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Abstract
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1. Introduction

Stochastic differential and integro-differential equations have attracted great interest due to their appli-
cations in characterizing many problems in physics, biology, mechanics and so on. Fractional differential
equations have received great attention due to their applications in many important applied fields such
as population dynamics, heat conduction in materials with memory, seepage flow in porous media, au-
tonomous mobile robots, fluid dynamics, traffic models, electro magnetic, aeronautics, economics and so
on, for more details (see [1–5, 9–12, 18, 21, 23, 25, 26]). On the other hand, the notion of controllability of
dynamical systems is one of the fundamental concepts in mathematical control theory which plays pivotal
role in many areas of science and engineering. The problem of controllability of nonlinear stochastic or
deterministic system has been discussed by many authors (see [6, 8, 13–17, 24]). The problems of exact
and exact null controllability are to be distinguished. Exact controllability enables to steer the system to
arbitrary final state while exact null controllability means that the system can be steered to zero state.

In this paper, we investigate the exact null controllability of semilinear fractional stochastic delay
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integrodifferential equation in the following form{
cDαx(t) = Ax(t) +Bu(t) + F(t, xt) +

∫t
0 G(s, xs)dω(s), t ∈ J = [0,b],

x0(ζ) = φ(ζ), ζ ∈ [−r, 0],
(1.1)

where 1
2 < α < 1, cDα denotes the Caputo fractional derivative of order α, A is the infinitesimal generator

of an analytic compact semigroup of bounded linear operators S(t), t > 0, on a separable Hilbert space
H with inner product 〈., .〉 and norm ‖ . ‖. This means that there exists a M > 1 such that ‖S(t)‖ 6 M.
The control function u(·) is given in L2(J,U), the Hilbert space of admissible control functions with U
as a separable Hilbert space. The symbol B stands for a bounded linear operator from U into H. Here
ω is an H-valued Wiener process associated with a positive, nuclear covariance operator Q, F is an H-
valued map and G is a L(K,H)-valued map both defined on J×Cr (where K is a real separable Hilbert
space and L(K,H) is the space of all bounded, linear operators from K to H, we write simply L(H) if
H = K) and φ is an Cr-valued random variable independent of ω with finite second moment. Here
Cr = C([−r, 0],H) is a Banach space of all continuous functions φ : [−r, 0] → H endowed with norm
‖φ‖ = sup{‖φ(ϑ)‖ : −r 6 ϑ 6 0}. Also for x(·) ∈ C([−r,b],H) we have xt(·) ∈ Cr for t ∈ J, xt(ϑ) = x(t+ ϑ)
for ϑ ∈ [−r, 0].

To the best of our knowledge, there is no work reported on null controllability of semilinear fractional
stochastic delay integro-differential equations in Hilbert space of the form (1.1). Thus, we will make the
first attempt to study such problem in this paper. The rest of this paper is organized as follows. In Section
2, we present some basic definitions and lemmas which are useful to prove the main results. In Section
3, we investigate the sufficient conditions for null controllability of semilinear fractional stochastic delay
integro-differential equations in Hilbert space. In the final section, we consider an example to verify the
theoretical results.

2. Preliminaries

In this section, we provide definitions, lemmas and notations necessary to establish our main result.

Definition 2.1 ([21, 23]). The fractional integral of order α with the lower limit zero for a function f can
be defined as

Iαf(t) =
1
Γ(α)

∫t
0

f(s)

(t− s)1−αds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the Gamma function.

Definition 2.2 ([21, 23]). The Caputo fractional derivative of order α with the lower limit zero for a
function f can be written as

cDαf(t) =
1

Γ(n−α)

∫t
0

f(n)(s)

(t− s)α+1−nds = I
n−αf(n)(t), t > 0, 0 6 n− 1 < α < n.

If f is an abstract function with values in H, then the integrals appearing in the above definitions are taken
in Bochner’s sense.

Throughout this paper, (H, ‖ . ‖) and (K, ‖ . ‖K) denote two real Hilbert spaces. Let (Ω,Υ,P) be a
complete probability space furnished with complete family of right continuous increasing sub σ-algebras
{Υt : t ∈ J} satisfying Υt ⊂ Υ. An H-valued random variable is an Υ-measurable function x(t) : Ω → H

and a collection of random variables Ψ = {x(t,ω) : Ω → H|t ∈ J} is called a stochastic process. Usually
we suppress the dependence on ω ∈ Ω and write x(t) instead of x(t,ω) and x(t) : J → H in the place
of Ψ. Let βn(t) (n = 1, 2, . . .) be a sequence of real valued one-dimensional standard Brownian motions
mutually independent over (Ω,Υ,P). Set

ω(t) =

∞∑
n=1

√
λnβn(t)en, t > 0,

where λn, (n = 1, 2, . . .) are nonnegative real numbers and {en} (n = 1, 2, . . .) is a complete orthonormal
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basis in K. Let Q ∈ L(K,K) be an operator defined by Qen = λnen with finite Tr(Q) =
∑∞
n=1 λn <∞, (Tr

denotes the trace of the operator). Then the above K-valued stochastic process ω(t) is called Q-Wiener
process.

We assume that Υt = σ{ω(s) : 0 6 s 6 t} is the σ-algebra generated by ω. For φ ∈ L(K,H) we define

‖ φ ‖2
Q= Tr(φQφ

∗) =

∞∑
n=1

‖
√
λnφen ‖2 .

If ‖ φ ‖2
Q< ∞, then φ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space of all Q-

Hilbert-Schmidt operators φ : K → H. The completion LQ(K,H) of L(K,H) with respect to the topology
induced by the norm ‖ . ‖Q where ‖ φ ‖2

Q= 〈φ,φ〉 is a Hilbert space with the above norm topology. The
collection of all strongly-measurable, square-integrable, H-valued random variables, denoted by L2(Ω,H),
is a Banach space equipped with norm ‖ x(·) ‖L2(Ω,H)= (E ‖ x(.,ω) ‖2)

1
2 , where the expectation, E is

defined by E(x) =
∫
Ω x(ω)dP. An important subspace of L2(Ω,H) is given by L0

2(Ω,H) = {x ∈ L2(Ω,H),
x is Υ0-measurable}. Let C([−r,b],L2(Ω,H)) be the Banach space of all continuous maps from [−r,b] into
L2(Ω,H) satisfying the condition supt∈J E ‖ x(t) ‖2< ∞. Let Y be the closed subspace of all continuous
process x that belong to the space C([−r,b],L2(Ω,H)) consisting of Υt-adapted and measurable processes.
One can prove that this is a Banach space when equipped with the norm

‖ x ‖2
Y= sup

t∈J
{E ‖ x(t) ‖2: x ∈ C([−r,b],L2(Ω,H))}.

Theorem 2.3 ([19, Banach fixed point theorem]). Let D be a closed subset of a Banach space X and let Φ be a
contraction mapping from D to D, i.e.,

‖Φ(y) −Φ(z)‖ 6 δ‖y− z‖ for all y, z ∈ D; 0 < δ < 1.

Then there exists a unique z ∈ Φ such that Φ(z) = z.

Theorem 2.4 ([19, Schauder fixed point theorem]). Let X be a Banach space, D ⊂ X a nonempty closed bounded
convex set andΦ : D→ D a completely continuous operator (i.e., Φ is continuous andΦ(D) is relatively compact).
Then Φ has at least one fixed point.

Our aim is to study the exact null controllability problem for (1.1). First, we give the definitions of
mild solution and exact null controllability for it.

Definition 2.5. We say x ∈ C([−r,b],L2(Ω,H)) is a mild solution to (1.1) if it satisfies that{
x(t) = Sα(t)φ(0) +

∫t
0(t− s)

α−1Tα(t− s)[F(s, xs) +Bu(s) +
∫s

0 G(τ, xτ)dω(τ)]ds, t ∈ J,
x0(ζ) = φ(ζ), ζ ∈ [−r, 0],

where
Sα(t)x =

∫∞
0
ηα(θ)S(t

αθ)xdθ, Tα(t)x = α

∫∞
0
θηα(θ)S(t

αθ)xdθ

with ηα a probability density function defined on (0,∞).

Remark 2.6.
∫∞

0 θηα(θ)dθ = 1
Γ(1+α) (see[1, 7]).

Lemma 2.7 ([27]). The operators Sα(t) and Tα(t) have the following properties:

(I) for any fixed x ∈ H, ‖ Sα(t)x ‖6M ‖ x ‖, ‖ Tα(t)x ‖6 αM
Γ(α+1) ‖ x ‖;

(II) {Sα(t), t > 0} and {Tα(t), t > 0} are strongly continuous;
(III) for every t > 0, Sα(t) and Tα(t) are also compact operators if S(t), t > 0 is compact.
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Definition 2.8. The system (1.1) is said to be exact null controllable on the interval J if for every φ and
preassigned time b there exists a stochastic control u ∈ L2(J,U) such that the solution x(t) of the system
(1.1) satisfies x(b) = 0.

Define

Lb0 u =

∫b
0
(b− s)α−1Tα(b− s)Bu(s)ds : L2(J,U)→ H,

Nb0 (y, F,G) = Sα(b)y+
∫b

0
(b− s)α−1Tα(b− s)[F(s) +

∫s
0
G(τ)dω(τ)]ds : H× L2(J,U)→ H,

Consider the fractional linear system{
cDαy(t) = Ay(t) +Bu(t) + F(t) +

∫t
0 G(s)dω(s), t ∈ J = [0,b],

y(0) = y0,
(2.1)

associated with the system.

Definition 2.9. The system (2.1) is said to be exactly null controllable on J if ImLb0 ⊃ ImNb0 .

Remark 2.10. It is known that, (see[20]), system (2.1) is exactly null controllable if and only if there exists
γ > 0 such that ‖(Lb0 )∗‖2 > γ‖(Nb0 )∗y‖2 for all y ∈ H.

Lemma 2.11 ([21]). Suppose that the linear system (2.1) is exactly null controllable on J. Then the linear operator
(L0)

−1Nb0 : H× L2(J,H)→ L2(J,U) is bounded and the control

u(t) = −(L0)
−1

[
Sα(b)y0 +

∫b
0
(b− s)α−1Tα(b− s)F(s)ds

+

∫b
0
(b− s)α−1Tα(b− s)[

∫s
0
G(τ)dω(τ)]ds

]
(t),

transfers the system (2.1) from y0 to 0, where L0 is the restriction of Lb0 to [kerLb0 ]
⊥, F ∈ L2(J,H) and G ∈

L2(J,L(K,H)).

3. Exact null controllability

In this section, we formulate sufficient conditions for exact null controllability of the system (1.1). For
this purpose, we impose the following conditions on data of the problem.

(H1) The fractional linear system (2.1) is exactly null controllable on J.
(H2) The functions F : J×Cr → H and G : J×Cr → L(K,H) are continuous, for each x ∈ H the functions

F(·, x) : J → H and G(·, x) : J → L(KQ,H) are strongly Υt-measurable and there exists functions
λ(·) ∈ L1(J,R+) and g(·) ∈ L1(Cr,R+) be such that

E‖F(t,φ)‖2 ∨ E‖G(t,φ)‖2
Q 6 λ(t)g(φ) for (t,φ) ∈ J×Cr.

In this paper ‖λ‖ =
∫b

0 λ(s)ds and MB = ‖B‖.

Theorem 3.1. If the hypotheses(H1)-(H2) are satisfied, then the system (1.1) is exactly null controllable on J
provided that there exists a constant r > 0 such that

M2E‖φ(0)‖2 +
α2‖(L0)

−1‖2M4M2
Bb

2α−1

(2α− 1) Γ 2(α+ 1)

[
E‖φ(0)‖2 +

α2M2b2α−1ψ(r)‖λ‖
(2α− 1)Γ 2(α+ 1)

(1 + bTr(Q))

]
+
α2M2b2α−1ψ(r)‖λ‖
(2α− 1)Γ 2(α+ 1)

[1 + bTr(Q)] 6 r.
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Proof. Using the hypothesis (H2) for an arbitrary x(·) define the operator Φ on Y as follows

(Φx)(t) =


φ(t), t ∈ [−r, 0],
Sα(t)φ(0) +

∫t
0(t− s)

α−1Tα(t− s)Bu(s)ds+
∫t

0(t− s)
α−1Tα(t− s)F(s, xs)ds,

+
∫t

0(t− s)
α−1Tα(t− s)(

∫s
0 G(τ, xτ)dω(τ))ds, t ∈ J.

(3.1)

It will be shown that the operator Φ from Y into itself has a fixed point.
On the Banach space Y, we introduce the set

Yr = {x(·) ∈ Y : x(t) = φ(t), t ∈ [−r, 0], ‖x‖2
Y 6 r for all t ∈ [−r,b]},

where r > 0. The proof will be given in several steps.

Step 1. The control u(·) is bounded on Yr. Indeed,

‖u‖2
Y = sup

t∈J
E‖u‖2 6 ‖(L0)

−1‖2

{
M2E‖φ(0)‖2 +

α2M2

Γ 2(α+ 1)

∫b
0
(b− s)2α−2ds

∫b
0
E‖F(s, xs)‖2ds

}

+
α2M2‖(L0)

−1‖2

Γ 2(α+ 1)

∫b
0
(b− s)2α−2ds

∫b
0
‖E
∫s

0
G(τ, xτ)dω(τ)‖2ds

6 ‖(L0)
−1‖2M2

[
E‖φ(0)‖2 +

α2M2b2α−1ψ(r)‖λ‖
(2α− 1)Γ 2(α+ 1)

(1 + bTr(Q))

]
.

(3.2)

Step 2. We show that Φ maps Yr into itself. If x(·) ∈ Yr, from (3.1) and (3.2) for t ∈ J, we have

‖Φx‖2
Y = sup

t∈J
E‖(Φx)(t)‖2 6M2E‖φ(0)‖2 +

α2M2M2
Bb

2α−1

(2α− 1) Γ 2(α+ 1)

∫b
0
E‖u(s)‖2ds

+
α2M2b2α−1

(2α− 1) Γ 2(α+ 1)

[∫t
0
E‖F(s, xs)‖2ds+

∫t
0
E‖
∫s

0
G(τ, xτ)dω(τ)‖2ds

]
6M2E‖φ(0)‖2 +

α2‖(L0)
−1‖2M4M2

Bb
2α−1

(2α− 1) Γ 2(α+ 1)

[
E‖φ(0)‖2 +

α2M2b2α−1ψ(r)‖λ‖
(2α− 1)Γ 2(α+ 1)

(1 + bTr(Q))

]
+
α2M2b2α−1ψ(r)‖λ‖
(2α− 1)Γ 2(α+ 1)

[1 + bTr(Q)] 6 r.

Hence, Φ maps Yr into itself.

Step 3. The operator Φ maps Yr into equicontinuous set of Yr.
Let 0 < t1 < t2 6 b. For each x ∈ Yr, we have

E‖(Φx)(t2) − (Φ)x(t1)‖2

6 sup
t∈J

E‖[Sα(t2) − Sα(t1)]φ(0)‖2

+ ‖B‖2‖(L0)
−1‖2E‖

∫t1

0
[(t2 − s)

α−1Tα(t2 − s) − (t1 − s)
α−1Tα(t2 − s)]{Sα(b)φ(0)

+

∫b
0
(b− ζ)α−1Tα(b− ζ)F(ζ, xζ)dζ+

∫b
0
(b− ζ)α−1Tα(b− ζ)(

∫ζ
0
G(τ, xτ)dω(τ))dζ}ds‖2

+ ‖B‖2‖(L0)
−1‖2E‖

∫t2

t1

(t2 − s)
α−1Tα(t2 − s){Sα(b)φ(0)

+

∫b
0
(b− ζ)α−1Tα(b− ζ)F(ζ, xζ)dζ+

∫b
0
(b− ζ)α−1Tα(b− ζ)(

∫ζ
0
G(τ, xτ)dω(τ))dζ}ds‖2

+ sup
t∈J

E‖
∫t2

t1

(t2 − s)
α−1Tα(t2 − s)[F(s, xs) +

∫s
0
G(τ, xτ)dω(τ)]ds‖2

+ sup
t∈J

E‖
∫t1

0
[(t2 − s)

α−1Tα(t2 − s) − (t1 − s)
α−1Tα(t1 − s)]

[
F(s, xs) +

∫s
0
G(τ, xτ)dω(τ)

]
ds‖2.

(3.3)
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From the above fact, we see that E‖(Φx)(t2) − (Φ)x(t1)‖2 tends to zero as t2 → t1. The equicontinuity for
the cases t1 < t2 6 0 and t1 6 0 6 t2 follows from the uniform continuity of φ on the interval [−r, 0].

Step 4. For arbitrary t ∈ J the set V(t) = {(Φx)(t) : x(·) ∈ Yr} is relatively compact. In fact, the case where
t = 0 is trivial, since V(0) = {φ(0)}. So, let 0 < t 6 b be fixed. For 0 < ξ 6 t and arbitrary δ > 0, take

(Φξ,δx)(t) =

∫∞
δ

ηα(θ)S(t
αθ)φ(0)dθ+α

∫t−ξ
0

∫∞
δ

θ(t− s)α−1ηα(θ)S((t− s)
αθ)[Bu(s)

+ F(s, xs) +
∫s

0
G(τ, xτ)dω(τ)]dsdθ

= S(ξαδ)

∫∞
δ

ηα(θ)S(t
αθ− ξαδ)φ(0)dθ

+αS(ξαδ)

∫t−ξ
0

∫∞
δ

θ(t− s)α−1ηα(θ)S((t− s)
αθ− ξαδ)[Bu(s)

+ F(s, xs) +
∫s

0
G(τ, xτ)dω(τ)]dsdθ.

Since S(ξαδ), ξαδ > 0 is a compact operator, the set Vξ,δ(t) = {(Φξ,δx)(t) : x(·) ∈ Yr} is a relative compact
set in H for every ξ, 0 < ξ < t and for all δ > 0. On the other hand, for every x(·) ∈ Yr by (3.3) we have

‖Φx−Φξ,δx‖2
Y = sup

t∈J
E‖(Φx)(t) − (Φξ,δx)(t)‖2

6 sup
t∈J

E‖
∫∞
δ
ηα(θ)S(t

αθ)φ(0)dθ‖2

+ sup
t∈J

E‖α
∫t
t−ξ

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)

αθ)Bu(s)ds‖2

+ sup
t∈J

E‖α
∫t
t−ξ

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)

αθ)F(s, xs)ds‖2

+ sup
t∈J

E‖α
∫t
t−ξ

∫∞
δ
θ(t− s)α−1ηα(θ)S((t− s)

αθ)

∫s
0
G(τ, xτ)dω(τ)ds‖2

+ sup
t∈J

E‖α
∫t

0

∫δ
0
θ(t− s)α−1ηα(θ)S((t− s)

αθ)Bu(s)ds‖2

+ sup
t∈J

E‖α
∫t

0

∫δ
0
θ(t− s)α−1ηα(θ)S((t− s)

αθ)F(s, xs)ds‖2

+ sup
t∈J

E‖α
∫t

0

∫δ
0
θ(t− s)α−1ηα(θ)S((t− s)

αθ)

∫s
0
G(τ, xτ)dω(τ)ds‖2.

We see that, for each x ∈ Yr, ‖Φx−Φξ,δx‖2
Y → 0 as ξ → 0+ and δ → 0+. Therefore, there are relative

compact sets arbitrary close to the set V(t). Hence, for each t ∈ J, the set V(t) is relative compact in H
(see [22]).

From the steps 2-4 and by the Ascoli-Arzela theorem, one can conclude that Φ is compact. On the
other hand, it is easy to see that Φ is continuous on Yr. Hence, Φ is a compact continuous operator on
Yr. From the Schauder fixed point theorem Φ has a fixed point. Thus, the system (1.1) is exactly null
controllable on J.

4. Example

We consider the following fractional stochastic integro-partial differential equation Dα0+x(t, z) =
∂2

∂z2x(t, z) + u(t, z) + f(t, x(t− h, z)) +
∫t

0 g(s, x(s− h, z))dω(s), t ∈ J, 0 < z < 1,
xz(t, 0) = xz(t, 1) = 0, t ∈ J,
x(t, z) = φ(t, z), t ∈ [−h, 0],

(4.1)
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where 0 < α < 1 and ω(t) is Wiener process, u ∈ L2(0,b), and H = L2([0, 1]). Let f : R × R → R

and g : R × R → L(R) are continuous. Also, let A : H → H be defined by Ay = ∂2

∂z2y with domain

D(A) = {y ∈ H : y, ∂y∂z are absolutely continuous, and ∂2y
∂z2 ∈ H,y(0) = y(1) = 0}.

It is known that A is self-adjoin and has the eigenvalues λn = −n2π2, n ∈ N, with the corresponding
normalized eigenvectors en(z) =

√
2 sin(nπz). Furthermore, A generates an analytic compact semigroup

of bounded linear operator S(t), t > 0, on a separable Hilbert space H which is given by

S(t)y =

∞∑
n=1

(yn, en)en =

∞∑
n=1

2e−n
2π2t sin(nπz)

∫ 1

0
sin(nπξ)y(ξ)dξ, y ∈ H.

If u ∈ L2(J,H), then B = I, B∗ = I. We consider the fractional linear system Dα0+y(t, z) =
∂2

∂z2y(t, z) + u(t, z) + f(t, z) + g(t, z)dω(t), t ∈ J, 0 < z < 1,
yz(t, 0) = yz(t, 1) = 0, t ∈ J,
y(t, z) = φ(t, z), − h 6 t 6 0.

(4.2)

The system (4.2) is exact null controllability if there is a γ > 0, such that∫b
0
‖B∗(b− s)α−1T∗α(b− s)y‖2ds > γ[‖S∗α(b)y‖2 +

∫b
0
‖(b− s)α−1T∗α(b− s)y‖2ds]

or equivalently∫b
0
‖(b− s)α−1Tα(b− s)y‖2ds > γ[‖Sα(b)y‖2 +

∫b
0
‖(b− s)α−1Tα(b− s)y‖2ds].

If f = 0 and g = 0 in (4.2), then the fractional linear system is exactly null controllable if∫b
0
‖(b− s)α−1Tα(b− s)y‖2ds > b‖Sα(b)y‖2.

Therefore, ∫b
0
‖(b− s)α−1Tα(b− s)y‖2ds >

b

1 + b
[‖Sα(b)y‖2 +

∫b
0
‖(b− s)α−1Tα(b− s)y‖2ds].

Hence, the linear fractional system (4.2) is exactly null controllable on [0,b]. So the hypothesis (H1) is
satisfied.

We define F : J×H→ H, and G : J×H→ L(K,H) as follows:

F(t, xt) = f(t, x(t− h, z)) and G(t, xt) = g(t, x(t− h, z)).

Assume F and G are continuous and there is a constant 0 < β < 1 and a function ν ∈ L2(J) such that

‖F(t, θ)‖∨ ‖G(t, θ)‖ 6 ν(t)‖θ‖β

for all (t, θ) ∈ J×H then the condition (H2) is satisfied. Hence, all the hypotheses of Theorem 3.1 are
satisfied, so the fractional stochastic integro-partial differential system (4.1) is exact null controllable on
[0,b].

5. Conclusion

In this paper, we have presented, by using fractional calculus and Schauder’s fixed point theorem,
sufficient conditions for exact null controllability of semilinear fractional stochastic integro-differential
equations in Hilbert spaces. We provided example in fractional stochastic integro-partial differential
equation to illustrate our results.
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