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Abstract

In this paper, we present numerical results concerning a comparison between the normal
equation approach and an ABS approach for computing the search direction of primal-dual
infeasible interior point methods for solving convex quadratic programming problems (CQPs).
Let m and n denote the number of constraints and the number of variables, respectively. The
numerical results show that, when m/n is small, then the ABS approach needs a considerably
less computing time. When m/n is close to one, then the normal equations approach is more
efficient than the ABS approach.

Keywords: Infeasible interior point method, Primal-dual algorithms, Extended ABS algorithms, Search
direction, Iteration free search vector.

1. Introduction

Consider the CQP of minimizing 1/2 xTQx + cTx subject to Ax = b, x > 0, where c,x eR",
QeR™™ is symmetric positive semidefinite, A € R™™ and b € R™. Here, we assume that
rank(A)=m and m < n. In the kth iteration of an IIPM for solving convex quadratic problems, the

search direction is computed by solving the (2n + m) x (2n + m) system of linear equations [3],
K

—-Q AT I\ [Ax*¥ T
( A 0 0 ><A/1"> =| -1 (1)
sk 0 Xx*/ \Ask —rk
where 7k, ré‘ and X are given by rb = Ax¥ — b, 1k = AT + sk — ¢, vk = —X*S*ke + oy 1 and X*
and S* denote the diagonal matrices whose diagonal elements are the components ofthe vectors x*

(k)Tk

and s¥, respectively, and 1 = (1, ...,1)" € R™. Moreover, o, € (0,1) and y, = -——— are centering

parameter and duality gap, respectively.
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2. ABS approach

Let aiT, 1 <i <m, denote rows of the matrix 4, and consider the linear system Ax = b. Applying the
ABS algorithm with j;.; =n —ito this system, starting with H; = I,, andX; = 0 € R™, in the ith
iteration, choose Z; so that z] H;a; # 0, and let p; = H!Z;. After computingX;,;, choose G; €
RM-Ox(=i+1) 55 that G;x = 0 if and only if x = H;a;, for some a € R, and let H;,; = G;H;. Consider
the linear system ATy = 0. In applying the ABS algorithm to this system, starting with ﬁl = I, and
£, =0 € R™, in the ith iteration we choose 2; so that 2] H Ae; # 0, and let p; = H;Z;. Then, we
choose W; so that W] H Ae; = 1, and let H;,; = H; — H;Ae;w! H;. Let1* = S¥(X*)~1, H = H,,,, and
Bk = (. Define the matrices B,i € R™™ according to the following formula:
Bl =Bl — B M Aewl B+ HQT + ¥)ew/ A, 1<j<m.  (2)
The solution of the first 2m 4 n equations of (1) is [2]:

Ax* PA¥
<A/1"> = —AB" :
Ask ATA'ﬁk
where P = (ﬁlfﬁz: ---'ﬁm)r P = (ﬁlr 132: . 'pm) /1k (/1 . /ﬁcn) ﬁk (ﬁllﬁZl 1.87]7{1)1 and

the ith component of the vectors A¥ and ,Bk are defined, using the properties of the ABS algorithm and
as:

K\T —(rTe. — Yizl pkaT5

1k = —(ry) e K = () e j=145 @ j

=— A= T= :
a1P, a;p;

for2 <i <m,and
skelTPA¥ — skelrk + (rk)Te, + xfel QPAK

pi = Xy e1 1ATp, '
g = (rk)Te; + skel P2 — x! eT(Z 1BFATP;) — xferk + xfel QP A
i TATp] ’

for2 <i <m. Now, let4,, and 4,,_,, denote the first m columns and the lastn —m columns of 4,
respectively, L = AP and L,, = AT P. Then, we can also compute A* and ¥, by solving the linear
systems LAK = —r]g and L,,B* = #K, where fm denotes the first m components of
£k = (x*~1rk + 11 pA¥ — vk + QPAk.
Note that L and L,,, are nonsingular lower triangular matrices. To characterize the solution of (2), we
first derive an efficient formula to compute B}*, as defined by (2). Then, using properties of the ABS
algorithm, we have the solution of system (2) from the solution of the first 2Zm 4+ n equations. Let
ul =AW, for2<i<m, andul = (I, — Afwel ANui™, 1< j<i—1. For 1 <i <m, define
Uiy =Y e, (ub)T. It can be proved that [2], B,{ = H(Q" + I*)U;, 1 < i < m. It is worth mentioning
that the matrices U; and H need to be computed only once in the first iteration of the IIPM, and M¥isa
diagonal matrix. Now, using the properties of the ABS algorithm [1], we construct the solution of system
(1). For notational simplicity, let
n

n
0 0
FF = z skeel = Ek = Z xkeel =
s . j ©jj—-m Sk )’ x ' j ©i%j—-m Xk_.)
j=m+1 j=m+1

(Z¥)T = HF} — BI'AEF + HQTEF,
where XX_. and SX_ are diagonal matrices in RM~"™*(=™) ith the diagonal elements being the last
(n —m) elements of x;, and sy, respectively, and ¢; is the ith column of the identity matrix I,,_,,. Let
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. Sp+1€m+1 Sxen
(Z°)" =| Hamsn+1 0 s eor Homanaa 0
Xhr1€me1 xXfen
We have
n
z (s}‘ﬁej - xj'-‘B,’C”Aej + xj’-"'HQTej)éjT_m zMT
@) = | jZm+ =l 0 )
0 0
0
On the other hand, the residual vector of system (1) at the solution of the first 2Zm + n equations is:
—rk o AT 1, Iflk
o=\ —rf —<A 0 0) Pp*
—Tgﬁ- Sk 0 Xk _rck _ QPAk —ATﬁﬁk

k

Let (1*),_, denote the last n —m components of the vector r*. Moreover, lety; satisfy ZXy; =

(r®)p—m. Then, the solution of (1) is:
Axk PA* + HTy;
(A/’lk ) = PB* + (BI) vk
As* —rk —QPA* — ATPBk + QPA* — AT(B™Ty;

3. Numerical results

There, we compare the computational work of the ABS approach with the normal equations. By
performing simple algebraic calculations, it can be verified that the linear system (1) is equivalent to
the so-called normal equations:

(AFFX*AT)Ay* = —AFkrk — AFRX 7}k — [ 4)
Axk = FEXkAT Ayk — FRok + Fkxkpk (5)
As* = —r} + QAx* — AT Ay¥ (6)

Here, we investigate the practical efficiency of the ABS approach for computing the search direction
in lIPM for solving convex quadratic programming problems. The numerical results show that the ABS
approach helps to reduce the required computational work and computing time. To verify the
practical efficiency of the ABS approach, we implemented two primal-dual infeasible interior point
algorithms for solving the convex quadratic problems in the MATLAB environment. In one algorithm,
we used the normal equations approach to compute the search direction and in the other we used
the ABS approach to compute the search direction. We then solved the test problems by the two
programs, and recorded the numerical results in Table 1. In Table 1, m, n, CTE, Fl and TE denote the
number of rows and columns of the matrix A , the computing time of the [IPM for solving the search
direction, the computing time for the information that is computed only in the first iteration of the
IIPM, the total computing time of the IIPM with the ABS approach, that is, FI+CTE, respectively, and
CTN denotes the computing time of the IIPM with the normal equations approach. Moreover, AE and
AN denote the average time for computing the search direction in one iteration of the IIPM for the
ABS and normal equations approaches, respectively. As the numerical results of Table 1 show, when
m/n is close to zero, the ABS approach needs considerably less computing time. For example, when
m=100 and n=945, the computing time for the ABS approach reduces by about 60 percent. As m/n
becomes larger, the efficiency of the ABS approach, in comparison with the normal equations
approach, is reduced and the normal equations approach becomes more efficient. When m/n is close
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to one, then the normal equations approach is more efficient than the ABS approach. For example,
when m=900 and n=915, the required computing time of the normal equation approach is about 50
percent less than that of the ABS approach. Moreover, in most of our generated test problems, the
average time for computing the search direction by the ABS approach is less than that of the normal
equations approach.

Table 1: Comparison of the ABS and the normal equations approach

m n FI CTE TE CTN AE AN

100 | 945 7.75 52.31 60.10 180.45 | 1.02 3.28

10 | 340 | 0.25 0.25 0.5 9.78 0.05 | 0.16

110 | 863 6.91 41.61 48.51 162.53 | 0.81 2.56

231 | 1000 | 25.73 78.58 104.31 175.01 | 1.54 | 4.17

41 920 2.83 36.01 38.84 153.25 | 0.71 2.84

73 768 | 4.31 42.51 46.83 131.03 | 0.83 2.04

324 | 500 30.10 13.25 43.34 33.33 0.27 0.83

100 | 200 | 0.55 0.89 1.44 2.29 0.02 | 0.05

450 | 831 109.44 | 65.97 175.41 126.03 | 1.22 3.23

100 | 145 0.91 0.83 1.73 0.01 2.5 0.06

700 | 775 204.89 | 129.67 | 334.56 149.42 | 2.31 3.93

800 | 995 | 705.77 | 395.81 | 1101.58 | 249.94 | 14.40 | 7.56

200 | 223 | 5.97 2.73 8.70 5.84 0.04 | 0.12

100 | 101 0.94 0.34 1.28 0.75 0.08 0.02

900 | 915 491.10 | 92.37 584.35 268.58 | 1.78 6.71

921 | 922 | 453.55 | 65.59 519.14 | 339.28 | 1.26 | 6.92

731 | 734 | 258.80 | 38.10 | 296.89 151.64 | 0.75 | 3.61

621 | 626 132.86 | 23.89 156.75 87.95 0.49 2.25

4, Conclusion

We compared the normal equations approach and ABS approach for computing the search direction
of lIPMs for solving CQPs.
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