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Abstract

The dth power graph Gd is defined on the vertex set of a graph G in such a way that distinct
vertices with distance at most d in G are joined by an edge. In this paper the chromatic number of
the dth power of the Cartesian product Cm�Cn of two cycles is studied and some of the exact value
of χ((Cm�Cn)d) with conditions are determined. Also the chromatic number of the dth power of
grid Pm�Pn with some conditions are determined and the exact value of χ((Pm�Pn)d) for n = 2, 3
is obtained. c©2016 All rights reserved.
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1. Introduction

G is a simple graph. V (G) and E(G) denote the vertex set and edge set of G, respectively. A
proper k-coloring of a graph G is a mapping c from V (G) to the set {0, 1, ...,k−1} such that c(u) 6=c(v)
whenever uv is an edge in E(G). The chromatic number of G, denoted by χ(G), is the smallest k
for which there exists a k-coloring of G.
Given two graphs G and H, the Cartesian product of these two graphs, denoted by G�H, is defined
by V (G�H) =V (G)×V (H) where two vertices (u1, v1) and (u2, v2) are adjacent if and only if either
u1=u2 and v1v2∈E(H) or v1=v2 and u1u2∈E(G). The dth power graph Gd of a graph G is given by
V (Gd) =V (G) and two vertices u and v are adjacent in Gd, if their distance (number of edges in a
shortest uv-path) in G is at most d. A distance d-coloring of G is a proper vertex coloring of Gd. The
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investigation of distance coloring was initiated by Kramer and Kramer in 1969, for a survey see [4].
The square of particular graphs (planar graphs) is sudied by some authors (see e.g. [2, 5, 6]). In [3],
Jamison and Matthews considered the interaction between coding theory and distance k colorings
of Hamming graphs and found some bounds for the chromatic number of these graphs. Chiang and
Yan studied the chromatic number of the square of Cartesian products of paths and cycles [1].

Also Sopena and Wu studied the chromatic number of the square of Cartesian product Cm�Cn of
two cycles and showed that this value is at most 7 except when (m,n) is (3, 3), in such case the
value is 9 and when (m,n) is (4, 4) or (3, 5), the chromatic number is 8 [8]. In [7], Selvakumar and
Nithya represented the chromatic number of some graphs, so that in this coloring no two vertices
have distance two get the same color.

In this paper some of the exact value of χ((Cm�Cn)d) for special conditions are determined. Also
the chromatic number of the dth power of grid Pm�Pn with some conditions are calculated and the
exact value of χ((Pm�Pn)d) for n= 2, 3 is obtained. In a connected graph, distance is a metric and
the following Proposition is conclouded by this property.

Proposition 1.1. Let G be a connected graph. For every vertices u, v, w ∈ V (G)

d(u, v)≤d(u,w)+d(w, v).

2. Chromatic number of (Cm�Cn)
d for special cases

In this section some exact value of χ((Cm�Cn)d) is determined. In the following we have obviously
lemma.

Lemma 2.1. For every vertices u, v ∈ V (Cn), n ≥ 3, we have

d(u, v)≤
⌊n

2

⌋
.

We refer to the vertices of Cm�Cn as an m×n array [vij], where in each row we have a copy of Cn

and in each column a copy of Cm. Also we denote by dG(u, v), the distance between vertices u and
v in graph G. Using Lemma 2.1 and Proposition 1.1, the following Lemma can be concluded.

Lemma 2.2. Let G = Cm�Cn,m, n ≥ 3. For every vertices vij, vi′j′ ∈ V ((Cm�Cn)d), 1 ≤ i, i′ ≤ m
and 1 ≤ j, j′ ≤ n, we have

dG
(
vij, vi′j′

)
≤
⌊n

2

⌋
+
⌊m

2

⌋
.

Theorem 2.3. For every positive integers m,n, d, 3 ≤ m ≤ n ≤ d, we have

χ((Cm�Cn)d) =mn.

Proof. Since 3≤m≤n≤d, there is a positive integer k≥0 such that m=n−k. Let G=Cm�Cn. For
every vertices vij, vi′j′∈V ((Cm�Cn)d), Lemma 2.2 implies dG

(
vij, vi′j′

)
≤
⌊
n
2

⌋
+
⌊
n−k
2

⌋
≤n≤d, thus

(Cm�Cn)d is a complete graph with mn vertices and proof is completed.
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Consider 3≤m≤d≤n. For d=n the chromatic number of graph (Cm�Cn)d is concluded by Theorem
2.3. Suppose d<n, thus there are positive integers l, k, such that m=n−k, d=n−l and k≥l≥1.

Theorem 2.4. For every positive integers n, l, k, n ≥ 3, l ≥ 1, k ≥ 2l−1, n−k ≥ 3 and n−k ≤ n−l,
we have

χ((Cn−k�Cn)n−l) =n(n−k).

Proof. Let G=Cn−k�Cn. For every vertices vij, vi′j′∈V ((Cn−k�Cn)n−l), we show that
dG(vij, vi′j′)≤n−l. Lemma 2.2 implies dG

(
vij, vi′j′

)
≤
⌊
n−k
2

⌋
+
⌊
n
2

⌋
, but k≥2l−1 and it can be con-

cluded dG(vij, vi′j′)≤n−l. Thus (Cn−k�Cn)n−l is a complete graph with n(n−k) vertices and proof
is completed.

Corollary 2.5. For every positive integers n, k, n ≥ 3, k ≥ 1, n− k ≥ 3, we have

χ((Cn−k�Cn)n−1) =n(n−k).

Theorem 2.6. For every odd integer n ≥ 3 and every positive integer l ≥ 1 and n − (2l − 2) ≥ 3,
we have

χ((Cn−(2l−2)�Cn)n−l) =n(n−(2l−2)).

Proof. For every vertices vij, vi′j′∈V ((Cn−(2l−2)�Cn)n−l), using Lemma 2.2, it can be cocluded that

dG(vij, vi′j′)≤n−l such that G=Cn−(2l−2)�Cn. Therefore (Cn−(2l−2)�Cn)n−l is a complete graph with
n(n−(2l−2)) vertices and proof is completed.

Theorem 2.7. For every even integer n ≥ 6, we have

χ((Cn−2�Cn)n−2) =
n(n−2)

2
.

Proof. Let G=Cn−2�Cn and Aj be a set consists vertices in column j. Consider S=∪
n
2
j=1Aj. For

every vertices vij, vi′j′∈S⊂V ((Cn−2�Cn)n−2), 1≤i, i′≤n−2, 1≤j, j′≤n
2
, using Proposition 1.1, we have

dG(vij, vi′j′)≤dG(vij, vi′j)+dG(vi′j, vi′j′). (2.1)

But dG(vi′j, vi′j′)≤|j−j′|≤n
2
−1 and vertices vij, vi′j belong to a copy of cycle Cn−2, thus using Lemma

2.1 and equation (2.1) implies dG(vij, vi′j′)≤n−2
2

+n
2
−1 =n−2. Therefore the induced subgraph of

(Cn−2�Cn)n−2 with vertex set S is a clique, so

χ((Cn−2�Cn)n−2)≥n(n−2)

2
.
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The following is a n(n−2)
2

-coloring of (Cn−2�Cn)n−2.

c: V ((Cn−2�Cn)n−2)→{0, 1, 2, ..., n(n−2)

2
−1}

c(vij) =


i+(n−2)(j−1) (mod t) 1≤i≤n, 1≤j≤n

2

(i+n−2
2

) + (n−2)(j−(n
2
+1)) (mod t) 1≤i≤n−2

2
, r≤j≤n

(i−n−2
2

) + (n−2)(j−(n
2
+1)) (mod t) n−2

2
+1≤i≤n−2,r≤j≤n

and t=n(n−2)
2

, r=n
2
+1.

In this coloring we use two patterns A and A′ such that

1 1+n−2 ... 1 + (n−2)(n
2
−1)

2 2+n−2 ... 2 + (n−2)(n
2
−1)

. . . .

. . . .
n−2
2

n−2
2

+n−2 ... n−2
2

+(n−2)(n
2
−1)

pattern A

and
n−2
2

+1 n−2
2

+1+n−2 ... n−2
2

+1 + (n−2)(n
2
−1)

n−2
2

+2 n−2
2

+2+n−2 ... n−2
2

+2 + (n−2)(n
2
−1)

. . . .

. . . .

n−3 2n−5 ... n(n−2)
2
−1

n−2 2n−4 ... 0

pattern A′

A n(n−2)
2

-coloring of (Cn−2�Cn)n−2 can be obtained by the following pattern:

A A′

A′ A.

Theorem 2.8. For every positive integers n, k, n ≥ 3, k ≥ 2 and n− k ≥ 3, we have

χ((Cn−k�Cn)n−2) =


n(n−k)

2
k= 2, n even

n(n−k) k= 2, n odd
n(n−k) k≥3.

Proof. If k= 2, for even and odd n, the result is concluded by Theorems 2.6 and 2.7, respectively
and for k≥3, the result is obtained by Theorem 2.4.
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Cosider 3≤d≤m≤n. For d=m=n the chromatic number of graph (Cm�Cn)d is concluded by The-
orem 2.3. Consider 3≤d<m=n, in the following we show a lower bound for chromatic number of
these graphs.

Theorem 2.9. For every positive integers n ≥ 3, l ≥ 1 and
⌊
n
2

⌋
− l + 1 ≥ 1, we have

χ((Cn�Cn)n−l)≥n(
⌊n

2

⌋
−l+1).

Proof. Let G=Cn�Cn and Aj be a set consists vertices in column j. Consider S=∪Mj=1Aj and

M=
⌊
n
2

⌋
−l+1. For every vertices vij, vi′j′∈S⊂V ((Cn�Cn)n−2), 1≤i, i′≤n, 1≤j, j′≤M , using Propo-

sition 1.1, we have
dG(vij, vi′j′)≤dG(vij, vi′j)+dG(vi′j, vi′j′). (2.2)

But dG(vi′j, vi′j′)≤|j−j′|≤M−1 and vertices vij, vi′j belong to a copy of cycle Cn, thus using Lemma
2.1 and equation (2.2) implies dG(vij, vi′j′)≤

⌊
n
2

⌋
+M−1≤n−l. Therefore the induced subgraph of

(Cn�Cn)n−l with vertex set S is a clique, so

χ((Cn�Cn)n−l)≥n(
⌊n

2

⌋
−l+1).

Theorem 2.10. For every positive integer n ≥ 3, we have

χ((Cn�Cn)n−1) =

{
n2

2
n even

n2 n odd.

Proof. Suppose n is even, using Theorem 2.9, it can be concluded

χ((Cn�Cn)n−1)≥n
2

2
.

The following is a n2

2
-coloring of (Cn�Cn)n−1.

c:V ((Cn�Cn)n−1)→{0, 1, 2, ..., n
2

2
−1}

c(vij) =


i+n(j−1) (mod n2

2
) 1≤i≤n, 1≤j≤n

2

(i+n
2
)+n(j−(n

2
+1)) (mod n2

2
) 1≤i≤n

2
, n

2
+1≤j≤n

(i−n
2
)+n(j−(n

2
+1)) (mod n2

2
) n

2
+1≤i≤n, n

2
+1≤j≤n.

In this coloring we use two patterns A and A′ such that

1 1+n ... 1+n(n
2
−1)

2 2+n ... 2+n(n
2
−1)

. . . .

. . . .
n
2

n
2
+n ... n

2
+n(n

2
−1)

pattern A
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and
n
2
+1 n

2
+n+1 ... n

2
+n(n

2
−1) + 1

n
2
+2 n

2
+n+2 ... n

2
+n(n

2
−1) + 2

. . . .

. . . .

n−1 2n−1 ... n2

2
−1

n 2n ... 0

pattern A′

A n2

2
-coloring of (Cn�Cn)n−1 can be obtained by the following pattern:

A A′

A′ A.

Let n be odd and G=Cn�Cn. For every vertices vij, vi′j′∈V ((Cn�Cn)n−1), 1≤i, i′,j, j′≤n, using
Proposition 1.1 and Lemma 2.1, we have

dG(vij, vi′j′)≤n−1.

Thus the graph (Cn�Cn)n−1 is a complete graph with n2 vertices and proof is completed.

Theorem 2.11. For every even integer n ≥ 4, we have

χ((Cn−1�Cn)n−2) =
n(n−1)

2
.

Proof. LetG=Cn−1�Cn, andAj be a set consists vertices in column j. Consider S=∪
n
2
j=1Aj. For every

vertices vij, vi′j′∈S⊂V ((Cn−1�Cn)n−2), 1≤i, i′≤n−1, 1≤j, j′≤n
2
, we show that dG(vi′j, vi′j′)≤n−2.

Using Proposition 1.1, we have

dG(vij, vi′j′)≤dG(vij, vi′j)+dG(vi′j, vi′j′). (2.3)

If 1≤i, i′≤n
2

or n
2
+1≤i, i′≤n−1, the Equation (2.3) implies dG(vij, vi′j′)≤|i−i′|+ |j−j′|≤n−2.

If 1≤i≤n
2

and n
2
+1≤i′≤n−1, we have dG(vij, vi′j)≤n

2
−1 and dG(vi′j, vi′j′)≤n

2
−1, thus the Equation

(2.3) implies dG(vij, vi′j′)≤n−2. For 1≤i′≤n
2

and n
2
+1≤i≤n−1, it will be similarly proved that

dG(vij, vi′j′)≤n−2. Therefore the induced subgraph of (Cn−1�Cn)n−2 with vertex set S is a clique,

so χ((Cn−1�Cn)n−2)≥n(n−1)
2

.

The following is a n(n−1)
2

-coloring of (Cn−1�Cn)n−2.

c:V ((Cn−1�Cn)n−2)→{0, 1, 2, ..., n(n−1)

2
−1}

c(vij) =


i+n(j−1) (mod t) 1≤i≤n−1, 1≤j≤n

2

(i+n
2
−1)+n(j−(n

2
+1)) (mod t) 1≤i≤n

2
, n

2
+1≤j≤n

(i−(n
2
−1))+n(j−(n

2
+1)) (mod t) n

2
+1≤i≤n−1, n

2
+1≤j≤n

and t=n(n−1)
2

.
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In this coloring we use two patterns A and A′ such that

1 1+n ... 1+n(n
2
−1)

2 2+n ... 2+n(n
2
−1)

. . . .

. . . .
n
2

n
2
+n ... n

2
+n(n

2
−1)

pattern A

and
n
2
+1 n

2
+n+1 ... n

2
+n(n

2
−1) + 1

n
2
+2 n

2
+n+2 ... n

2
+n(n

2
−1) + 2

. . . .

. . . .

n−2 2n−3 ... n(n−1)
2
−1

n−1 2n−2 ... 0

pattern A′

A n(n−1)
2

-coloring of (Cn−1�Cn)n−2 can be obtained by the following pattern:

A A′

A′ A.

3. Chromatic number of (Pm�P n)
d for special cases

Similar to graph Cm�Cn, We refer to the vertices of Pm�Pn as an m×n array [vij]. Using Proposition
1.1, the following Lemma can be concluded.

Lemma 3.1. Let G = Pm�Pn. For every vertices vij, vi′j′ ∈ V ((Pm�Pn)d), 1 ≤ i, i′ ≤ m and
1 ≤ j, j′ ≤ n, we have

dG(vij, vi′j′)≤|i−i′|+ |j−j′|.

Theorem 3.2. For every positive integers m,n, d, d− (n− 2) ≥ m ≥ 2, n ≥ 2, we have

χ((Pm�Pn)d) =mn.

Proof. Let G=Pm�Pn. For every vertices vij, vi′j′∈V ((Pm�Pn)d), 1≤i, i′≤m and 1≤j, j′≤n, using

Lemma 3.1, therefore it can be concluded dG(vij, vi′j′)≤d, thus (Pm�Pn)d is a complete graph and
proof is completed.

Theorem 3.3. For every positive integers m,n, d, m ≥ d− n+ 3 ≥ 3, m ≥ n ≥ 2, we have

χ((Pm�Pn)d)≥nd−(n−1)(n−2).

Proof. Let G=Pm�Pn, Ak={v1k, v2k, ..., vd−(n−3)k}, 1≤k≤n−1 and

An={v2n, v3n, ..., vd−n+2 n}.

Consider S= (∪n−1k=1Aj)∪An. For every vertices vij, vi′j′∈S, using Lemma 3.1 therefore it can be

concluded dG(vij, vi′j′)≤d. Thus the induced subgraph H of (Pm�Pn)d with vertex set S is a complete

graph, so χ((Pm�Pn)d)≥χ(H) =nd−(n−1)(n−2).
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Theorem 3.4. For every positive integers n, d, d− n+ 3 ≥ 3, n ≥ 2, we have

χ((Pd−n+3�Pn)d) =nd−(n−1)(n−2).

Proof. Theorem 3.3 implies, χ((Pd−n+3�Pn)d)≥nd−(n−1)(n−2). The following is a (nd−(n−1)(n−2))-
coloring of (Pd−n+3�Pn)d.

c:V ((Pd−n+3�Pn)d)→{1, 2, ..., nd−(n−1)(n−2)}

c(vij) =


i+(d−n+3)(j−1) (i, j) 6=(1,n), (d−n+3,n)
d−n+3 (i, j) = (1,n)
1 (i, j) = (d−n+3,n).

4. Chromatic number of graphs (Pm�P n)
d for small n

Theorem 4.1. For every positive integers m, d, we have

χ((Pm�P2)
d) =

{
2m d≥m≥2
2d m≥d+1≥3.

Proof. If d≥m≥2, Theorem 3.2 implies χ((Pm�P2)
d) = 2m. Suppose that m≥d+1≥3, thus Theorem

3.3 implies χ((Pm�P2)
d)≥2d. The following is a 2d-coloring of this graph.

c: V ((Pm�P2)
d)→{0, 1, 2, ..., 2d−1}

c(vij) =i+d(j−1)(mod 2d).

Theorem 4.2. For every positive integer d ≥ 3, we have

χ((Pd+1�P3)
d) = 3d−1.

Proof. The function c is a (3d−1)-coloring of (Pd+1�P3)
d.

c: V ((Pd+3�P3)
d)→{1, 2, ..., 3d−1}

c(vij) =



i+d(j−1) 1≤i≤d, 1≤j≤3, (i, j) 6=(1, 3), (d, 3)
d (i, j) = (1, 3)
1 (i, j) = (d, 3)
2d+1 (i, j) = (d+1, 1)
3d−1 (i, j) = (d+1, 2)
2 (i, j) = (d+1, 3).

Now, we show that coloring of this graph with less than 3d−1 colors is impossible. Suppose there is
a (3d−2)-coloring of this graph. Consider

A1 = {v11, v21, ..., vd1},
A2 = {v12, v22, ..., vd2},
A3 = {v23, v33, ..., vd−13},
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and S=∪3k=1Ak. The induced subgraph of (Pd+1�P3)
d with vertex set S is a complete graph and for

coloring of this subgraph we need 3d−2 colors. Without loss of generality, suppose these vertices are
colored in the following manner.

1 d+1 •
2 d+2 2d+1
3 d+3 2d+2
. . .
. . .
. . .
d−1 2d−1 3d−2
d 2d •
• • •

Consider vertex v13. This vertex is adjacent to all vertices in S except vd1. Therefore in (3d−2)-
coloring it should be colored with the color assigned to vertex vd1 i.e. color d. Similarly, vertex vd3
is adjacent to all vertices in S except v11 and it should be colored with the color 1. Now consider
vertex vd+12. This vertex is adjacent to all vertices in V ((Pd+1�P3)

d) except vertices v11and v13.
Thus in this coloring, it should be colored with colors allocated to vertices v11 or v13 i.e. colors
1 or d, but these colors exsist in vertices neighbor to vd+12. Therefore, it is impossible and proof is
completed.

Theorem 4.3. For every positive integers m, d, we have

χ((Pm�P3)
d) =


3m d−1≥m≥3
3d−2 m=d≥3
3d−1 m≥d+1≥4.

Proof. If d−1≥m≥3 or m=d≥3, thus the results can be concluded from Theorem 3.2 and Theorem
3.4, respectively. Now suppose that m≥d+1≥4. Since (Pd+1�P3)

d is a subgraph of (Pm�P3)
d,

Theorem 4.2 implies χ((Pm�P3)
d)≥3d−1. The following is a (3d−1)-coloring of this graph.

c:V ((Pm�P2)
d)→{0, 1, 2, ..., 3d−2}

c(vij) =i+d(j−1)(mod 3d−1).
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