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Abstract
The article aims to introduce a new unified class of generalized Apostol type polynomials. Further, under a slight modi-

fication on the parameters associated to the generalized Apostol type and generalized Gould-Hopper polynomials and by the
use of generating method, we introduce a new class of generalized-Apostol-type-Gould-Hopper polynomials. We state some
quasi-monomial properties for a new class of extensions of generalized Apostol type polynomials as well as, some summation,
multiplication and explicit formulae which connect this polynomial class with the λ-Stirling numbers of second kind and gener-
alized Hurwitz zeta function. Some general symmetry identities involving multiple power sums are also established. The new
class of polynomials contains as its special cases, not only the generalized-Gould-Hopper-Apostol-Bernoulli, Euler and Genocchi
polynomials but many more known smaller classes of polynomials. Finally, the these polynomials are framed within the context
of generalized modified Milne-Thomson’s polynomials.
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1. Introduction and preliminaries

The theory of generalized special functions serves as an analytic foundation for the majority of prob-
lems in mathematical physics that have been solved exactly and finds broad practical applications. As
an example, the generalized Hermite polynomials have been exploited to deal with quantum mechanical
and optical beam transport problems and arise in problems ranging from the theory of partial differen-
tial equations to the abstract group theory [8, 9]. We recall the following 2-variable forms of Hermite
polynomials.

Definition 1.1. The 2-variable Hermite Kampé de Feriet polynomials (2VHKdFP) Hn(x,y) [1] are defined
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by the following generating function:

ext+yt
2
=

∞∑
n=0

Hn(x,y)
tn

n!
.

Definition 1.2. The higher order Hermite polynomials or the Gould-Hopper polynomials (GHP)H(j)
n (x,y)

are defined by the following generating function [11, p.58(6.3)]

ext+yt
j

=

∞∑
n=0

H
(j)
n (x,y)

tn

n!
, j > 2.

Definition 1.3. The generalized-Hermite polynomials (GHP) Hn(x,y, c) are defined by the following gen-
erating function [37]:

cxt+yt
2
=

∞∑
n=0

Hn(x,y, c)
tn

n!
, c > 1.

Definition 1.4. The generalized-Gould-Hopper polynomials (GGdHP) H(j)
n (x,y, c) are defined by the fol-

lowing generating function [41]:

cxt+yt
j

=

∞∑
n=0

H
(j)
n (x,y, c)

tn

n!
, c > 1; j > 2. (1.1)

These polynomials play an important role in problems involving Laplace’s equation in parabolic co-
ordinates, in quantum mechanics and in probability theory and are shown to be solutions of classical and
generalized heat equations.

Operational methods provide powerful techniques to solve problems both in classical and quantum
mechanics. Differential equations have been the primary motivation for the introduction of these tech-
niques. The operational techniques combined with the monomiality principle [5] open new possibilities to
deal with the theoretical foundations of special polynomials and also to introduce new families of special
polynomials.

Definition 1.5. According to the monomiality principle, there exist two operators M̂ and P̂ playing,
respectively, the role of multiplicative and derivative operators for a polynomial set {pn(x)}n∈N, that is,
M̂ and P̂ satisfy the following identities, for all n ∈N:

M̂{pn(x)} = pn+1(x), P̂{pn(x)} = n pn−1(x). (1.2)

The polynomial set {pn(x)}n∈N is then called a quasi-monomial. If M̂ and P̂ have differential realiza-
tions, then the polynomial set {pn(x)}n∈N satisfy the following differential equation:

M̂P̂{pn(x)} = n pn(x).

Most of the properties of families of polynomials, recognized as quasi-monomial, can be deduced
by using relevant multiplicative and derivative operators. The notion of quasi-monomiality has been
exploited within different context. There is a continuous demand of solving problems by means of dif-
ferential equations in research fields like classical and quantum optics. The aforementioned 2-variable
forms of Hermite polynomials are all quasi-monomials and corresponding properties are derived using
the rules associated with monomiality principle, for this see [6, 37, 41].

Various unified forms of Apostol-type polynomials, which are the unifications of the Apostol-Bernoulli,
Euler and Genocchi polynomials are introduced and studied by many authors in a systematic manner, for
this see [2, 3, 13, 19, 23, 24, 26, 28, 29, 34, 35, 38].

We recall the following generalized forms of the Apostol-Bernoulli, Euler and Genocchi polynomials
introduced by many authors [14, 30, 31, 39].
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Definition 1.6. Let a, b, c ∈ R+ with a 6= b, x ∈ R and n ∈ N0. The generalized Apostol-Bernoulli
polynomials B

(α)
n (x; λ;a,b, c) of order α ∈ Z are defined by the following generating function [39]:(

t

λbt − at

)α
cxt =

∞∑
n=0

B
(α)
n (x;a,b, c; λ)

tn

n!
, |t| <

∣∣∣∣∣ ln(λ)
ln
(
a
b

)∣∣∣∣∣ . (1.3)

Definition 1.7. Let a, b, c ∈ R+, x ∈ R and n ∈ N0. The generalized Apostol-Euler polynomials
E
(α)
n (x; λ;a,b, c) of order α ∈ Z are defined by the following generating function:(

2
λbt + at

)α
cxt =

∞∑
n=0

E
(α)
n (x;a,b, c; λ)

tn

n!
, |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ .
Definition 1.8. Let a, b, c ∈ R+, x ∈ R and n ∈ N0. The generalized Apostol-Genocchi polynomials
G
(α)
n (x; λ;a,b, c) of order α ∈ Z are defined by the following generating function [14]:(

2t
λbt + at

)α
cxt =

∞∑
n=0

G
(α)
n (x;a,b, c; λ)

tn

n!
, |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ . (1.4)

We note that

B
(α)
n (0;a,b, c; λ) := B

(α)
n (a,b, c; λ), E

(α)
n (0;a,b, c; λ) := E

(α)
n (a,b, c; λ), G

(α)
n (0;a,b, c; λ) := G

(α)
n (a,b, c; λ), (1.5)

are the generalized Apostol-Bernoulli, Euler and Genocchi numbers, each of order α.
For b = c = e, a = 1, we have Apostol-Bernoulli, Euler and Genocchi polynomials, each of order α,

for this see [25, 27, 32].
Here, we introduce the following unified form of the generalized Apostol-Bernoulli, Euler and Genoc-

chi polynomials.

Definition 1.9. Let a, b, c ∈ R+, x ∈ R; λ, µ, ν ∈ C and n ∈ N0. The generalized Apostol type polyno-
mials (GATP) F(α)

n (x;a,b, c;µ,ν; λ) of order α ∈ Z are defined by the following generating function:(
2µ tν

λbt + at

)α
cxt =

∞∑
n=0

F
(α)
n (x;a,b, c;µ,ν; λ)

tn

n!
, |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ , (1.6)

where
F
(α)
n (0;a,b, c;µ,ν; λ) := F

(α)
n (a,b, c;µ,ν; λ)

denotes the generalized Apostol type numbers of order α defined by(
2µ tν

λbt + at

)α
=

∞∑
n=0

F
(α)
n (a,b, c;µ,ν; λ)

tn

n!
. (1.7)

For b = c = e, a = 1, we have Luo and Srivastava [34] Apostol-type polynomials F
(α)
n (x; λ;µ,ν).

In fact, from equations (1.4)-(1.6) and (1.7), we have

(−1)αF(α)
n (x;a,b, c; 0, 1;−λ) = B

(α)
n (x;a,b, c; λ),

F
(α)
n (x;a,b, c; 1, 0; λ) = E

(α)
n (x;a,b, c; λ), (1.8)

F
(α)
n (x;a,b, c; 1, 1; λ) = G

(α)
n (x;a,b, c; λ).

To introduce the hybridized forms of generalized Apostol type polynomials and to study their prop-
erties is a new investigation. The process of combining two multi-variable forms of special polynomials
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either by replacement technique or operational technique is called hybridization of polynomials, which
shows that the properties of new hybridized polynomial lie within the context of parent polynomials.
The multi-variable hybrid special polynomials are important as they possess important properties such as
recurrence and explicit relations and functional and differential equations, summation formulae, symmet-
ric and convolution identities etc.. The usefulness and potential for applications of various properties of
multi-variable hybrid special polynomials in certain problems of number theory, combinatorics, classical
and numerical analysis, theoretical physics, approximation theory and other fields of pure and applied
mathematics arose the desire to introduce a new hybrid class of generalized-Apostol-type-Gould-Hopper
polynomials.

In this article, a hybrid class of generalized-Apostol-type-Gould-Hopper polynomials is introduced
and their properties are being characterized via different generating functions method. The differential
operators, differential equations, summation, multiplication and explicit formula and symmetry identities
for these polynomials are established. Certain illustrative special cases are considered and analogous
properties for these special cases are deduced.

2. Generalized-Apostol-type-Gould-Hopper polynomials

In this section, a hybrid class of generalized-Apostol-type-Gould-Hopper polynomials (GATGdHP) is
introduced by convoluting GGdHP and GATP. The GGdHATP are defined as discrete generalized Gould-
Hopper convolution of generalized-Apostol type polynomials.

First, we introduce the generating function applying replacement technique for the generalized-
Apostol-type-Gould-Hopper polynomials. For this, the following result is proved.

Theorem 2.1. Let a, b, c ∈ R+, x, y ∈ R; λ, µ, ν ∈ C and n ∈ N0. The generalized-Apostol-type-Gould-
Hopper polynomials are defined by the following generating function:(

2µ tν

λbt + at

)α
cxt+yt

j

=

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
, c > 1; j > 2; |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ . (2.1)

Proof. Expanding the exponential function e(x logc)t and then replacing the powers of x, i.e., (x log c)0,
(x log c)1, (x log c)2, . . . , (x log c)n by the polynomials H(j)

0 (x,y, c), H(j)
1 (x,y, c), . . . ,H(j)

n (x,y, c) in the l.h.s.
and x by the polynomial H(j)

1 (x,y, c) in the r.h.s. of equation (1.7) and after summing up the terms in the
l.h.s. of the resultant equation, we have(

2µ tν

λbt + at

)α ∞∑
n=0

H
(j)
n (x,y, c)

tn

n!
=

∞∑
n=0

F
(α)
n ((H

(j)
1 (x,y, c);a,b, c;µ,ν; λ))

tn

n!
,

which on using equation (1.1) in the l.h.s. and denoting the resultant GATGdHP in the r.h.s. by

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ) , we are led to assertion (2.1).

Corollary 2.2. Let a, b, c ∈ R+, x, y ∈ R; λ, µ, ν ∈ C; n ∈ N0 and j = 2. The generalized-Apostol-type-
Gould-Hopper polynomials are defined by the following generating function:(

2µ tν

λbt + at

)α
cxt+yt

2
=

∞∑
n=0

HF
(α)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
, c > 1; |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ . (2.2)

Note 1. For b = c = e, a = 1, equations (2.1) and (2.2) yield the Apostol-type-Gould-Hopper
polynomials HF

(α,j)
n (x,y;µ,ν; λ) and Apostol-type-Hermite polynomials HF

(α)
n (x,y;µ,ν; λ), which for

x → 2x, y = −1 becomes the Apostol-type-Hermite polynomials HF
(α)
n (x;µ,ν; λ), for these polynomi-

als see [19].
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Remark 2.3. For the special case λ→ −λ; µ = 0 and ν = 1 and on use of (−1)αHF
(α,j)
n (x,y;a,b, c; 0, 1; λ) =

HB
(α,j)
n (x,y;a,b, c; λ), we have generalized-Gould-Hopper-Apostol-Bernoulli polynomials defined by(

t

λbt − at

)α
cxt+yt

j

=

∞∑
n=0

HB
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
, c > 1; j > 2; |t| <

∣∣∣∣∣ ln(λ)
ln
(
a
b

)∣∣∣∣∣ .
Remark 2.4. For the special case µ = 1 and ν = 0 and on use of HF

(α,j)
n (x,y;a,b, c; 1, 0; λ) = HE

(α,j)
n (x,y;

a,b, c; λ), we have generalized-Gould-Hopper-Apostol-Euler polynomials defined by(
2

λbt + at

)α
cxt+yt

j

=

∞∑
n=0

HE
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
, c > 1; j > 2; |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ .
Remark 2.5. For the special case µ = 1 and ν = 1 and on use of HF

(α,j)
n (x,y; a,b, c; 1, 1; λ) = HG

(α,j)
n (x,y;

a,b, c; λ), we have generalized-Gould-Hopper-Apostol-Genocchi polynomials defined by(
2t

λbt + at

)α
cxt+yt

j

=

∞∑
n=0

HG
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
, c > 1; j > 2; |t| <

∣∣∣∣∣ ln(−λ)ln
(
a
b

) ∣∣∣∣∣ .
Note 2. For b = c = e, a = 1, Remarks 2.3-2.5 give the Gould-Hopper-Apostol-Bernoulli, Euler and Genocchi
polynomials, each of order α, which for λ = 1 yield Gould-Hopper-Bernoulli, Euler and Genocchi polynomials,
each of order α, which again for α = 1 yield Gould-Hopper-Bernoulli, Euler and Genocchi polynomials [17, 19].
Note 3. For j = 2, Remarks 2.3-2.5 give the generalized-Hermite-Apostol-Bernoulli, Euler and Genocchi polynomi-
als, each of order α, which for b = c = e, a = 1 yield Hermite-Apostol-Bernoulli, Euler and Genocchi polynomials,
each of order α, which again for λ = 1 yield Hermite-Bernoulli, Euler and Genocchi polynomials, each of order α,
which further for α = 1 reduce to Hermite-Bernoulli, Euler and Genocchi polynomials. Some of these polynomials
are given in [16, 37].

Theorem 2.6. The generalized-Apostol-type-Gould-Hopper polynomials are defined by the following series expan-
sion:

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ) = n!

n∑
k=0

[kj ]∑
s=0

F
(α)
n−k(a,b, c;µ,ν; λ)xk−jsys (log c)k+s−js

(n− k)!(k− js)! s!
.

Proof. Using equations (1.1) and (1.8) in generating function (2.1) yields

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

F
(α)
n (a,b, c;µ,ν; λ)

tn

n!

∞∑
k=0

H
(j)
k (x,y; c)

tk

k!
,

which on using the series expansion of generalized Gould-Hopper polynomials from [41] gives

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

F
(α)
n (a,b, c;µ,ν; λ)

tn

n!

∞∑
k=0

k!
[kj ]∑
s=0

xk−jsys (log c)k+s−js

(k− js)! s!
tk

k!
.

On applying Cauchy product rule in above equation, we find

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

n!
n∑
k=0

[kj ]∑
s=0

F
(α)
n−k(a,b, c;µ,ν; λ)xk−jsys (log c)k+s−js

(n− k)!(k− js)! s!
tn

n!
,

which on equating the coefficients of same powers of t yields assertion (2.2).
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In order to show that ATGGdHP are quasi-monomial, we prove the following result.

Theorem 2.7. The generalized-Apostol-type-Gould-Hopper polynomials are quasi-monomial with respect to the
following multiplicative and derivative operators:

M
HF

(α,j) := (x log c+ jy(log c)2−j∂j−1
x )

+
αν(λb(logc)−1 ∂x + a(logc)−1 ∂x) −α(λb(logc)−1 ∂x logb+ a(logc)−1 ∂x loga)

(log c)−1 ∂x(λb(logc)−1 ∂x + a(logc)−1 ∂x)
,

(2.3)

P
HF

(α,j) := (log c)−1∂x. (2.4)

Proof. On differentiation of equation (2.1) with respect to x, we obtain the following identity:

(log c)−1 ∂x

{(
2µ tν

λbt + at

)α
cxt+yt

j

}
= t

(
2µ tν

λbt + at

)α
cxt+yt

j

. (2.5)

Again, differentiating both sides of the equation (2.1) w.r.t. t, we find(
(x+ jytj−1) log c+

αν(λbt + at) −α(λbt logb+ at loga)
t(λbt + at)

)(
2µ tν

λbt + at

)α
cxt+yt

j

=

∞∑
n=0

HF
(α,j)
n+1 (x,y;a,b, c;µ,ν; λ)

tn

n!
,

which on using identity (2.5) and equation (2.1) becomes(
(x log c+ jy(log c)2−j∂j−1

x )

+
αν(λb(logc)−1 ∂x + a(logc)−1 ∂x) −α(λb(logc)−1 ∂x logb+ a(logc)−1 ∂x loga)

(log c)−1 ∂x(λb(logc)−1 ∂x + a(logc)−1 ∂x)

)

×
∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

HF
(α,j)
n+1 (x,y;a,b, c;µ,ν; λ)

tn

n!
.

(2.6)

On equating the coefficients of same power of t in both sides of the above equation and in view of
monomiality principle equation (1.2) yields assertion (2.3).

Using equation (2.1) in identity (2.5) yields

(log c)−1∂x

{ ∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!

}
=

∞∑
n=0

HF
(α,j)
n−1 (x,y;a,b, c;µ,ν; λ)

tn

n!
.

On equating the coefficients of same power of t in both sides of the above equation and in view of
monomiality principle equation (1.2) yields assertion (2.4).

To derive the differential equation for the ATGGdHP, the following result is proved.

Theorem 2.8. The generalized-Apostol-type-Gould-Hopper polynomials satisfy the following differential equation:(
x∂x + jy(log c)1−j∂jx +

αν(λb(logc)−1 ∂x + a(logc)−1 ∂x) −α(λb(logc)−1 ∂x logb+ a(logc)−1 ∂x loga)
(λb(logc)−1 ∂x + a(logc)−1 ∂x)

−n(log c)−1 ∂x

)
HF

(α,j)
n (x,y;a,b, c;µ,ν; λ) = 0.

(2.7)
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Proof. Using of expressions of multiplicative and derivative operators given by equations (2.3) and (2.4)
in equation (1.3) and on simplification, we get the required differential equation given by (2.7).

The series expansions, differential operators and differential equations for the above special cases and
particular members can be easily obtained by choosing suitable values of parameters. Thus we omit them.

In the next section, we gave some unified formula for the generalized-Apostol-type-Gould-Hopper
polynomials.

3. Summation, multiplication and explicit formula

There is a continuous demand of solving problems by means of formulas, functions equations, re-
lations and identities in research fields like classical and quantum optics. These formulas, functional
equations and identities arise in well-defined combinatorial contexts and they lead systematically to well-
defined classes of functions. It happens very often that the solution of a given problem in physics or
applied mathematics requires the evaluation of infinite sums involving special polynomials. The summa-
tion formula of hybrid type special polynomials of more than one variable often appear in applications
ranging from electromagnetic processes to combinatorics, see for example [7, 15]. This provides mo-
tivation to establish some unified formula for the hybrid type generalized-Apostol-type-Gould-Hopper
polynomials.

First, we establish some summation formula for the generalized-Apostol-type-Gould-Hopper polyno-
mials. For this we prove the following theorems.

Theorem 3.1. For α,β ∈ Z, the following relation for the generalized-Apostol-type-Gould-Hopper polynomials
holds true:

HF
(α±β,j)
n (x,y;a,b, c;µ,ν; λ) =

n∑
k=0

(
n

k

)
HF

(α,j)
n−k (x,y;a,b, c;µ,ν; λ)F(±β)

k (a,b, c;µ,ν; λ). (3.1)

Proof. We write generating function (2.1) in the following form:(
2µ tν

λbt + at

)α±β
cxt+yt

j

=

∞∑
n=0

HF
(α±β,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
,

which on using equations (1.8) and (2.1) becomes

∞∑
n=0

HF
(α±β,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!

∞∑
k=0

F
(±β)
k (a,b, c;µ,ν; λ)

tk

k!
.

Using Cauchy product rule in above equation and then equating the coefficients of same powers of t
in both sides of resultant equation yields assertion (3.1).

Theorem 3.2. The following implicit summation formula for the generalized-Apostol-type-Gould-Hopper polyno-
mials holds true:

HF
(α,j)
n (x+w,y;a,b, c;µ,ν; λ) =

n∑
k=0

(
n

k

)
wk(log c)k HF

(α,j)
n−k (x,y;a,b, c;µ,ν; λ). (3.2)

Proof. Replacing x by x+w in generating relation (2.1), we have(
2µ tν

λbt + at

)α
c(x+w)t+ytj =

∞∑
n=0

HF
(α,j)
n (x+w,y;a,b, c;µ,ν; λ)

tn

n!
,
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which can be written as(
2µtν

λbt + at

)α
cxt+yt

j

exp(log c wt) =
∞∑
n=0

HF
(α,j)
n (x+w,y;a,b, c;µ,ν; λ)

tn

n!
.

Using the generating function equation (2.1) and expanding the exponential in the l.h.s. of above the
equation, we have( ∞∑

n=0
HF

(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!

)( ∞∑
k=0

wk(log c)k
tk

k!

)
=

∞∑
n=0

HF
(α,j)
n (x+w,y;a,b, c;µ,ν; λ)

tn

n!
,

which on using Cauchy product rule in the l.h.s. and then equating the coefficients of like powers of t on
both sides yields assertion (3.2).

Corollary 3.3. For w = 1 in equation (3.2), we have following implicit summation formula for the generalized-
Apostol-type-Gould-Hopper polynomials:

HF
(α,j)
n (x+ 1,y;a,b, c;µ,ν; λ) =

n∑
k=0

(
n

k

)
(log c)k HF

(α,j)
n−k (x,y;a,b, c;µ,ν; λ).

Theorem 3.4. The following implicit summation formula for the generalized-Apostol-type-Gould-Hopper polyno-
mials holds true:

HF
(α,j)
n+m(z,y;a,b, c;µ,ν; λ) =

m,n∑
s,k=0

(
m

s

)(
n

k

)
(log c)s+k(z− x)s+kHF

(α,j)
n+m−s−k(x,y;a,b, c;µ,ν; λ). (3.3)

Proof. Replacing t→ t+ u in generating function (2.1) and using the following rule:

∞∑
N=0

f(N)
(x+ y)N

N!
=

∞∑
l,m=0

f(l+m)
xl ym

l! m!
(3.4)

in the r.h.s. of the resultant equation, we find(
2µ(t+ u)ν

λbt+u + at+u

)α
cx(t+u)+y(t+u)

j

=

∞∑
n,m=0

HF
(α,j)
n+m(x,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
. (3.5)

Rewriting equation (3.5) as:(
2µ(t+ u)ν

λbt+u + at+u

)α
cy(t+u)

j

= c−x(t+u)
∞∑

n,m=0
HF

(α,j)
n+m(x,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
.

Replacing x by z in the above equation and then equating the resultant equation to the above equation,
we find∞∑

n,m=0
HF

(α,j)
n+m(z,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
= c(z−x)(t+u)

∞∑
n,m=0

HF
(α,j)
n+m(x,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
,

which on writing c(z−x)(t+u) in the form of exponential and then expanding the exponential in the r.h.s.
gives ∞∑

n,m=0
HF

(α,j)
n+m(z,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
=

∞∑
N=0

(
log c (z− x)

)N (t+ u)N

N!

×
∞∑

n,m=0
HF

(α,j)
n+m(x,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
.

(3.6)
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Again, on use of equation (3.4) in the r.h.s. of equation (3.6), we find
∞∑

n,m=0
HF

(α,j)
n+m(z,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
=

∞∑
k,s=0

(
log c

)s+k (
z− x

)s+k tk
k!
us

s!

×
∞∑

n,m=0
HF

(α,j)
n+m(x,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
.

(3.7)

Now, replacing n→ n− k and m→ m− s in the r.h.s. of equation (3.7), we find

∞∑
n,m=0

HF
(α,j)
n+m(z,y;a,b, c;µ,ν; λ)

tn

n!
um

m!
=

∞∑
n,m=0

n,m∑
k,s=0

(
log c

)s+k (z− x)s+k
k! s!

×HF
(α,j)
n+m−s−k(x,y;a,b, c;µ,ν; λ)

tn

(n− k)!
um

(m− s)!
.

(3.8)

Equating the coefficients of the same powers of t and u in both sides of equation (3.8), we are led to
assertion (3.3).

Theorem 3.5. Let a, b, and c be positive integers by a 6= b. Then for x, y ∈ R and n > 0, we have

HF
(α,j)
n (x+α,y;a,b, c;µ,ν; λ) = n!

[nj ]∑
k=0

yk(log c)k HF
(α)
n−jk

(
x; ac , bc , c;µ,ν; λ

)
(n− jk)! k!

. (3.9)

Proof. Replacing x by x+α in generating relation (2.1), we have
∞∑
n=0

HF
(α,j)
n (x+α,y;a,b, c;µ,ν; λ)

tn

n!
=

(
2µtν

λbt + at

)α
c(x+α)t+yt

j

,

which can be written as
∞∑
n=0

HF
(α,j)
n (x+α,y;a,b, c;µ,ν; λ)

tn

n!
=

(
2µtν

λ(bc )
t + (ac )

t

)α
cxt exp(log c ytj).

Now, using the generating equation (1.7) and expanding the exponential in the r.h.s. of above the
equation, we have

∞∑
n=0

HF
(α,j)
n (x+α,y;a,b, c;µ,ν; λ)

tn

n!
=

( ∞∑
n=0

F
(α)
n

(
x;
a

c
,
b

c
, c;µ,ν; λ

)tn
n!

)( ∞∑
k=0

yk(log c)k
tjk

k!

)
,

which on applying Cauchy product rule in the l.h.s. and then equating the coefficients of like powers of
t in both sides yields assertion (3.9).

Theorem 3.6. Let a, b and c be positive integers by a 6= b. Then for x, y ∈ R and n > 0, we have

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ) =

n∑
k=0

(
n

k

)
F
(α)
n−k(a,b, c;µ,ν; λ) H(j)

k (x,y, c). (3.10)

Proof. By use of equations (1.8) and (1.1), we have(
2µtν

λbt + at

)α
cxt+yt

j

=

( ∞∑
n=0

F
(α)
n (a,b, c;µ,ν; λ)

tn

n!

) ( ∞∑
k=0

H
(j)
k (x,y, c)

tk

k!

)
.

Using Cauchy product rule in the r.h.s. of above equation and then equating the coefficients of like
powers of t on both sides of the resultant equation, yields assertion (3.10).
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Theorem 3.7. Let a, b, and c be positive integers by a 6= b. Then for x, y ∈ R and n > 0, we have

HF
(α,j)
k (x,y;a,b, c;µ,ν; λ) = k!

[kj ]∑
s=0

k−sj∑
n=0

xk−sj−n(log c)k−s(j−1)−nys

(k− sj−n)! s! n!
F
(α)
n (a,b, c;µ,ν; λ). (3.11)

Proof. By the use of equation (1.8) and expansions of e(logc)xt and e(logc)ytj in generating equation (2.1),
we have

∞∑
n=0

HF
(α,j)
n (x,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

F
(α)
n (a,b, c;µ,ν; λ)

tn

n!

∞∑
k=0

xk(log c)k
tk

k!

∞∑
s=0

ys(log c)s
tsj

s!
,

which on applying Cauchy product rule becomes

∞∑
k=0

HF
(α,j)
k (x,y;a,b, c;µ,ν; λ)

tk

k!
=

∞∑
k=0

(
k∑
n=0

(
k

n

)
F
(α)
n (a,b, c;µ,ν; λ)xk−n(log c)k−n

)
tk

k!
×
∞∑
s=0

ys(log c)s
tsj

s!

=

∞∑
k=0

( [kj ]∑
s=0

k−sj∑
n=0

(
k− sj

n

)
F
(α)
n (a,b, c;µ,ν; λ)xk−sj−n

× (log c)k−s(j−1)−nys

)
tk

(k− sj)!s!
.

Equating the coefficients of like powers of t on both sides of the above equation, yields assertion
(3.11).

Theorem 3.8. Let a, b and c be positive integers by a 6= b. Then for x, y ∈ R and n > 0, we have

HF
(α,j)
k (x,y;a,b, c;µ,ν; λ) = n!

[nj ]∑
p=0

n−pj∑
m=0

(log c)myp(log c)p

(n− pj−m)! p! m!
F
(α)
n−pj−m(x;a,b, c;µ,ν; λ). (3.12)

Proof. By the use of equation (1.7) and expansions of e(logc)t and e(logc)ytj in generating equation (2.1)
with x→ x+ 1, we have

∞∑
n=0

HF
(α,j)
n (x+ 1,y;a,b, c;µ,ν; λ)

tn

n!
=

∞∑
n=0

F
(α)
n (x;a,b, c;µ,ν; λ)

tn

n!

∞∑
m=0

(log c)m
tm

m!

∞∑
p=0

yp(log c)p
tpj

p!
,

which on applying Cauchy product rule becomes

∞∑
n=0

HF
(α,j)
n (x+ 1,y;a,b, c;µ,ν; λ)

tn

n!

=

∞∑
n=0

(
n∑
m=0

(
n

m

)
F
(α)
n−m(x;a,b, c;µ,ν; λ) (log c)m

)
tn

n!

( ∞∑
p=0

yp(log c)p
tpj

p!

)

=

∞∑
n=0

( [nj ]∑
p=0

n−pj∑
m=0

(
n− pj

m

)
F
(α)
n−pj−m(x;a,b, c;µ,ν; λ) (log c)myp(log c)p

)
tn

(n− pj)! p!
.

Equating the coefficients of like powers of t on both sides of the above equation, yields assertion
(3.12).
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Next, we find multiplication formula for the generalized-Apostol-type-Gould-Hopper polynomials
and for their special cases. For this we prove the following results.

Theorem 3.9. Let a, b, c ∈ R+, x, y ∈ R; λ, µ, ν ∈ C; r ∈ N and n ∈ N0. The following multiplication
formula for the generalized-Apostol-type-Gould-Hopper polynomials holds true:

HF
(α,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
= rn−να a(r−1)αt

∑
ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)

× (−λ)mHF
(α,j)
n

(
(x+

m

r
,y;a,b,

b

a
;µ,ν; λr

)
for r odd,

(3.13)

HF
(l,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
=

(−1)l 2µl rn−νl

(n+ 1)(1−ν)l
a(r−1)lt

∑
06ν16ν26νr−16l
ν1+ν2+···+νr−1=l

(
l

ν1,ν2, . . . ,νr−1

)

× (−λ)mHB
(l,j)
n+(1−ν)l

(
(x+

m

r
,y;a,b,

b

a
; λr
)

for r even,

(3.14)

where ν1 + 2ν2 + · · ·+ (r− 1)νr−1 = m.

Proof. We consider generating equation (2.1) in the following form:

∞∑
n=0

HF
(α,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
tn

n!
=

1
rνα

(
2µ (rt)ν

λrbrt + art

)α (
λrbrt + art

λbt + at

)α (b
a

)rxt+y(rt)j
,

which on simplifying becomes

∞∑
n=0

HF
(α,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
tn

n!
=

1
rνα

(
2µ (rt)ν

λrbrt + art

)α
a(r−1)αt

(
λr(ba )

rt + 1

λ(ba )
t + 1

)α (b
a

)rxt+y(rt)j

=
1
rνα

(
2µ (rt)ν

λrbrt + art

)α
a(r−1)αt

(
r−1∑
k=0

(−λ (
b

a
)t)k

)α (b
a

)rxt+y(rt)j
.

Now, on use of the following formula for the generalized multinomial identity [4]:

(1 + x1 + x2 + · · ·+ xm)α =
∑

ν1,ν2,...,νm>0

(
α

ν1,ν2, . . . ,νm

)
xν1

1 x
ν2
2 · · · x

νm
m ,

the above equation becomes

∞∑
n=0

HF
(α,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
tn

n!

=
1
rνα

(
2µ (rt)ν

λrbrt + art

)α
a(r−1)αt

×
∑

ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)
(−λ)ν1+2ν2+···+(r−1)νr−1

(
(
b

a
)t
)ν1+2ν2+···+(r−1)νr−1

(b
a

)rxt+y(rt)j
=

1
rνα

(
2µ (rt)ν

λrbrt + art

)α
a(r−1)αt

∑
ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)
(−λ)m

(b
a

)(x+m
r )rt+y(rt)

j

.
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Now, using equation (2.1) in above equation, we have

∞∑
n=0

HF
(α,j)
n

(
rx, rjy;a,b,

b

a
;µ,ν; λ

)
tn

n!
=

∞∑
n=0

(
rn−να a(r−1)αt

∑
ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)

× (−λ)m
∞∑
n=0

HF
(α,j)
n

(
(x+

m

r
,y;a,b,

b

a
;µ,ν; λr

))
tn

n!
.

Equation the coefficients of same power of t on both sides of above equation yields assertion (3.13).
Again, with the help of following definition for the multinomial identity [4]:

(x1 + x2 + · · ·+ xm)n =
∑

06ν16ν26νm6n
ν1+ν2+···+νm=n

(
n

ν1,ν2, . . . ,νm

)
xν1

1 x
ν2
2 · · · x

νm
m

for r even, we can similarly prove assertion (3.14). The proof is completed.

In view of Remarks 2.3-2.5, we obtain the following consequences of Theorem 3.9.

Corollary 3.10. Let a, b, c ∈ R+, x, y ∈ R; λ ∈ C; r ∈ N and n ∈ N0. The following multiplication formula
for the generalized-Gould-Hopper-Apostol-Bernoulli polynomials holds true:

HB
(α,j)
n

(
rx, rjy;a,b,

b

a
; λ
)

= rn−α a(r−1)αt
∑

ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)

× (−λ)mHB
(α,j)
n

(
(x+

m

r
,y;a,b,

b

a
; λr
)

.

Corollary 3.11. Let a, b, c ∈ R+, x, y ∈ R; λ ∈ C; r ∈ N and n ∈ N0. The following multiplication formula
for the generalized-Gould-Hopper-Apostol-Euler polynomials holds true:

HE
(α,j)
n

(
rx, rjy;a,b,

b

a
; λ
)

= rn a(r−1)αt
∑

ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)

× (−λ)mHE
(α,j)
n

(
(x+

m

r
,y;a,b,

b

a
; λr
)

for r odd,

HE
(l,j)
n

(
rx, rjy;a,b,

b

a
; λ
)

=
(−1)l 2l rn

(n+ 1)l
a(r−1)lt

∑
06ν16ν26νr−16l
ν1+ν2+···+νr−1=l

(
l

ν1,ν2, . . . ,νr−1

)

× (−λ)mHB
(l,j)
n+l

(
(x+

m

r
,y;a,b,

b

a
; λr
)

for r even.

Corollary 3.12. Let a, b, c ∈ R+, x, y ∈ R; λ ∈ C; r ∈ N and n ∈ N0. The following multiplication formula
for the generalized-Gould-Hopper-Apostol-Genocchi polynomials holds true:

HG
(α,j)
n

(
rx, rjy;a,b,

b

a
; λ
)

= rn−α a(r−1)αt
∑

ν1,ν2,...,νr−1>0

(
α

ν1,ν2, . . . ,νr−1

)

× (−λ)mHG
(α,j)
n

(
(x+

m

r
,y;a,b,

b

a
; λr
)

for r odd,

HG
(l,j)
n

(
rx, rjy;a,b,

b

a
; λ
)

= (−1)l 2l rn−l a(r−1)lt
∑

06ν16ν26νr−16l
ν1+ν2+···+νr−1=l

(
l

ν1,ν2, . . . ,νr−1

)

× (−λ)mHB
(l,j)
n

(
(x+

m

r
,y;a,b,

b

a
; λr
)

for r even.
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Further, we derive some explicit formulas involving some known functions. For this we recall the
following definition.

Definition 3.13. Let a, b ∈ R+, x ∈ R, λ ∈ C and ν ∈ N0. The generalized array type polynomials
Snν(x;a,b; λ) are defined by [38]:

(λbt − at)ν

ν!
bxt =

∞∑
n=0

Snν(x;a,b; λ)
tn

n!
,

where S(n, v;a,b; λ) := Snν(0;a,b; λ) are generalized λ-Stirling type numbers of second kind.

Definition 3.14. The polynomials Yνn(x, λ;a) are defined by [24, 38]:(
t

λat − 1

)ν
axt =

∞∑
n=0

Yνn(x, λ;a)
tn

n!
(a > 1),

where Yνn(λ;a) := Yνn(x, λ;a) are the corresponding numbers.

Definition 3.15. The generalized Hurwitz-Lerch Zeta function Φµ(z, s,a) [12] is defined by

Φµ(z, s,a) =
∞∑
n=0

(µ)n
n!

zn

(n+ a)s
.

Theorem 3.16. Let a, b ∈ R+, x, y ∈ R; λ, µ, ν ∈ C; r ∈ N and n ∈ N0. The following explicit formula for
the generalized-Apostol-type-Gould-Hopper polynomials holds true:

HF
(−α,j)
n−να (x,y;a,b;µ,ν; λ) =

(n− να)! α!
(2µ)α(n− jk)! k!

[nj ]∑
k=0

(−1)αSn−jkν (x;a,b;−λ)(logb)kyk. (3.15)

Proof. Replacing c by b in generating equation (2.1) yields
∞∑
n=0

HF
(−α,j)
n (x,y;a,b;µ,ν; λ)

tn

n!
=

(
2µ tν

λbt + at

)−α

bxt+yt
j

=
α!

(2µ tν)α

(
(λbt + at)α

α!
bxt
)
byt

j

=
α!

(2µ tν)α

∞∑
n=0

∞∑
k=0

(−1)αSnα(x;a,b;−λ)(logb)kyk
tn+jk

n! k!

=
α!

(2µ tν)α

∞∑
n=0

[nj ]∑
k=0

(−1)αSn−jkα (x;a,b;−λ)(logb)kyk
tn

(n− jk)! k!
,

which on equating the coefficients of same powers of t yields assertion (3.15).

Theorem 3.17. The following explicit formula for the generalized-Apostol-type-Gould-Hopper polynomials holds
true:

HF
(−α,j)
n−να (x,y;a,b;µ,ν; λ) =

(n− να)!α!
(2µ)α

n∑
k=0

(
n

k

)
(−1)αS(n− k,α;a,b;−λ)H(j)

k (x,y,b). (3.16)

Theorem 3.18. Let a, b ∈ R+, x, y ∈ R; λ, µ, ν ∈ C; r ∈ N and n ∈ N0. The following explicit formula for
the generalized-Apostol-type-Gould-Hopper polynomials holds true:

HF
(α,j)
n (x,y;a,b;µ, 1; λ) =

(2µ

at

)α ∞∑
n=0

[nj ]∑
k=0

(−1)αYαn−jk
(
x;
b

a
;−λ

)
(logb)kyk

tn

(n− jk)! k!
.
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Proof. Replacing c by b in generating equation (2.1) yields

∞∑
n=0

HF
(α,j)
n (x,y;a,b;µ, 1; λ)

tn

n!
=

(
2µ t

λbt + at

)α
bxt+yt

j

=
(2µ

at

)α (( t

λ(ba)
t + 1

)α
bxt

)
byt

j

=
(2µ

at

)α ∞∑
n=0

∞∑
k=0

(−1)αYαn
(
x;
b

a
;−λ

)
(logb)kyk

tn+jk

n! k!

=
(2µ

at

)α ∞∑
n=0

[nj ]∑
k=0

(−1)αYαn−jk
(
x;
b

a
;−λ

)
(logb)kyk

tn

(n− jk)! k!
,

which on equating the coefficients of same powers of t yields assertion (3.16).

Theorem 3.19. The following explicit formula for the generalized-Apostol-type-Gould-Hopper polynomials holds
true:

HF
(α,j)
n (x,y;a,b;µ, 1; λ) =

(2µ

at

)α n∑
k=0

(
n

k

)
(−1)αYαn−k

(b
a

;−λ
)
H

(j)
k (x,y,b).

Theorem 3.20. Let a, b ∈ R+, x, y ∈ R; λ, µ, ν ∈ C; r ∈ N and n ∈ N0. The following explicit formula for
the generalized-Apostol-type-Gould-Hopper polynomials holds true:

HF
(α,j)
n+να

(
x,y;a,b,

b

a
;µ,ν; λ

)
=
(2µ

at

)α (n+ να)!
(n− jl)! l!

[nj ]∑
l=0

(
log

b

a

)n−jl+l
Φα (λ,−n+ jl, x)yl. (3.17)

Proof. We consider generating function (2.1) in the following form:

∞∑
n=0

HF
(α,j)
n (x,y;a,b,

b

a
;µ,ν; λ)

tn−να

n!
=
(2µ

at

)α (
λ (
b

a
)t + 1

)−α (b
a

)xt+ytj
=
(2µ

at

)α ∞∑
k=0

(α)k
k!

λk
(b
a

)kt (b
a

)xt+ytj
=
(2µ

at

)α ∞∑
n=0

∞∑
k=0

(α)k
k!

λk(log
b

a
)n(k+ x)n

tn

n!
(b
a

)ytj
=
(2µ

at

)α ∞∑
n=0

(log
b

a
)n+lΦα (λ,−n, x)

tn

n!

∞∑
l=0

yl
tjl

l!

=
(2µ

at

)α ∞∑
n=0

[nj ]∑
l=0

(log
b

a
)n−jl+lΦα (λ,−n+ jl, x)yl

tn

(n− jl)! l!
,

which on equating the coefficients of same powers of t in both sides of resultant equation yields assertion
(3.17).

Next, we establish some symmetric identities for generalized-Apostol-type-Gould-Hopper polynomi-
als.
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4. Symmetric identities

In mathematics and statistics, sums of powers occur in a number of contexts. Many combinatorial
problems can be solved with the aid of these power sums particularly occur in Euler’s sum of powers
conjecture, Fermat Catalan conjecture, Lander, Parkin and Selfridge conjectures, Prouhet-Tarry-Escott
problem etc.. The power sum symmetric polynomials are considered to be building block for symmetric
polynomials.

The symmetry identities related to classical and Apostol type polynomials are established by many
authors [18, 20–22, 36]. This provides motivation to establish symmetry identities for the generalized-
Apostol-type-Gould-Hopper polynomials.

In order to derive the symmetry identities for the GGdHATP HF
(α)
n (x,y;a,b, c;µ,ν; λ), we prove the

following results.

Theorem 4.1. For all integers l, m > 0 and n > 0; α > 1; λ, µ, ν ∈ C, and a, b, c ∈ R+, the following
symmetry identity for the generalized-Apostol-type-Gould-Hopper polynomials holds true:

n∑
j=0

(
n

j

)
ln−jmj+νHF

(α)
n−j(mx,mjy;a,b, c;µ,ν; λ)

j∑
i=0

(
j

i

)
a(l−1)mtSi(l− 1;−λ)

×HF
(α−1)
j−i (lX, ljY;a,b, c;µ,ν; λ)

=

n∑
j=0

(
n

j

)
mn−jlj+νHF

(α)
n−j(lx, ljy;a,b, c;µ,ν; λ)

j∑
i=0

(
j

i

)
a(m−1)ltSi(m− 1;−λ)

×HF
(α−1)
j−i (mX,mjY;a,b, c;µ,ν; λ).

(4.1)

Proof. Let

G(t) :=
2µ(2α−1)tν(2α−1)clmxt+y(lmt)

j
(λblmt + almt)clmXt+Y(lmt)

j

(λblt + alt)α(λbmt + amt)α
,

which on rearranging the powers becomes

G(t) =
1

lναmν(α−1)

(
2µlνtν

λblt + alt

)α
clmxt+y(lmt)

j

(
λblmt + almt

λbmt + amt

)
×
(

2µmνtν

λbmt + amt

)α−1

clmXt+Y(lmt)
j

.

(4.2)

Since the expression (4.2) for G(t) is symmetric in l and m, therefore we can expand G(t) into series
in two ways. First, we consider the following expansion:

G(t) =
1

lναmν(α−1)

(
2µ(lt)ν

λblt + alt

)α
clmxt+y(lmt)

j

(
λblmt + almt

λbmt + amt

)(
2µ(mt)ν

λbmt + amt

)α−1

clmXt+Y(lmt)
j

,

which on using generating equation (2.1) and the following formula for the numbers Sk(n; λ):

λe(n+1)t − 1
λet − 1

=

∞∑
k=0

Sk(n; λ)
tk

k!
,

gives

G(t) =
1

lναmν(α−1)

( ∞∑
n=0

HF
(α)
n (mx,mjy;a,b, c;µ,ν; λ)

(lt)n

n!

)(
a(l−1)mt

(
log

b

a

)i ∞∑
i=0

Si(l− 1;−λ)
(mt)i

i!

)
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×

 ∞∑
j=0

HF
(α−1)
j (lX, ljY;a,b, c;µ,ν; λ)

(mt)j

j!

 ,

which on using [40, p.890 Corollary 2] and Cauchy product rule gives

G(t) =
a(l−1)mt

lναmνα

∞∑
n=0

( n∑
j=0

(
n

j

)
ln−jmj+νHF

(α)
n−j(mx,mjy;a,b, c;µ,ν; λ)

×
j∑
i=0

(
j

i

)(
log

b

a

)i
Si(l− 1;−λ)HF

(α−1)
j−i (lX, ljY;a,b, c;µ,ν; λ)

)tn
n!

.

(4.3)

Similarly, we have

G(t) =
a(m−1)lt

mναlνα

∞∑
n=0

( n∑
j=0

(
n

j

)
mn−jlj+νHF

(α)
n−j(lx, ljy;a,b, c;µ,ν; λ)

×
j∑
i=0

(
j

i

)(
log

b

a

)i
Si(m− 1;−λ)HF

(α−1)
j−i (mX,mjY;a,b, c;µ,ν; λ)

)tn
n!

.

(4.4)

Equating the coefficients of same powers of t in r.h.s. of expansions (4.3) and (4.4), we are led to
assertion (4.1).

Theorem 4.2. For all integers l, m > 0 and n > 0; α > 1; λ, µ, ν ∈ C and a, b ∈ R+, the following symmetry
identity for the generalized-Apostol-type-Gould-Hopper polynomials holds true:

n∑
p=0

(
n

p

) l−1∑
i=0

m−1∑
h=0

(−λ)i+hlpmn−pHF
(α)
p (mx+

m

l
i,mjy;a,b,

b

a
;µ,ν; λ)

×HF
(α)
n−p(lX+

l

m
h, ljY;a,b,

b

a
;µ,ν; λ)

=

n∑
p=0

(
n

p

)m−1∑
i=0

l−1∑
h=0

(−λ)i+hmpln−pHF
(α)
p (lx+

l

m
i, ljy;a,b,

b

a
;µ,ν; λ)

×HF
(α)
n−p(mX+

m

l
h,mjY;a,b,

b

a
;µ,ν; λ).

(4.5)

Proof. Let

H(t) :=
22µαt2ναb

a

lmxt+y(lmt)j
(λlblmt + almt)(λmblmt + almt)ba

lmXt+Y(lmt)j

(λblt + alt)α+1(λbmt + amt)α+1 ,

which on rearranging the powers becomes

H(t) :=
1
lνα

1
mνα

(
2µlνtν

λblt + alt

)α
b

a

lmxt+y(lmt)j (λlblmt + almt
λbmt + amt

)(
2µmνtν

λbmt + amt

)α
× b
a

lmXt+Y(lmt)j (λmblmt + almt
λblt + alt

)
.

(4.6)

Since expression (4.6) for H(t) is symmetric in l and m, therefore we can expand H(t) into series in
two ways. First, we consider the following expansion:

H(t) :=
1
lνα

1
mνα

(
2µ(lt)ν

λblt + alt

)α
b

a

lmxt+y(lmt)j (λlblmt + almt
λbmt + amt

)(
2µ(mt)ν

λbmt + amt

)α
× b
a

lmXt+Y(lmt)j (λmblmt + almt
λblt + alt

)
.

(4.7)
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Now, using the series expansions for
(
λlblmt+almt

λbmt+amt

)
and

(
λmblmt+almt

λblt+alt

)
in the r.h.s. of equation (4.7),

we have

H(t) : =
1
lνα

1
mνα

(
2µ(lt)ν

λblt + alt

)α
b

a

lmxt+y(lmt)j
(
a(l−1)mt

l−1∑
i=0

(−λ)i(
b

a
)mti

)

×
(

2µ(mt)ν

λbmt + amt

)α
b

a

lmXt+Y(lmt)j
(
a(m−1)lt

m−1∑
h=0

(−λ)h(
b

a
)lth

)
.

Combining the terms in the above equation, we have

H(t) : =
1
lνα

1
mνα

a2mlt−mt−lt
l−1∑
i=0

(−λ)i
(

2µ(lt)ν

λblt + alt

)α
b

a

(mx+m
l i)lt+m

jy(lt)j

×
m−1∑
h=0

(−λ)h
(

2µ(mt)ν

λbmt + amt

)α
b

a

(lX+ l
mh)mt+l

jY(mt)j

,

which on using equation (2.1) becomes

H(t) : =
1
lνα

1
mνα

a2mlt−mt−lt

l−1∑
i=0

(−λ)i
∞∑
p=0

HF
(α)
p (mx+

m

l
i,mjy;a,b,

b

a
;µ,ν; λ)

(lt)p

p!


×

(
m−1∑
h=0

(−λ)h
∞∑
n=0

HF
(α)
n (lX+

l

m
h, ljY;a,b,

b

a
;µ,ν; λ)

(mt)n

n!

)
,

(4.8)

Applying the Cauchy product rule in the r.h.s. of equation (4.8), we find

H(t) : =
1
lνα

1
mνα

a2mlt−mt−lt
∞∑
n=0

n∑
p=0

(
n

p

) l−1∑
i=0

m−1∑
h=0

(−λ)i+hlpmn−pHF
(α)
p

× (mx+
m

l
i,mjy;a,b,

b

a
;µ,ν; λ)HF

(α)
n−p(lX+

l

m
h, ljY;a,b,

b

a
;µ,ν; λ)

tn

n!
.

(4.9)

Using the similar way, we obtain the second expansion of H(t) as:

H(t) : =
1

mνα
1
lνα

a2mlt−mt−lt
∞∑
n=0

n∑
p=0

(
n

p

)m−1∑
i=0

l−1∑
h=0

(−λ)i+hmpln−pHF
(α)
p

× (lx+
l

m
i, ljy;a,b,

b

a
;µ,ν; λ)HF

(α)
n−p(mX+

m

l
h,mjY;a,b,

b

a
;µ,ν; λ)

tn

n!
.

(4.10)

Equating the coefficients of like powers of t in r.h.s. of expansions (4.9) and (4.10), we are led to
assertion (4.5).

In view of Remarks 2.3-2.5, we can obtain the symmetry identities for the generalized-Gould-Hopper-
Apostol-Bernoulli, Euler and Genocchi polynomials simply by choosing suitable values of parameters µ
and ν. For the lack of space, we omit them.

Appendix A.

In 2006, Luo and Srivastava [33] introduced the Milne-Thomson’s polynomials Φ(α)
n (x) of single vari-

able defined by ∞∑
n=0

Φ
(α)
n (x)

tn

n!
= f(t,α) ext



S. Araci, M. Riyasat, S. Khan, S. Ahmad Wani, J. Math. Computer Sci., 19 (2019), 97–115 114

and framed Apostol-Bernoulli and Euler polynomials within the context of Milne-Thomson’s polynomials
Φ

(α)
n (x).

Recently, Dere and Simsek [10] gave a new class of the Milne-Thomson’s polynomials Φ(α)
n (x,y)

defined by ∞∑
n=0

Φ
(α)
n (x,y)

tn

n!
= f(t,α) ext+h(t,y). (A.1)

In view of equation (A.1), we gave a unified form of generalized Milne-Thomson’s polynomials
Φαn(x,y;µ,ν; λ) defined by

∞∑
n=0

Φ
(α)
n (x,y;µ,ν; λ)

tn

n!
= f(t,α;µ,ν; λ) cxt+h(t,y).

Simply by choosing f(t,α;µ,ν; λ) =
(

2µlν
λbt+at

)α
and h(t,y) = ytj, we get generalized-Apostol-type-

Gould-Hopper polynomials.
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