnj−1, Txnj+1 , Txnj+1) = 1. (3.4)

From (3.2), (3.3), (3.4) and Lemma 3.2, we have

H(S, T , xnj+1−1, xnj−1, xnj−1) = 1. (3.5)

Applying the condition ζ3 of Definition 2.1 and (3.1), (3.2), (3.3), (3.4) and (3.5), we get

0 6 lim
j→∞ sup ζ(G(Txnj+1, Txnj , Txnj),H(S, T , xnj+1−1, xnj−1, xnj−1)) < 0,

a contradiction. This ends the proof.

Lemma 3.4. Let (X,G) be a symmetric G-metric space and S, T satisfy the conditions of Theorem 2.3. Let {xn} be
a sequence in X such that Txn+1 = Sxn, for all n ∈ N. If Txn 6= Txn+1 for all n ∈ N, then {Txn} is a Cauchy
sequence.

Proof. Consider
An = sup{G(Txp, Txq, Txq) : p,q > n}.

In view of Lemma 3.3, the sequence {Txn} is bounded. So, An < ∞, for each n ∈ N which implies that,
{An} is monotonic and bounded sequence and hence is convergent. Therefore, there exists A > 0 such
that

lim
n→∞An = A.

We will prove that A = 0.
Let us suppose contrary that A > 0. By the definition of An, for each j ∈ N, there exist nj,mj ∈ N

such that mj > nj > j and

Aj −
1
j
< G(Txmj

, Txnj , Txnj) 6 Aj.

Therefore,
lim
j→∞G(Txmj

, Txnj , Txnj) = A. (3.6)

Using Lemma 3.3 and triangle inequality, we get

G(Txmj
, Txnj , Txnj) 6 G(Txmj−1 , Txnj−1 , Txnj−1)

6 G(Txmj−1 , Txmj
, Txmj

) +G(Txmj
, Txnj , Txnj) +G(Txnj , Txnj−1 , Txnj−1).

Using (3.6), Lemma 3.3 and letting j→∞, we obtain

lim
j→∞G(Txmj−1 , Txnj−1 , Txnj−1) = A. (3.7)

Proceeding in the same way, we can prove that

lim
j→∞G(Txmj−1 , Txnj , Txnj) = A, (3.8)

and
lim
j→∞G(Txnj−1 , Txmj

, Txmj
) = A. (3.9)

Using (3.7), (3.8), (3.9) and Lemma 3.3, we get

lim
j→∞H(S, T , xmj−1, xnj−1, xnj−1) = A. (3.10)
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Using (3.1), (3.6), (3.10) and the condition of simulation function, we obtain

0 6 lim
j→∞ supζ(G(Txmj

, Txnj , Txnj),H(S, T , xmj−1, xnj−1, xnj−1)) < 0.

This contradiction shows that A = 0. So,
lim
j→∞Aj = 0.

Hence, {Txn} is a Cauchy sequence.

Proof. Due to Lemma 3.4, {Txn} is Cauchy. The completeness of X ensures the existence of some u ∈ X
satisfying

Txn → Tu, whenn→∞. (3.11)

Let us assume that G(Su, Tu, Tu) > 0. Using (3.11) and letting n→∞, we obtain

H(S, T , xn,u,u) = max{G(Txn, Tu, Tu),G(Txn,Su, Tu),G(Tu,Sxn, Tu),G(Txn,Sxn, Tu),G(Tu,Su, Tu)}
= max{G(Tu, Tu, Tu),G(Tu,Su, Tu),G(Tu,Su, Tu),G(Tu,Su, Tu),G(Tu,Su, Tu)}
= G(Su, Tu, Tu) > 0.

Using (3.1), (3.11) and (ζ3), we get

0 6 lim
j→∞ sup ζ(G(Su, Txn+1, Txn+1),H(S, T , xn,u,u)) < 0.

This contradiction shows that G(Su, Tu, Tu) = 0. So, u is a coincident point of S and T .
Let v = Tu = Sv. Since, S and T commute at their coincident point u. Therefore,

Sv = S(Tu) = T(Su) = Tv.

By (v), we have Tu 6 T(Tu) = Tv.

H(S, T , v,u,u) = max{G(Tv, Tu, Tu),G(Tv,Su, Tu),G(Tu,Sv, Tu),G(Tv,Sv, Tu),G(Tu,Su, Tu)}
= max{G(Tv, v, v),G(Tv, v, v),G(v,Sv, v),G(Tv,Sv, v),G(v, v, v)}
= max{G(Tv, v, v),G(Tv, Tv, v)}.

Since, (X,G) is symmetric G-metric space. Therefore, H(S, T , v,u,u) = G(Tv, v, v). Using (3.1) and (ζ3), we
get

0 6 lim
j→∞ supζ(G(Sv,Su,Su),H(S, T , v,u,u)) = lim

j→∞ supζ(G(Sv, v, v),G(Sv, v, v)) < 0,

which is a contradiction. So, G(v, v, Tv) = 0, which implies that v = Tv = Sv. Therefore, v is common fixed
point of S and T .

Next, we provide an illustrative example which exhibits the utility of Theorem 3.1.

Example 3.5. Let X = [0, 1] associated with the G-metric defined by G(x,y, z) = max{|z− x|, |x− y|, |y− z|}
for every x,y, z ∈ X. Without any loss of generality, let us assume that z 6 y 6 x. Therefore G(x,y, z) =
|x− z|. Define the mappings S, T : X → X by Sx = x

25 and Tx = x
5 for each x ∈ X. Evidently, conditions (i)

to (v) of Theorem 3.1 are fulfilled for x0 = 0. Let ζ : X×X→ R be given by

ζ(a,b) = θb− a,

for θ ∈ [0, 1). Indeed for all x 6= y 6= z, we have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) = θH(S, T , x,y, z) −G(Sx,Sy,Sz).



M. Kumar, S. Arora, M. Imdad, W. M. Alfaqih, J. Math. Computer Sci., 19 (2019), 288–300 295

If we specially choose θ = 1
3 , we have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) =
1
3
H(S, T , x,y, z) −G(Sx,Sy,Sz). (3.12)

In fact for every x,y, z ∈ X, we have

G(Sx,Sy,Sz) =

∣∣∣∣∣ x25
−
z

25

∣∣∣∣∣
6

1
4

∣∣∣∣∣x5 −
z

5

∣∣∣∣∣
=

1
4
G(Tx, Ty, Tz)

6
1
3
H(S, T , x,y, z),

which implies that
1
3
H(S, T , x,y, z) −G(Sx,Sy,Sz) > 0. (3.13)

On account of (3.12) and (3.13), we obtain

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0.

Therefore, all the assumptions of Theorem 3.1 are fulfilled. Consequently, S and T have a coincident point
(namely: 0 ∈ X). Also, S and T commute at 0, which yields that 0 is a unique common fixed point S and
T .

From Theorem 3.1, we can deduce several results of coincidence and common fixed point by means of
simulation mapping.

Corollary 3.6. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) ∃x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a monotone simulation function ζ such that for every (x,y) ∈ X×X with Tx 6 Ty, we have

ζ(G(Sx,Sy,Sz),G(Tx, Ty, Tz)) > 0.

Then S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Proof. We know that
G(Tx, Ty, Tz) 6 H(S, T , x,y, z), (3.14)

for each x,y, z ∈ X.
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Let ζ : X×X→ R be defined as
ζ(a,b) = θb− a,

for θ ∈ [0, 1). Owing to the given assumption, we have

0 6 ζ(G(Sx,Sy,Sz),G(Tx, Ty, Tz))
< G(Tx, Ty, Tz) −G(Sx,Sy,Sz).

On account of (3.14), we obtain

G(Sx,Sy,Sz) < G(Tx, Ty, Tz)
6 H(S, T , x,y, z),

which yields that
ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0.

It follows from Theorem 3.1 that S and T have a coincidence point and common fixed point.

Corollary 3.7. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) ∃x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a simulation function ζ such that for every (x,y) ∈ X×X with Tx 6 Ty, we have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0,

where
H(S, T , x,y, z) = max{G(Tx,Sx, Tz),G(Ty,Sy, Tz)}.

Then, S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Proof. It can be proved independently by taking any simulation function.

Corollary 3.8. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) ∃x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a simulation function ζ such that for every (x,y) ∈ X×X with Tx 6 Ty, we have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0,

where
H(S, T , x,y, z) = max{G(Tx, Ty, Tz),G(Tx,Sy, Tz),G(Ty,Sx, Tz)}.
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Then, S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Proof. It can be proved independently by taking any simulation function.

Corollary 3.9. Let (X,G) be a symmetric complete G-metric space and S : X→ X. Suppose that

(i) there exists x0 ∈ X such that x0 6 Sx0;

(ii) (x,y) ∈ X×X, x 6 y implies that Sx 6 Sy;

(iii) if {xn} ⊂ X is a nondecreasing sequence (w.r.t. 6) with xn → u in X, then xn 6 u, for all n ∈ N;

(vi) there exists a simulation function ζ such that for every (x,y) ∈ X×X with x 6 y, we have

ζ(G(Sx,Sy,Sz),H(S, x,y, z)) > 0,

where
H(S, x,y, z) = max{G(x,y, z),G(x,Sy, z),G(y,Sx, z),G(x,Sx, z),G(y,Sy, z)}.

Then, {Snx0} converges to fixed point of S.

Proof. Proof follows from Theorem 3.1 by taking T as the identity map.

4. Coincidence and common fixed point results by means of right monotone simulation mapping

Definition 4.1 ([6]). A function ζ : [0,∞)× [0,∞) → R is said to be right monotone simulation function,
if it satisfies the following

(ζ1) ζ(0, 0) = 0;

(ζ2) ζ(a,b) < b− a,∀a,b > 0;

(ζ3) if {an}, {bn} are sequences in (0,∞) such that limn→∞{an} = limn→∞{bn} = `, then

lim
n→∞ sup ζ(an,bn) < 0;

(ζ4) if b1 6 b2, then ζ(a,b1) 6 ζ(a,b2), for all a,b1,b2 > 0.

Remark 4.2. Every right monotone simulation function is a simulation function, but the converse is not
true.

Example 4.3. Let ζ : [0,∞)× [0,∞)→ R be defined as

ζ(a,b) = | sina|− b,

for each a,b > 0. If we take b1 6 b2, then ζ(a,b1) need not be less than or equal to ζ(a,b2) due to
monotonic behavior of sin function. Thus, ζ is a simulation function but not a right monotone simulation
function.

From Theorem 3.1, we can prove several results of coincidence and common fixed point by means of
right monotone simulation mapping.

Theorem 4.4. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);
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(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) there exists x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a right monotone simulation function ζ such that for every (x,y) ∈ X× X with Tx 6 Ty, we
have

ζ(G(Sx,Sy,Sz),G(Tx, Ty, Tz)) > 0.

Then S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Proof. Taking a = G(Sx,Sy,Sz),b1 = G(Tx, Ty, Tz) and b2 = H(S, T , x,y, z). Owing to the given assump-
tions, we have

ζ(G(Sx,Sy,Sz),G(Tx, Ty, Tz)) > 0. (4.1)

We know that
G(Tx, Ty, Tz) 6 H(S, T , x,y, z). (4.2)

On account of (4.2) and ζ4 property of right simulation function of Definition 4.1, we obtain

ζ(G(Sx,Sy,Sz),G(Tx, Ty, Tz)) 6 ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)). (4.3)

On account of (4.1) and (4.3), we acquire

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0.

Now, continuing the same procedure of Theorem 3.1, we get coincidence point and common fixed point
of S and T .

Corollary 4.5. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) there exists x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a right monotone simulation function ζ such that for every (x,y) ∈ X× X with Tx 6 Ty, we
have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0,

where
H(S, T , x,y, z) = max{G(Tx,Sx, Tz),G(Ty,Sy, Tz)}.

Then, S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.
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Proof. It can be proved independently by taking right monotone simulation function

ζ : [0,∞)× [0,∞)→ R,

as ζ(a,b) = b− a+2
a+1a, for each a,b > 0.

Corollary 4.6. Let (X,G) be a symmetric G-metric space and S, T : X→ X. Suppose that

(i) S(X) ⊆ T(X);

(ii) T(X) is closed;

(iii) S is T -non-decreasing;

(iv) there exists x0 ∈ X with gx0 6 fx0;

(v) if Txn ⊂ X is a nondecreasing sequence (w.r.t. 6) with Txn → Tz in T(X), then Tu 6 T(Tu) and Txn 6 Tu,
for all n ∈ N;

(vi) there exists a right monotone simulation function ζ such that for every (x,y) ∈ X× X with Tx 6 Ty, we
have

ζ(G(Sx,Sy,Sz),H(S, T , x,y, z)) > 0,

where
H(S, T , x,y, z) = max{G(Tx, Ty, Tz),G(Tx,Sy, Tz),G(Ty,Sx, Tz)}.

Then, S and T have a coincidence point. Further, if S and T commute at their coincidence points, then S and T have
a common fixed point.

Proof. It can be proved independently by taking right monotone simulation function

ζ : [0,∞)× [0,∞)→ R,

as ζ(a,b) = b− a+2
a+1a, for each a,b > 0.
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