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                                                          Abstract 

     In this paper, we consider a system of boundary value problems for fractional differential equation 

given by  

{
 
 

 
      

  ( )    ( )   (   ( ))   ∫  (   ) (   ( ))       [   ]   (   )      
 

 

                  

  (  )    ( (  
 ))         (  )    ( (  

 ))                                                                             

  ( )                ( )                                                                                                                             

 

where     
  is Caputo's fractional derivative of order  ,    ( )      is a sectorial operator of type 

(       ) on a Banach space X                                    (  )  

 (  
 )   (  

 )  (  
 )          (    )  (  

 )          (    )        (   ) (         ) are 

bounded function, the functions           are given operators satisfying some assumptions and 

      is a integrable function on I. Several existence results of mild solutions are obtained. 

Keywords: Caputo's fractional derivative, Sectorial operator, Mild solution, Analytic solution operators.  

1. Introduction 
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     Fractional calculus is a field of mathematical analysis which deals with the investigation and 

applications of integrals and derivatives of arbitrary order, the fractional calculus may be considered an 

old and yet novel topic. 

     Recently, fractional differential equations have found numerous applications in various fields of 

physics and engineering [7, 14]. 

     Impulsive fractional differential equations have attracted a considerable interest both in mathematics 

and applications since Agarwal and Benchohra published the first paper on this topic [1] in 2008; see for 

example [2, 3, 4, 10, 16]. 

     Our purpose in this paper is to show the existence of at least one mild solution for the following 

fractional system 

(   )         

{
 
 

 
      

  ( )    ( )   (   ( ))   ∫  (   ) (   ( ))       [   ]   (   )      
 

 

                 

  (  )    ( (  
 ))         (  )    ( (  

 ))                                                                             

  ( )                ( )                                                                                                                             

 

where     
  is Caputo's fractional derivative of order      ( )      is a sectorial operator of type 

(       ) on a Banach space X,                                    (  )  

 (  
 )   (  

 )  (  
 )          (    )  (  

 )           (    )        (   ) (         ) 

are bounded function, the functions            are given a satisfies some assumptions and       is 

a integrable function on I. 

     The rest of the article is organized as follows: In Section 2, we shall recall certain results from the 

theory of the continuous fractional calculus. In Section 3, we shall provide some conditions under which 

the problem (1.1) has at least one mild solution. In Section 4, by suitable conditions, we will prove that 

the problem (1.1) into two ways has at least one mild solution. 

2. Preliminaries 

     In this section, we recall some definition and propositions of fractional differential equation and 

sectorial operators. 

     Let X is a Banach space with the norm | |   Denote C(I,X) be the Banach space of continuous functions 

from I into X with the norm ‖ ‖        | ( )|    (   ), and L(X) represents the Banach space of all 
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bounded linear operators from X into X and the corresponding norm is denoted by ‖ ‖ ( )  

   {| ( )|   | |   }     ( )  We also introduce the set of functions 

  (   )  {           ((       ]  )            and there exit  (  
 ) and   (  

 )   

                                  with   (  
 )   (  )}  

endowed with the norm  ‖ ‖         ‖ ( )‖   It is easy to see  (  (   ) ‖ ‖)  Banach space.  

Lemma 2.1. ([11, 15]) The Riemann-Liouville fractional integral operator of order    , of function  

    (  ) is defined by 

                                                       
  ( )  

 

 ( )
∫ (   )    ( )  

 

 
, 

where   ( )  is the Euler gamma function. 

Lemma 2.2. ([11, 15]) The Riemann-Liouville fractional derivative of order      of a continuous 

function   (   )    is defined as 

   
  ( )  

 

 (   )
(
 

  
)
 

∫ (   )      ( )   
 

 

 

where    [ ]     

Lemma 2.3. ([8]) Let       Then the differential equation 

   
     

has a unique solution   ( )     
       

         
                     there          

Lemma 2.4. ([8]) Let    . Then the following equality holds for     (   )       
     (   )  

                                     
    

  ( )   ( )     
       

         
   , 

               there           

Definition 2.5. For the function         
  and       the fractional derivative of order      of f in 

the Caputo sence is given by 

  
  ( )  

 

 (   )
∫ (   )       ( )( )            
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The Laplace transform of the Caputo derivative of order      is given as 

 (  
  ( ))( )    (  )( )  ∑       (   )( )            

   

   

 

     Now, we introduce some notations about sectorial operators, analytic solution operators. 

     An operator A is said to be sectorial, if there are       [
 

 
   ] and     such that the following 

two conditions are satisfied: 

{
 

   ( )   ( )  ∑  {         |   (   )|    } 
   

( )  ‖ (   )‖ ( )  
 

|   |
   ∑  

   
                          

 

Consider the following Cauchy problem for the Caputo fractional derivative evolution equation of order  

  (             is an integer):  

(2.2)                
  ( )    ( )     ( )        ( )( )                       

where A is a sectorial operator. The solution operators    ( ) of (2.2) is defined by (see [3]) 

  ( )  
 

   
 ∫          (    )   

 

 

 

where    is a suitable path lying on  ∑      

     An operator A is said to belong to   (     ) or   (   )  if problem (2.2) has a solution operator 

  ( ) satisfying ‖  ( )‖             Denote   ( )   {  (   )    } and      {  (  )  

 }. 

Definition 2.6. ([3]) A solution operator    ( ) of (2.2) is called analytic, if   ( ) admits an analytic 

extension to a sector ∑  {    { } |    |    }    
for some    (  

 

 
]   An analytic solution 

operator is said to be of analyticity type (      ), if for each      and       there is an   

 (   ) such that ‖  ( )‖          ∑  {    { } |      |} . Denote   (     )  {  

       generates analytic solution operators   ( )  of type  (     )}  
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Lemma 2.7. ([3,12]) Let   (   ). A linear closed densely defined operator A belongs to 

   (     )  iff      ( ) for each    ∑      
 

 
 and for any             there is a constant  

   (   ) such that  

‖     (    )‖  
 

|   |
        ∑( )

  
 

 

  

Definition 2.8. Let           be a closed linear operator.  A is said to be sectorial operator of type 

(       ), if there exist     
 

 
         and      such that the   resolvent of A exist outside the 

sector 

     {          |   (   )|   } 

and 

                                                             ‖(     )  ‖  
 

    
           . 

3. Definition of mild solutions 

     Firstly, we consider the following fractional Cauchy problem 

(   )                        {
  

  ( )    ( )   ( )     [   ]       

 ( )                ( )                                    
 

where f is an abstract function defined on [   ) and with values in X,  A is a sectorial operator.  

Theorem 3.1. ([16]) Let A be a sectorial operator of type (       ). If f satisfies a uniform Hӧlder 

condition with exponent    (   ]  then the unique solution of the Cauchy problem (3.3) is given by 

 ( )    ( )     ( )   ∫   (   )  ( )  
 

 

                  

where 

  ( )  
 

   
∫          (    )   

 

 

 

  ( )  
 

   
∫          (    )   
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         ( )  
 

   
∫    (    )   

 

 

              

with c being a suitable path such that          for     . 

Remark 3.2. If A is a sectorial operator of type (       )  then it is not difficult to see that   ( ) 

  ( ) and   ( ) are well definitions. (see [9]) 

Theorem 3.3. ([13]) Let A be a sectorial operator of type (       )  If f satisfies a uniform Hӧlder 

condition with exponent    (   ]   then the unique solution of the Cauchy problem 

{
     

  ( )    ( )   (   ( ))  ∫  (   )  (   ( ))       [   ]  
 

 

       

  ( )               ( )                                                                                              

 

is given by  

(3.4)         ( )    ( )     ( )   ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  
 

 
]   

 

 
 

where 

  ( )  
 

   
∫          (    )   

 

 

 

   ( )  
 

   
∫          (    )   

 

 

 

  ( )  
 

   
∫     (    )   

 

 

    

with c being a suitable path such that           for       

Theorem 3.4. If A be a sectorial operator of type (       ) and f satisfies a uniform Hӧlder condition 

with exponent    (   ]  then any solution of the Cauchy problem (1.1) is a fixed point of the operator 

given below 



Sh. Eivani / J. Math. Computer Sci.    13 (2014), 257-280 
 

263 
 

  ( )  

{
 
 
 
 
 
 

 
 
 
 
 
   ( )     ( )   ∫   (   )[ (   ( ))

 

 

                                                                      

                 ∫  (   ) (   ( ))  ]   
 

 

                                                             [     ] 

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                            

                  ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                 (     ] 
 

 

 

  

                                                                                                                                                           

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                       

                ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                    (    ] 
 

 

 

  

 

     In fact, from (3.4) it is easy to see that Theorem 3.4 holds, so the proof is omitted. 

     From Theorem 3.4, we can define the mild solution of system (1.1) as follows:  

Definition 3.5. A function u      is called a mild solution of system (1.1), if     (   ) and 

satisfies the following equation 

 ( )  

{
 
 
 
 
 
 

 
 
 
 
 
   ( )     ( )   ∫   (   )[ (   ( ))

 

 

                                                                         

                 ∫  (   ) (   ( ))  ]   
 

 

                                                              [     ] 

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                               

                  ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                  (     ] 
 

 

 

  

                                                                                                                                                           

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                       

                 ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                     (    ] 
 

 

 

  

 

4. Existence results 

     In this section, we present two different existence results and uniqueness of mild solutions to the 

system (1.1). 

      To study the existence of mild solutions of (1.1), we need the following know result due to 

Krasnoselskii.  
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Theorem 4.1. ([17] Krasnoselskii Theorem). Let B be a closed convex and nonempty subset of a 

Banach space X. Let    and    be two operators such that 

   ( )             whenever          

   (  )    is a contraction mapping;   

   (   )    is compact and continuous.                    

Then there exists     such that            

     Let 

(   )          ̃        ‖  ( )‖ ( )     ̃      

  
           

 ‖  ( )‖ ( )    ̃            
 ‖  ( )‖ ( )           

where    ( )   ( ) and    ( ) are as in Theorem 3.1. So we have 

‖  ( )‖ ( )   ̃        ‖  ( )‖ ( )       ̃         ‖  ( )‖ ( )       ̃      

     Now, we consider the following assumptions: 

(  )              are continuous and there exists function          (    ) such that 

                              ‖ (   )   (   )‖    ( )‖   ‖            

                               ‖ (   )   (   )‖    ( )‖   ‖              
 

(  )  For each           there exist          such that 

                               ‖  ( )    ( )‖    ‖   ‖                

                              ‖  ( )    ( )‖    ‖   ‖               
 

(  )            {(    ) ̃    (    )
    ̃ }  

     In what follows, we use the notation         [   ] ∫ | (   )|   
 

 
 

Theorem  4.2. Assume that (  )  (  ). Then (1.1) has at least one mild solution on I. 

Proof. Choose 

                      
 

     {  (‖ (  
 )‖  ‖  ( (  

 ))‖  ‖  (  
 )‖  ‖  ( (  

 ))‖ 

  ‖  ‖  (    )     ‖  ‖  (    ) )} 
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where     ̃  (   )    ̃  (    )
    ̃     (       )  and consider      {      ‖ ‖  

 }   Define          by 

  ( )  

{
 
 
 
 
 
 

 
 
 
 
 
   ( )     ( )   ∫   (   )[ (   ( ))                

 

 

                                                

                ∫  (   ) (   ( ))  ]   
 

 

                                                            [     ] 

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                       

               ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                (     ] 
 

 

 

  

                                                                                                                                                      

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                 

               ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                  (    ] 
 

 

 

  

 

Set 

   ( )  

{
 
 

 
 
   ( )     ( )                                                                                                                [    ]          

   (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                     (     ]        

                                                                                                                                                                       

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))             (    ]       

 

and 

   ( )  

{
 
 
 

 
 
 ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                 [    ] 

 

 

 

 

∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                  (     ] 
 

 

 

  

 

                                                                                                                                   

∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                (    ] 
 

 

 

  

 

     We show that    ana    fulfill the conditions of Theorem 4.1. 

Let us observe that if          then              Indeed, in view of (  )  (  ) and   ‖∫  (  
 

 

 ) (   ( ))  ‖  ∫ ‖ (   )‖  ∫ ‖ (   ( ))‖  (   [ ]) 
 

 

 

 
 we have for any        and   [    ] 

‖(   )( )  (    )( )‖     ‖   ( )‖‖  ‖  ‖  ( )‖‖  ‖  ‖  (   )‖                
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 [‖∫  (   ( ))  ‖  ‖∫ (∫  (   ( ))  )  
 

 

 

 

 

 

‖]                       

which according to (  )  (  ) gives 

‖(   )( )  (   )( )‖   ̅ ̅     ‖  ‖  (    )      ‖  ‖  (    )  

where   (‖  ‖  ‖  ‖) and    ̃  (   )    ̃       ̃   

If   (     )  then 

‖(   )( )  (   )( )‖  ‖  ( )‖[‖ (  
 )‖  ‖  ( (  

 ))‖]       

                                                             ‖  (    )‖[‖ 
 (  

 )‖  ‖  ( (  
 ))‖]

 

                                                             ‖  (   )‖  [‖∫  (   ( ))  
  
  

‖    

                                                        ‖∫ (∫  (   ( ))  )  
 

 

  
  

‖]    

which according  to (  )  (  ) gives 

                   ‖(   )( )  (   )( )‖     ̅     ‖  ‖  (    )      ‖  ‖  (    ), 

where    (‖ (  
 )‖  ‖  ( (  

 ))‖  ‖  (  
 )‖  ‖  ( (  

 ))‖) and    ̃  (   )    ̃  

(    )
    ̃   

Similary, for   (       ) (         ) we have 

                    ‖(   )( )  (   )( )‖     ̅     ‖  ‖  (    )
     ‖  ‖  (    ) 

and 

‖(   )( )  (   )( )‖     ̅     ‖  ‖  (    )
     ‖  ‖  (    )   (    ]   

where    (‖ (  
 )‖  ‖  ( (  

 ))‖  ‖  (  
 )‖  ‖  ( (  

 ))‖) and    ̃  (   )    ̃  

(    )
    ̃   (       )  Thus, for all    [   ]   we have 

‖(   )( )  (   )( )‖     
     

{   ̅     ‖  ‖  (    )      ‖  ‖  (    )}     
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Hence, we deduce that  ‖(   )( )  (   )( )‖      

     Let    [    ] and         By (4.5), (  ) and (  )  we have 

‖(   )( )  (   )( )‖    ‖   ‖  

If    (     ]  then 

‖(   )( )  (   )( )‖  ‖  (    )‖‖ (  
 )   (  

 )‖                  

                                               ‖  (    )‖‖  ( (  
 ))    ( (  

 ))‖

                                                           ‖  (    )‖‖  ( (  
 ))    ( (  

 ))‖        

                                                            ‖  (    )‖‖   ‖  ‖  (    )‖  
‖   ‖ 

                       

  ‖  (    )‖  ‖   ‖

  ̃ ‖   ‖   
 
 ̃ ‖   ‖

        (    )
    ̃ ‖   ‖

                            {(   
 ) ̃    (    )

    ̃ }‖   ‖ 

 

Similary, for    (       ] (         ) we have 

‖(   )( )  (   )( )‖   {(   
 ) ̃    (    )

    ̃ }‖   ‖ 

and 

‖(   )( )  (   )( )‖   {(   
 ) ̃    (    )    ̃ }‖   ‖    (    ]  

Thus, for all    [   ]  we have 

‖(   )( )  (   )( )‖     
     

{(    ) ̃    (    )
    ̃ }‖   ‖   ‖   ‖  

Hence, by Assumption (  ),    is a contraction mapping. 

     Next, we show that    is continuous. 

     Let (  ) be a sequence in    such that       in   . Then by (  ) 

                           (    ( ))   (   ( ))       (    ( ))   (   ( ))         . 

Because the functions f, g are continuous on       Then for every   [    ], we have 
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  ‖(    )( )  (   )( )‖  ∫ ‖  (   )‖[‖ (    ( ))   (   ( ))‖                   
  

 

                                        ‖∫ ‖ (    ( ))   (   ( ))‖  
 

 

‖]  

                  
 

 
   ̃ [‖ (    ( ))   (   ( ))‖   

                       ‖ (    ( ))   (   ( ))‖]

(   )                                                              
 

 
   ̃ (    )  (        (   ))                                        

 

Moreover, for every    (       ] (         ) 

(4.7)                    ‖(    )( )  (   )( )‖  
 

 
   ̃ (    )       (        (   ) 

and for any    (    ] 

(4.8)                    ‖(    )( )  (   )( )‖  
 

 
   ̃ (    )       (        (   )  

By the (4.6)-(4.8), we have 

   
   

‖(    )  (   )‖             

     To prove the compactness of   , we shall use the Ascoli-Arzela Theorem. We prove that    maps 

bounded sets into bounded sets in     and    (  ) is equicontinuous. 

It suffices to prove that for any     there exists     such that  ‖   ‖    for each       Denote For 

any  k>0 positive functions   
 
      ([   ]   ) such that 

   ‖ ‖  ‖ (   )‖   
 
( )    ‖ ‖  ‖ (   )‖    ( )   

Then, for any            [    ]   we have 

‖(   )( )‖  ∫ ‖  (   )‖ [‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]   
  

 

       
 

 
   ̃ [‖  ‖  (    )

   ‖  ‖  (    )]    

 

Similary, we have 

               ‖(  
 )( )‖  

 

 
   ̃ [‖  

‖  (    )    ‖  ‖  (    )]      (     ] (       )  
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We obtain 

                  ‖(  
 )( )‖  

 

 
   ̃ [‖  

‖  (    )    ‖  ‖  (    )]              [   ]  

     Next, we show that    (  ) is equicontinuous. Set 

     
          

‖ (   )‖        
          

‖ (   )‖   

Now, let us prove that   (  )  is equicontinuous. The functions   ( )      are equicontinuous at t=0. 

For        [   ]   we have 

‖(   )(  )  ( 
 
 )(  )‖   ‖∫   (    ) [ (   ( ))  ∫  (   ) (   ( ))  

 

 

]   
  

 

                                                       ∫   (    ) [ (   ( ))  ∫  (   ) (   ( ))  
 

 

]   
  

  

                                                         ∫   (    ) [ (   ( ))  ∫  (   ) (   ( ))  
 

 

]   ‖
  

 

                        ∫ ‖  (    )    (    )‖[‖ (   ( ))‖
  

 

 

                                                       ∫ ‖ (   ( ))‖  ]   ∫ ‖  (    )‖[‖ (   ( ))‖
  

  

  
 

 

    ∫ ‖ (   ( ))‖  ]             
 

    
                                                       

 

where 

   ∫ ‖  (    )    (    )‖ [‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]    
  

 

                  

   ∫ ‖  (    )‖ [‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]   
  

  

          

Actually,       tend to 0 independently      when      . Indeed, let     , we have 

   ∫ ‖  (    )    (    )‖ [‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]   
  

 

                      

   ∫ ‖  (    )    (    )‖[‖ (   ( ))‖     ‖ (   ( ))‖]  
  

 

                        

          (‖ ‖  (    )    ‖ ‖  (    ))
 ̃ (  

    
  (     )

 )
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Therefore the continuity of the function    ‖  ( )‖ for   (   ]   allow us to conclude 

        
  . 

                    ∫ ‖  (    )‖ [‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]   
  

  

                      ∫ ‖  (    )‖ [‖ (   ( ))‖    ∫ ‖ (   ( ))‖
 

 

]   
  

  

                         (‖ ‖  (    )    ‖ ‖  (    ))
 ̃ (  

    
 )

 
                              

 

consequently         
    

     We show that  (   )( )        relatively compact in X, for all         

We have proved that (   )( )       is bounded and we have proved that (   )( )       is 

equicontinuous. 

In short, we have proved that   (  ) is relatively compact, for     (   )( )       is a family of 

equicontinuous functions. Hence by the Arzela-Ascoli Theorem,    is compact. 

     Thus         fulfils the assumptions of Theorem 4.1, and we conclude that (1.1) has at least one 

mild solution on I.                                                                                                                                        ■ 

     To obtain the uniqueness of mild solution for (1.1), we replace (  ) by the following assumption: 

( ̂ )   
          { ̃ (  

  )       ̃    
 

 
   ̃ (‖  ‖  (    )    ‖   ‖  (    ))}    

where         [   ] ∫ | (   )|  
 

 
  

Theorem 4.3. Assume that (  ), (  ) and ( ̂ ) hold. Then (1.1) has a unique mild solution     (   )  

Proof. Define      (   )    (   )  by 
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  ( )  

{
 
 
 
 
 
 

 
 
 
 
 
   ( )     ( )   ∫   (   )[ (   ( ))                   

 

 

                                                

              ∫  (   ) (   ( ))  ]   
 

 

                                                            [     ] 

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                        

               ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]               (     ] 
 

 

 

  

                                                                                                                                                      

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                 

               ∫   (   )[ (   ( ))  ∫  (   ) (   ))  ]                    (    ] 
 

 

 

  

 

Note that    is well defined on PC(I,X). Now, take   [    ] and        (   )  By (4.5), (  ) and (  ), 

we have 

 

           ‖(  )( )  (  )( )‖   ̃ ∫ (   )   [  
( ) ‖ ( )   ( )‖                         

 

 

                                    ∫   ( ) ‖ ( )   ( )‖  
 

 
]                   

                                             ̃ ∫ (   )   [  
( ) ‖   ‖  

 

 
                         

                                     ‖  ‖  (    ) ‖   ‖  ]                 

                                                    
 

 
   ̃ (‖  ‖  (    )

   ‖  ‖  (    ))‖   ‖   

 

For    (     ],  we have 

‖(  )( )  (  )( )‖   ̃ (‖ (  
 )   (  

 )‖   
 
‖ (  

 )   (  
 )‖)                     

                  ̃   ‖ (  
 )   (  

 )‖

                               ̃ ∫ (   )   [  
( )‖ ( )   ( )‖

 

 

                   ∫   ( )‖ ( )   ( )‖  
 

 

]   

                                    ̃ (  
  )‖   ‖        ̃   ‖   ‖            

                                                         
 

 
   ̃ (‖  ‖  (    )

   ‖  ‖  (    ))‖   ‖  

                                         [ ̃ (  
  )       ̃    

 

 
   ̃ (‖  ‖  (    )

            ‖  ‖  (    ))]‖   ‖   
      

 

Similary, we have 
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‖(  )( )  (  )( )‖  [ ̃ (  
  )       ̃    

 

 
   ̃ (‖  ‖  (    )

                                             ‖  ‖  (    ))]‖   ‖              (       ]
 

and 

‖(  )( )  (  )( )‖  [ ̃ (  
  )       ̃    

 

 
   ̃ (‖  ‖  (    )

                                    ‖  ‖  (    ))]‖   ‖             (    ] 
 

Thus, for all    [   ]  we have 

‖(  )( )  (  )( )‖      
     

{   ̃ (    )       ̃    
 

 
   ̃ (‖  ‖  (    )                                         

          

                                                          ‖  ‖  (    ))} ‖   ‖            ‖   ‖      
                                                          

 

Hence, by Assumption ( ̂ ),   is a contraction mapping. So, it has a unique fixed point      (   ) 

which gives the unique mild solution of (1.1).                                                                                             ■ 

     Next, we prove our second existence result. To do this, we need the following Lemma. 

Lemma 4.4. ([6] Leray Schauder Alternative). Let D be a closed convex subset of a Banach space 

(  ‖ ‖ ) and assume that      If        is a completely continuous map, then the set  {       

  ( )      }  is unbounded or the map F has a fixed point in D. 

     We also, consider the following assumptions: 

(  ) The functions           are completely continuous, and there exist continuous functions 

       [   )  and a continuous non-decreasing function    [   )  (   )  such that 

‖ (   )‖   ( )  (‖ ‖)               
‖ (   )‖    ( )  (‖ ‖)     

 

and 

∫
  

 ( )
   

 

 

 

(  )  The function                      are completely continuous and uniformly bounded. 

(  )  The operator families  {  ( )}    {  ( )}     and {  ( )}
   

 compact, where  
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  ( )        ( )  

     In what follows, we use the notation        {‖  ( )‖     }        {‖  ( )‖     }   

      and          [   ] ∫ | (   )|   
 

 
 

Theorem 4.5. Assume that conditions (  )-(  ) are satisfied. If      (     ) and assume moreover, 

    ( )   ̃                                                                                                                         

 ( )  
  

(   ̃ ) 
 ̃ ∫ ( ( )      ( ))   ∫

  

 ( )
 

 

 

 

 

                                

                  

 

where   

                          {
 ̃ ‖  ‖  ̃         ̃ ‖  ‖      ̃     

   ̃ 
}  

Then system (1.1) has at least one mild solution defined on I. 

Proof. Define operator      (   )    (   ) as in Theorem 4.2 by 

  ( )  

{
 
 
 
 
 
 

 
 
 
 
 
   ( )     ( )   ∫   (   )[ (   ( ))                   

 

 

                                                

             ∫  (   ) (   ( ))  ]   
 

 

                                                              [     ] 

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                        

               ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                 (     ] 
 

 

 

  

                                                                                                                                                      

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                 

               ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                    (    ] 
 

 

 

  

 

Note that   is well defined on PC(I,X). Our proof will be divided up into five steps. 

Step 1.   is continuous. 

Let (  ) be a sequence in PC(I,X) such that      in PC(I,X). Noting that the function f, g are 

continuous on I× X, we have  

 (    ( ))   (   ( ))  (    ( ))   (   ( ))             
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 that is for all       there exists N, when  n>N,  we have 

‖ (    ( ))   (   ( ))‖    ‖ (    ( ))   (   ( ))‖     

Now, for every   [    ]  when n>N, we have 

‖(   )( )  (  )( )‖   ∫ ‖  (   )‖  [‖ (    ( ))   (   ( ))‖
  

 

                             

                        ‖∫ ‖ (    ( ))   (   ( ))‖   ‖  
 

 

]

  

                
 

 
   ̃ [‖ (    ( ))   (   ( ))‖                      

            ‖ (    ( ))   (   ( ))‖]        

(   )                                                    
 

 
   ̃ (    )                                                                                                 

 

Moreover, for any    (       ]            we have 

‖(   )( )  (  )( )‖   ̃ [‖  (  
 )   (  

 )‖  ‖  (  (  
 ))    ( (  

 ))‖]                           

       ̃ [  (  (  
 ))    ( (  

 ))]

(    )                                               
 

 
   ̃ (    )                                                                                          

 

and 

‖(   )( )  (  )( )‖   ̃ [‖  (  
 )   (  

 )‖  ‖  (  (  
 ))    ( (  

 ))‖]                  

             ̃ [  (  (  
 ))    ( (  

 ))]         

 (    )                                                
 

 
   ̃ (    )               (    ]                                                                   

 

By the continuity of       (       )  as well (4.9) – (4.11), we have 

   
   

‖      ‖                  

Step 2.    maps bounded sets into bounded sets in  PC(I,X). 

It suffices to prove that for any r>0 there exists      such that  ‖  ‖     for each  

   {    (   )  ‖ ‖    }  Define on    the operator     and    by:  
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   ( )  

{
 
 

 
 
   ( )     ( )                                                                                                                [    ]          

   (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))                     (     ]        

                                                                                                                                                                       

  (    ) ( (  
 )    ( (  

 )))    (    ) (  (  
 )    ( (  

 )))             (    ]       

 

and 

   ( )  

{
 
 
 

 
 
 ∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                      [    ] 

 

 

 

 

     

∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                       (     ]
 

 

 

  

    

                                                                                                                                          

∫   (   )[ (   ( ))  ∫  (   ) (   ( ))  ]                     (    ]    
 

 

 

  

 

and for any  k>0 positive functions          ([   ]   ) such that 

   ‖ ‖  ‖ (   )‖    ( )          ‖ ‖  ‖ (   )‖    ( )   

             
‖  ( )‖                       

‖  ( )‖       

Then, for any        [    ] 

‖(   )( )‖  ∫ ‖  (   )‖
  

 

[‖ (   ( ))‖   ∫ ‖ (   ( ))‖  
 

 

]   

    
 

 
   ̃ [‖  ‖  (    )    ‖  ‖  (    )]   

 

and 

‖(   )( )‖  ‖  ( )‖‖  ‖  ‖  ( )‖‖  ‖

         ̃        ̃     
 

Then 

(4.12)             ‖(  )( )‖   ̃        ̃   
 

 
   ̃ [‖  ‖  (    )    ‖  ‖  (    )]  

Similary, for any    (       ]         

‖(  )( )‖   ̃ (   )       ̃ (   )                                     
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(    )                                                        
 

 
   ̃ [‖  ‖  (    )    ‖  ‖  (    )]                                          

From (4.12) and (4.13), we obtain 

             ‖(  )( )‖   ̃ (   )       ̃ (   ) 

                  
 

 
   ̃ [‖  ‖  (    )    ‖  ‖  (    )]                          [   ]            

Step 3.   (  ) is equicontinuous, where (  )    and     are defined in step 2. Define 

     ‖ (   )‖      ‖ (   )‖         

 For this purpose, for all       [    ]   with       by ‖  ( )‖     
   and ‖  ( )‖     

  (  

    ) and Theorem 3.4, we have 

‖(  )(  )  (  )(  )‖  ‖(   )(  )  (   )(  )‖  ‖(   )(  )  (   )(  )‖                                

           ‖  (  )    (  )‖‖  ‖  ‖  (  )    (  )‖‖  ‖

      ∫ ‖  (    )    (    )‖[‖ (   ( ))‖
  

 

  ∫ ‖ (   ( ))  ‖
 

 

]                                 

 ∫ ‖  (    )‖[‖ (   ( ))‖
  

  

                   

  ∫ ‖ (   ( ))  ‖
 

 

]                                 

                  ‖  ‖| 
        |    ‖  ‖| 

     
          

   |

    (‖  ‖  (    )    ‖ ‖  (    ))                   

     [
 ̃ (  

    
  (     )

 )

 
]                         

                (‖ ‖  (    )    ‖ ‖  (    )) [
 ̃ (  

    
 )

 
]  

 

Similary         (       ]   with                 we have 

‖(  )(  )  (  )(  )‖    (   )     |         |                                                        

                       (   )     |      
          

   |   

       (‖ ‖  (    )    ‖ ‖  (    ))     
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         [
 ̃ (  

    
  (     )

 )

 
] 

                                          (‖ ‖  (    )    ‖ ‖  (    )) [
 ̃ (  

    
 )

 
]  

 

Thus, from the above inequalities, we have          
‖(  )(  )  (  )(  )‖     So  (  ) is 

equicontinuous. 

Step 4.    maps    into a compact set in X. 

To this end, we decompose          where    and    are defined in step 2. We now prove that  

{(   )( )      } is compact in X. 

In step 2, we have proved that {(   )( )      } is bounded and in step 3, we have proved that 

{(   )( )      } is a family of equicontinuous functions. Hence by the Arzela-Ascoli Theorem,    is 

compact.  

Next, we show that {(   )( )      } is compact in X. For all   [    ]  since (   )( )    ( )   

  ( )     by (  )  it follows that {(   )( )    [    ]     } is a compact subset of X. On the other 

hand, for   (       ]     and       there exists  ̂    such that 

{    } ( )  

{
 
 
 

 
 
   (    ) ( (  

 )    ( (  
 )))                                                                                           

                 (    ) (  (  
 )    ( (  

 )))                              (       )        ̂   

  (       ) ( (  
 )    ( (  

 )))                                                                                        

             (       ) (  (  
 )    ( (  

 )))                                    ̂      
                                                                                                                                                 

 (  
 )    ( (  

 ))    (  
 )    ( (  

 )))                                         ̂              

 

where   ̂ is an open ball of radius  ̂. From (  ) and (  )  it follows that {    } ( ) is relatively compact 

in X, for all   [       ]      Moreover, by the compactness of    and     (       ) and the 

continuity of the evolution operators   ( ) and   ( )  for all   [   ]  we conclude that operator    is 

also compact. Therefore, so is         .  

Step 5. We show that the set 

  {    (   )       ( )                  } 

is bounded in PC(I,X). 
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Let       Then   ( )  (   )( ) for some        Thus  

‖  ( )‖  

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 [ ̃ ‖  ‖       ̃ ‖  ‖                                                          

  ̃ ∫ (   )   [ ( )  (  ( ))
 

 

   

                     ∫   ( )  (  ( ))  ]  
 

 

]                [    ] 

 [ ̃ (‖  ‖    )       ̃ (‖  ‖    
 )                             

  ̃ ∫ (   )   [ ( )  (  ( ))   
 

  

  

                     ∫   ( )  (  ( ))  ]  
 

 

]                 [     ] 

                                                                                                          
 [ ̃ (‖  ‖    )       ̃ (‖  ‖    

 )                          

  ̃ ∫ (   )   [ ( )  (  ( ))
 

  

      

                    ∫   ( )  (  ( ))  ]  
 

 

]                 [    ] 

 

By the Young inequality [[3], page 6], for   (       )          we get that 

‖  ( )‖   ̃ (‖  ‖    )       ̃ (‖  ‖    
 )                                                               

 
  

 
 ̃ ∫ ( ( )  (‖  ( )‖)      ( )  (‖  ( )‖))    

 

  

 

and for    [    ]   we have 

‖  ( )‖   ̃ ‖  ‖       ̃ ‖  ‖                                                                                           

 
  

 
 ̃ ∫ ( ( )  (‖  ( )‖)      ( )  (‖  ( )‖))    

 

 

 

Then, for all    [   ]  we have 

‖  ( )‖    ( )    
  

(   ̃ ) 
 ̃ ∫ ( ( )  (‖  ( )‖)      ( )  (‖  ( )‖))    

 

 

    

where 

     
     

{
 ̃ ‖  ‖   ̃         ̃ ‖  ‖       ̃   

 

   ̃ 

}                  

Computing    ( ) for   [   ]  we arrive at 
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               ( )  
  

(   ̃ ) 
 ̃ ( ( )  (‖  ( )‖)      ( )  (‖  ( )‖))  

Thus, 

      
   ( )

 (‖  ( )‖)
 

   ( )

 (‖  ( )‖)
 

  

(   ̃ ) 
( ( )      ( ))    

Since W(s) is positive and non-decreasing. Integrating both sides of the above inequality over [0, T], we 

have 

       ∫
  

 ( )
 

  

(   ̃ ) 
∫ ( ( )      ( ))   ∫

  

 ( )

 

 

 

 

  ( )

 

  

where we have used the facts   ( )      ( ) is positive and non-decreasing. Hence, by the above 

inequality, we conclude that the set of functions {      (   )} is bounded. This implies that   

{    (   )             } is bounded in X. Since we have already proven that   is continuous 

and compact, by Lemma 4.4,   has a fixed point which is a mild solution of (1.1).                                     ■                                                                                                                               
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