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Abstract
Sufficient conditions are obtained for the permanence of the following nonlinear mutualism model with time varying delay

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) +α1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]
,

dN2(t)

dt
= r2(t)N2(t)

[
K2(t) +α2(t)N

β2
1 (t− τ1(t))

1 +Nβ2
1 (t− τ1(t)

−Nδ2
2 (t− σ2(t))

]
,

where ri,Ki,αi, τi, and σi, i = 1, 2 are continuous functions bounded above and below by positive constants, αi > Ki, i = 1, 2,
and βi, δi, i = 1, 2 are all positive constants.
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1. Introduction

Throughout this paper, for a continuous function g(t), we set

gl = inf
t∈R

g(t), gu = sup
t∈R

g(t).

The aim of this paper is to investigate the persistent property of the following nonlinear mutualism
model with time varying delay

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) +α1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]
,

dN2(t)

dt
= r2(t)N2(t)

[
K2(t) +α2(t)N

β2
1 (t− τ1(t))

1 +Nβ2
1 (t− τ1(t)

−Nδ2
2 (t− σ2(t))

]
.

(1.1)

We assume that the coefficients of system (1.1) satisfies:
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(A) ri,Ki,αi, τi and σi, i = 1, 2 are continuous functions bounded above and below by positive con-
stants, αi > Ki, i = 1, 2, and βi, δi, i = 1, 2 are all positive constants.

Let τ = sup
t

{τi(t),σi(t), i = 1, 2}, we consider (1.1) together with the following initial conditions

Ni(s) = ϕi(s) > 0, s ∈ [−τ, 0], ϕi(0) > 0. (1.2)

It is not difficult to see that solutions of (1.1)-(1.2) are well defined for all t > 0 and satisfy

Ni(t) > 0 for t ∈ R, i = 1, 2.

During the past decades, many scholars focused their attention to the study of the dynamic behaviors of
the cooperative system, see [1–37]. Stimulated by the work of Gopalsamy [14], Dean [13], Boucher [1],
Wolin and Lawlor [1], Li [21], and Li and Xu [24] studied the following two species mutualism model

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) +α1(t)N2(t− τ2(t))

1 +N2(t− τ2(t))
−N1(t− σ1(t))

]
,

dN2(t)

dt
= r2(t)N2(t)

[
K2(t) +α2(t)N1(t− τ1(t))

1 +N1(t− τ1(t)
−N2(t− σ2(t))

]
.

(1.3)

Under the assumption ri,Ki,αi and τi,σi, i = 1, 2 are continuous periodic functions with common period
ω. αi > Ki, i = 1, 2. By applying the coincidence degree theory, they showed that system (1.3) admits
at least one positive ω-periodic solution. After that, by constructing some suitable Lyapunov functional,
they also obtained a set of sufficient conditions which ensure the global attractivity of the positive periodic
solution. After the works of [1, 13, 14, 21, 24, 27, 28], many scholars ([4, 7, 8, 12, 16, 23, 31, 32, 34–36])
done works on this direction. For example, Chen [12] further incorporated the feedback control variables
to the system (1.3) and investigated the persistent property of the system. Chen and Xie [8] showed that
feedback control variables has no influence to the persistent property of a discrete mutualism model.

It bring to our attention that the model (1.3) is based on the following single species Logistic model:

dN(t)

dt
= r(t)N(t) [K(t) −N(t)] .

Already, during the past decades, in their series papers, based on the traditional single species Ayala
model, Chen and his coauthors ([2, 3, 5, 6, 10, 11, 18–20, 22, 33]) proposed several kind of nonlinear
population models, and investigated the extinction, persistent, and stability property of the system. For
example, Chen [11] investigated the permanence and extinction of following general nonautonomous
n-species Gilpin-Ayala competition system

ẋi(t) = xi(t)
[
bi(t) −

n∑
j=1

aij(t)(xj(t))
αij
]
, i = 1, 2, . . . ,n,

where bi(t), 1 6 i 6 n and aij(t), i, j = 1, 2, . . . ,n are continuous for c 6 t < +∞, αij are positive
constants. In [10], Chen et al investigated the extinction property of the following two species competitive
model:

ẋ1(t) = x1(t)[r1(t) − a1(t)x
α1
1 (t) − b1(t)x

α2
2 (t) − c1(t)x

α1
1 (t)xα2

2 (t)],
ẋ2(t) = x2(t)[r2(t) − a2(t)x

α1
1 (t) − b2(t)x

α2
2 (t) − c2(t)x

α1
1 (t)xα2

2 (t)].

In [6], Chen and Wu studied the persistent and global stability property of the following n-species discrete
Gilpin-Ayala competition model:

xi(k+ 1) = xi(k) exp
[
bi(k) −

n∑
j=1

aij(k)(xj(k))
θij
]
,
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where i = 1, 2, . . . ,n; xi(k) is the density of competition species i at k-th generation.
Though much progress has been obtained on the Gilpin-Ayala type system ([2, 3, 5, 6, 9–11, 15, 17–

20, 22, 33, 37]), all of those works are focus on the competition system or predator-prey system, and
none of them consider the mutualism model, this motivated us to propose the system (1.1), which is a
generalization of system (1.3). Also, as far as population model concerned, the persistent property is one
of the most important property of the system, since it represents the long time existence of the species.

The aim of this paper is, by further developing the analysis technique of [2] and the differential
inequality theory, to obtain a set of sufficient conditions to ensure the permanence of the system (1.1).
More precisely, we will prove the following result.

Theorem 1.1. Under the assumption (A), system (1.1) is permanent, that is, there exist positive constants mi,Mi,
i = 1, 2 which are independent of the solutions of system (1.1), such that for any positive solution (x1(t), x2(t))

T of
system (1.1) with initial condition (1.2), one has:

mi 6 lim inf
t→+∞ xi(t) 6 lim sup

t→+∞ xi(t) 6Mi, i = 1, 2.

2. Proof of the main result

Now let’s state the following lemma which will be useful in the proving of main result.

Lemma 2.1 ([10]). If a > 0,b > 0 and ẋ > x(b− axα), where α is a positive constant, when t > 0 and x(0) > 0,
we have

lim inf
t→+∞ x(t) >

(b
a

)1/α
.

If a > 0,b > 0 and ẋ 6 x(b− axα), where α is a positive constant, when t > 0 and x(0) > 0, we have

lim sup
t→+∞ x(t) 6

(b
a

)1/α
.

Now we are in the position of proving the main result of this paper.

Proof of Theorem 1.1. Set
τ = sup

t

{τi(t),σi(t), i = 1, 2}.

Let (N1(t),N2(t)) be any positive solution of system (1.1) with initial condition (1.2). From the first
equation of system (1.1) and α1(t) > K1(t) it follows that

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) +α1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]

6 r1(t)N1(t)

[
α1(t) +α1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]
6 r1(t)N1(t)α1(t) 6 r

u
1 α
u
1 N1(t),

(2.1)

Integrating both sides of (2.1) from t− σ1(t) to t leads to

ln
N1(t)

N1(t− σ1(t))
6
∫t
t−σ1(t)

ru1 α
u
1 ds 6 r

u
1 α
u
1 τ,

and so

N1(t− σ1(t)) > N1(t) exp{−ru1 α
u
1 τ}. (2.2)
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Substituting (2.2) into the first equation of system (1.1), it follows that

dN1(t)

dt
6 r1(t)N1(t)

[
α1(t) −N

δ1
1 (t− σ1(t))

]
6 N1(t)

[
ru1 α

u
1 − rl1

(
N1(t) exp{−ru1 α

u
1 τ}
)δ1
]

= N1(t)
[
ru1 α

u
1 − rl1N

δ1
1 (t) exp{−δ1r

u
1 α
u
1 τ}
)]

.

(2.3)

Thus, as a direct corollary of Lemma 2.1, according to (2.3), one has

lim sup
t→+∞ N1(t) 6

(
ru1 α

u
1

rl1
exp{δ1r

u
1 α
u
1 τ}

) 1
δ1

=

(
ru1 α

u
1

rl1

) 1
δ1

exp{ru1 α
u
1 τ}

def
= M1. (2.4)

By using the second equation of system (1.1), similarly to the analysis of (2.1)-(2.4), we can obtain

lim sup
t→+∞ N2(t) 6

(
ru2 α

u
2

rl2

) 1
δ2

exp{ru2 α
u
2 τ}

def
= M2. (2.5)

For any small positive constant ε > 0, from (2.4)-(2.5) it follows that there exists a T1 > 0 such that for all
t > T1 and i = 1, 2,

Ni(t) < Mi + ε. (2.6)

For t > T1 + τ, from (2.6) and the first equation of system (1.1), we have

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) +α1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]

> r1(t)N1(t)

[
K1(t) +K1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]
= r1(t)N1(t)

[
K1(t) −N

δ1
1 (t− σ1(t))

]
> N1(t)

[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]

.

(2.7)

Noting that

rl1K
l
1 − r

u
1
(
M1 + ε)

δ1 6 ru1 K
l
1 − r

u
1
(
M1 + ε)

δ1

6 ru1
(
Kl1 −

(
M1 + ε)

δ1
)

6 ru1
(
Kl1 −

(
M1)

δ1
)

6 ru1
(
Kl1 −

ru1 α
u
1

rl1
exp{δ1r

u
1 α
u
1 τ}
)

6 ru1
(
Kl1 −α

u
1

)
6 0.

(2.8)

Integrating both sides of (2.7) from t− σ1(t) to t leads to

ln
N1(t)

N1(t− σ1(t))
>
∫t
t−σ1(t)

[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
ds >

[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
τ,

and so

N1(t− σ1(t)) 6 N1(t) exp
{
−
[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
τ
}

. (2.9)
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Substituting (2.9) into the first equation of system (1.1), using (2.9), for t > T1 + τ, it follows that

dN1(t)

dt
> r1(t)N1(t)

[
K1(t) +K1(t)N

β1
2 (t− τ2(t))

1 +Nβ1
2 (t− τ2(t))

−Nδ1
1 (t− σ1(t))

]
= r1(t)N1(t)

[
K1(t) −N

δ1
1 (t− σ1(t))

]
> N1(t)

[
rl1K

l
1 − r

u
1 N

δ1
1 (t− σ1(t))

]
> N1(t)

[
rl1K

l
1 − r

u
1 N

δ1
1 (t) exp

{
−
[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
δ1τ
}]

,

(2.10)

thus, as a direct corollary of Lemma 2.1, according to (2.10), one has

lim inf
t→+∞ N1(t) >

(
rl1K

l
1

ru1
exp
{[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
δ1τ
}) 1

δ1

=

(
rl1K

l
1

ru1

) 1
δ1

exp
{[
rl1K

l
1 − r

u
1
(
M1 + ε)

δ1
]
τ
}

.

(2.11)

Setting ε→ 0, it follows that

lim inf
t→+∞ N1(t) >

1
2

(
rl1K

l
1

ru1

) 1
δ1

exp
{[
rl1K

l
1 − r

u
1
(
M1)

δ1
]
τ
}

def
= m1. (2.12)

Similarly to the analysis of (2.7)-(2.12), by applying (2.6), from the second equation of system (1.1), we can
also have

lim inf
t→+∞ N2(t) >

1
2

(
rl2K

l
2

ru2

) 1
δ2

exp
{[
rl2K

l
2 − r

u
2
(
M2)

δ2
]
τ
}

def
= m2. (2.13)

(2.4)-(2.5) and (2.12)-(2.13) show that under the assumptions of Theorem 1.1, system (1.1) is permanent.
This ends the proof of Theorem 1.1.

3. Numeric simulations

In this section we will give an example to show the feasibility of the Theorem 1.1.

Example 3.1.

dN(t)

dt
= N1(t)

[
2 + (4 − 1

2 cos(t))N2
2(t)

1 +N2
2(t)

−N
1
2
1 (t)

]
,

dN2(t)

dt
= N2(t)

[
1 + (3 + 1

10 sin(t))N2
1(t)

1 +N2
1(t)

−N
1
2
2 (t)

]
.

(3.1)

Corresponding to system (1.1), one has

r1(t) = r2(t) = 1, α1(t) = 4 −
1
2

cos(t), α2(t) = 3 +
1
10

sin(t), K1(t) = 2, K2(t) = 1.

Obviously, αi(t) > Ki(t), i = 1, 2, hence, the conditions of Theorem 1.1 hold, it follows from Theorem 1.1
that system (3.1) is permanent. Figs. 1 and 2 also support this assertion.
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Figure 1: Dynamic behavior of the first species in system
(3.1) with the initial conditions (N1(0),N2(0)) = (5, 5),
(1, 1), (15, 13), (30, 15), and (20, 20), respectively.

Figure 2: Dynamic behavior of the second species in
system (3.1) with the initial conditions (N1(0),N2(0)) =
(5, 5), (1, 1), (15, 13), (30, 15), and (20, 20), respectively.

4. Discussion

Li [21] proposed a model of mutualism (i.e., system (1.3)). Under the assumption αi > Ki, i = 1, 2,
by using the coincidence degree theory, they showed that the system admits at least one positive periodic
solution. In this paper, we generalize the system (1.3) to the nonlinear case. By using the theory of
differential inequality, and applying the analysis technique of Chen [2], we also obtain a set of sufficient
conditions which ensure the permanence of the system.

Numeric simulations (Example 3.1) supports our finding. At the end of the paper, we would like to
mention that from Figs. 1 and 2, one could see that system (3.1) admits unique positive periodic solution
which is globally attractive, hence, it seems interesting to investigate the stability property of the system
(1.1), we leave this for future investigation.
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