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Abstract 

The aim of this work is to propose a numerical approach based on the local weak formulations 
and finite difference scheme to solve the Maxwell equation, especially in this paper we select 
and analysis local radial point interpolation (LRPI) based on multiquadrics radial basis functions 
(MQ-RBFs). LRPI scheme is the truly meshless method, because, a traditional non-overlapping, 
continuous mesh is not required, either for the construction of the shape functions, or for the 
integration of the local sub-domains. These shape functions which are constructed by point 
interpolation method using the radial basis functions have delta function property which allows 
one to easily impose essential boundary conditions. One numerical example is presented 
showing the behavior of the solution and the efficiency of the proposed method. 

 

Keywords: Meshless weak form, Maxwell equation, Finite differences, Local radial point interpolation. 

1. Introduction 

Recently, a great attention has been paid to the development of various meshless formulations for solution 

of boundary value problems in many branches of science and engineering. Meshless methods have 

become viable alternatives to either finite element method (FEM) or boundary element method (BEM). 

Compared to the FEM and the BEM, the main feature of this type of method is the absence of an explicit 

mesh, and the approximate solutions are constructed entirely based on a cluster of scattered nodes. 

Meshless methods have been found to have special advantages on problems to which the conventional 

mesh-based methods are difficult to be applied. These include problems with complicated boundary, 

moving boundary and so on. Many of meshless methods are derived from a weak-form formulation on 
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global domain or a set of local sub-domains. In the global formulation background cells are required for 

the integration of the weak form. Strictly speaking, these meshless methods are not truly meshless 

methods. It should be noticed that integration is performed only those background cells with a nonzero 

shape function. In methods based on local weak-form formulation no cells are required and therefore they 

are often referred to as truly meshless methods. If a simple form is chosen for the geometry of the sub-

domains, numerical integrations can be easily carried out over them. Recently, two family of meshless 

methods, based on the local weak form for arbitrary partial differential equations with moving least-

square (MLS) and radial basis functions (RBFs) approximation have been developed. Local boundary 

integral equation method (LBIE) with moving least square approximation and local radial point 

interpolations (LRPI) with radial basis functions have been developed by Zhu et al. [1] and Liu et al. [2, 

3], respectively. Both methods (LBIE and LRPI) are meshless, as no domain/boundary traditional non-

overlapping meshes are required in these two approaches. 

Particularly, the LRPI meshless method reduces the problem dimension by one, has shape functions with 

delta function properties, and expresses the derivatives of shape functions explicitly and readily. Thus it 

allows one to easily impose essential boundary and initial (or final) conditions. Though the LBIE method 

is an efficient meshless method, it is difficult to enforce the essential boundary conditions for that the 

shape function constructed by the moving least-squares (MLS) approximation lacks the delta function 

property. 

Some special techniques have to be used to overcome the problem, for example, the Lagrange multiplier 

method and the penalty method [4]. For some works on the meshless LBIE method one can mention the 

papers of Zhu et al. [1, 5, 6] in linear and non-linear acoustic and potential problems and the works of 

Sladek brothers [7, 8] for heat conduction problems. The method has now been successfully extended to a 

wide range of problems in engineering. For some examples of these problems, see [9, 10] and other 

references therein. The interested reader of meshless methods can also see [11, 12]. 

In the current work, the LRPI method is employed to numerical analysis of the two-dimensional unsteady 

Maxwell equations. 

The Maxwell equations are a set of PDEs published by Maxwell in 1865 [13], which describe how the 

electric and magnetic fields are related to their sources, charge density and current density. Later, O. 

Heaviside [14] and W. Gibbs transformed these equations into the today’s vector notations.  

To describe the electromagnetic wave propagation, under certain assumptions, in three dispersive medias; 

i.e. cold plasma, Debye medium and Lorentz medium; the unified model for governing equations is 

considered as [27,28]: 

 

                                                         
  

  
                                         (   ]                                    (   

                                                          
  

  
        (                   (   ]                                 (   

 

where   is electric field,   is magnetic field,   is permittivity of free space,   is the permeability of free 

space and the polarization current   is as follows [27,28]: 

 (       
  ∫    (     (      

 

 

  

The boundary    of   is considered to be perfect conduction boundary which means [27,28]:  

 

                        (   ]  
 

where    is the plasma frequency,   is the electron-neutral collision frequency and initial conditions are 
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where     and     are given functions with    satisfying [27,28] 

 

                                               (                                                                                                    (                                           

 

One can easily obtain, from 1 and 3, that  

 

  (            
 

which is a solenoidal condition for magnetic flux density. Also, the second condition of 3, together with 1 

and 2, leads to 

 

               
 

which is also a perfect conduct boundary condition. Several numerical methods have been proposed for 

Maxwell equations [15, 16, 17] but very few lectures have been studied these models using meshless 

methods. The interested reader can see [18, 27].  

The objective of this paper is to extend the LRPI based on multiquadrics radial basis functions 

(MQRBFs) to evaluate Maxwell equations. To the best of our knowledge, the local weak form of 

meshless method has not yet been used in electromagnetic field. Therefore, it appears to be interesting to 

extend such a numerical technique also to Maxwell equations, which is done in the present manuscript. 

 

The paper is organized as follows: Section 2 is devoted to presenting the LRPI approach and the 

application of such a numerical technique to the Maxwell problems considered is shown in this section. 

The numerical results obtained are presented and discussed in Section 3 and finally, in Section 4, some 

conclusions are drawn. 

 

2. Methology 

To evaluate the Maxwell equation, LRPI method is used in the present work. This method is based on 

local weak forms over intersecting subdomains At first we discuss a time-stepping method for the time 

derivative. 

 

2.1 Time discretization 

To obtain a fully discrete scheme, the time interval (     has been divided into the   uniform 

subintervals by employing nodes                  where          , then to deal with the 

time derivatives, the following difference approximations have been considered 
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where   (    (        and   (    (       . Therefore, Eqs. 1 and 2 become as follows 
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thus we can obtain 

 
  

  
     

 

 
        

  

  
   

 

 
                                  

 
  

  
     

 

 
       

 

 
      

  

  
   

 

 
     

 

 
       

(4) 

we assume the following recursive formula for    [27] 

      

                                                                         
  

 

 
(              )                                      (   

which is obtained by using trapezoidal rule to approximate the numerical integration from     to   as the 

expression of    is divided into integrations over two time intervals,        ] and         ], see [27]. 

 

2.2. The local weak form 

Now, we use the local weak form instead of the global weak form. The LRPI method constructs the weak 

form over local sub-domains such as   , which is a small region taken for each node in the global domain 

 . The local sub-domains overlap each other and cover the whole global domain  . The local sub-

domains could be of any geometric shape and size. For simplicity they are taken to be of circular shape. 

Therefore the local weak form of the approximate equation (4) for    (     )    
 can be written as 
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which   
  is the local domain associated with the  . In LRPI,   is the Heaviside step function 
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as the test function in each local domain. 

Using the divergence theorem, we have 
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In above relations,    
  is the boundary of   

 . Also, because the derivative of the Heaviside step function 

  is equal to zero, then for LRPI scheme the above local weak form system is transformed into the 

following simple local integral equation 
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It is important to observe that in relations (10) and (11) exist unknown functions, we should approximate 

these functions. To this aim the local integral equations (10) and (11) are transformed in to a system of 

algebraic equations with real unknown quantities at nodes used for spatial approximation, as described in 

the next subsection. 

 

 

 

2.3. Spatial approximation 

Instead of using traditional non-overlapping, continuous meshes to form the interpolation scheme, the 

LRPIM uses a local interpolation or approximation to represent the trial or test functions with the values 

(or the fictitious values) of the unknown variable at some randomly located nodes. There are a number of 

local interpolation schemes for this purpose. The radial point interpolation is one of them. In this section, 

the fundamental idea of these approximations are reviewed. 
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2.3.1. Polynomial basis point interpolation (PPI) method 

 

Polynomials have been used as famous basis functions in interpolation to creat shape functions in many 

numerical algorithm. The polynomial basis point interpolation scheme is investigated in meshfree 

methods by Liu and Gu [19] in the first time. In the point interpolation method (PIM), interpolation is 

based on a set of nodes in the vicinity of a point   named the local support domain. A support domain can 

have different shapes and its dimension and shape can be different from point to point. Most often used 

shapes are rectangular or circular. 

Consider an influence domain   with a set of suitably located nodes     
 

   
 is the number of nodes in 

the local support domain; in it. An interpolation of a function  (   in the neighborhood of a point   can 

be expreessed in the form 

 

                                                       ∑    (  

 

   

   (                                                                                         (    

where   (   is a monomial in the spatial coordinate        ]  ,   is the number of nodes in the support 

domain of  , and    is the corresponding coefficient of the basis functions. In the vector form, Eq. (12), 

the vectors are defined as 
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For example, in one-dimensional problems, two well known linear basis are 
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 (   (                  
 

the unknown coefficient    can be determined by enforcing  (   to be satisfied at the   nodes within the 

local support domain of the point of interest  . This leads to   linear equations, which can be expressed in 

the following matrix form as 
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In this interpolation scheme, let the variable    denote  (    for simplicity. Assuming the existence of 

  
   , a unique solution of vector   can be obtained by solving Eq. (13) for  : 

 

                                                         
                                                                                                                 (    

 

By substituting Eq. (13) into Eq. (14), we have 

 

 (     (    
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where the shape function  (   is defined by 

 

  (     (    
   (  (     (       (     

 

The shape function  (   obtained through the above scheme, possesses the delta function property, i.e. 

  (  )     . 

 

Remark 2: In order to avoid the singularity of   , several strategies have been proposed. Liu and Gu [19] 

proposed a moving node method to change the coordinates of nodes randomly before computation. 

Changing basis function through the transformation of the local coordinate is the other effective method 

[20]. The matrix triangularization algorithm (MTA) is recently proposed [21]. Kansa [22, 23] has also 

solved this kind of singularity problem using radial basis functions. Since the RBFs are used, the matrix 

   is not singular in general. Kansa’s method is an unsymmetric RBF collocation method based upon the 

GA and MQ interpolation functions. Although the above approach has been applied successfully in 

several cases, no existence of solution and convergence analysis is available in the literature and, for some 

cases, it has been reported that the resulting matrix was extremely ill-conditioned. The condition number 

of the above interpolation matrix for smooth RBFs like Gaussian or multiquadrics are extremely large. 

Several techniques have been proposed to improve the conditioning of the coefficient matrix and the 

solution accuracy. Fasshauer [24] suggested an alternative approach to the unsymmetric scheme based on 

the Hermite interpolation property of the radial basis functions. The advantage of Hermite-based approach 

is that the matrix resulting from the scheme is symmetric, as opposed to the completely unstructured 

matrix of the same size resulting from unsymmetric schemes. Also, Liu et al. [25] to overcome this 

deficiency used RBFs as the augmented terms in the point interpolation method. 

 

2.3.2. Radial basis point interpolation (RBPI) method 

The point interpolation form is rewritten as 
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where   (   is the radial basis functions,   is the number of RBFs and is also identical to the number of 

nodes in the local support domain of the point of interest  , and   (   is a monomial in the spatial 

coordinate         ]  , and   is the number of polynomial basis functions. If      , pure RBFs are 

concluded. Coefficients     and    are interpolation constant yet to be determined. The polynomial term 
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in Eq. (15) is not always necessary. However, augment of polynomial in RPI shape functions has the 

following benefits [26] 

1. Adding polynomial term up to the linear order can ensure the    consistency that is needed to 

pass the standard patch test. 

2. In general, adding polynomial can always improve the accuracy of the results. 

3. Adding polynomial reduces the influence of the shape parameters on the accuracy of the results. 

4. Adding polynomial can improve the interpolation stability for some RBFs. 

 

In this work, linear polynomial terms (        are adopted to augment the RBFs. 

Coefficients    and    in Eq. (15) can be determined by enforcing Eq. (15) to be satisfied at these   nodes, 

forming the support domain around point  . The interpolation at the  th point is: 
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The polynomial term is an extra-requirement that guarantees unique approximation. Following constraints 

are usually imposed 
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The representation (16) and Eq. (17) consitute a (     (     system of linear algebraic equations 

which can be expressed in matrix form as 
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Unique solution is obtained if the inverse of matrix    exists, 
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Accordingly, Eq. (15) can be rewritten as 
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where the matrix of shape functions  (   is defined by 
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in which 
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and     
   is the (     element of matrix    . 

 

2.4. Discretized equations 

Before we show how to discretize model in the forms (10) and (11), we focus on how to select nodal 

points. Let                      are scattered meshless points, where some points are 

located on the boundary   to enforce the boundary conditions. 

To obtain the discrete equations from the locally weak forms (10) and (11), for the interior points, 

substituting approximation formula (18) into local integral equations (10) and (11) yields: 
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Figure 1: Sub-domains of different points in the problem domain. 
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The matrix forms of the relations (19) and (20) are respectively as follows 
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Figure 2: Sampling of meshless points and local subdomains 
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Also for boundary nodes       
  where    

    
     

 , we have 
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3. Numerical results and discussions 
 

The numerical simulations are run on a PC Laptop with an Intel(R) Core(TM)2 Duo CPU T9550 2.66 

GHz 4 GB RAM and the software programs are written in Matlab. 

 

Let   
    

  and   
  denote the exact solutions and also   

         
      

 and   
      

 denote the 

approximations obtained using LRPI method developed in the Section 3. Note that in the following 

example, the exact values of   
    

  and   
 are available. Therefore, to show the rate of convergence  

 

of the new schemes when       and       , the values of ratio with the following formula have been 

reported in the tables  
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)  



S. Sarabadan, M. Shahrezaee, J.A. Rad, K. Parand / J. Math. Computer Sci.    13 (2014), 168-185 
 

179 
 

 

In the following analysis, the radius of the local sub-domain is selected           , where   is the 

distance between the nodes. The size of    is such that the union of these sub-domain must cover the 

whole global domain i.e.    
    . 

 

 

Now, in order to show that weak form meshless methods proposed in this paper, provide very accurate, 

stable and fast approximation, we present the following model 

  

   

  
 

   

  
    

  

   

  
 

   

  
    

  

   

  
 

   

  
 

   

  
    

where           . The exact solution of this model is 
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where   √  . Of special interest to us is testifying the numerical convergence of the solution by this 

problem. Hence, applying the suggested schemes in this paper together with different choice of   and  , 

we get the consequences tabulated in Table 1. The number of time discretization steps is set equal to 

nodes distributed in the domain. As we have experimentally checked, this choice is such that in all the 

simulations performed the error due to the time discretization is negligible with respect to the error due to 

the LRPI discretization (note that in the present work we are mainly concerned with the LRPI spatial 

approximation).  

 

 

Table 1: Numerical results, efficiency of the LRPI scheme. 
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Figure 3: Surface plot of the numerical and analytical solutions    at time       by using    
        and          . 

 
Figure 4: Contour lines corresponding to the     at time       by using            and 

         . 

 

From Table 1, it can be seen that the LRPI method provide very accurate, stable and fast approximation 

for option pricing. We observe that the accuracy grows as the number of basis increases gradually, then 

the solution can be computed with a small error in a small computer time. 
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Figure 5: Contour lines corresponding to the absolute error between numerical and analytical 

solutions    at time       by using           and          . 

Also, the results are shown in Figs. (3)-(11) as illustration. The results of our numerical experiments, 

confirm the validity of the new techniques. 

Putting all these things together, we conclude that the numerical methods proposed in this paper are 

accurate, convergence and fast. 

 

 
Figure 6: Surface plot of the numerical and analytical solutions    at time       by using    

        and          . 
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Figure 7: Contour lines corresponding to the    at time       by using            and 

         . 

 
Figure 8: Contour lines corresponding to the absolute error between numerical and analytical 

solutions    at time       by using            and          . 
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Figure 9: Surface plot of the numerical and analytical solutions    at time       by using    
        and          . 

 
Figure 10: Contour lines corresponding to the    at time       by using            and 

         . 
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Figure 11: Contour lines corresponding to the absolute error between numerical and analytical 

solutions    at time       by using            and          . 

5. Conclusions 

In this paper, the weak form meshless methods namely local radial point interpolation (LRPI) 

based on multiquadrics radial basis functions (MQ-RBFs), were formulated and successfully 

applied to solve the timedependent Maxwell equations. The present methods are truly a meshless 

method, which do not need any element or mesh for both field interpolation and background 

integration. This is an alternative numerical tool to many existing computational methods. The 

main advantage is its simplicity. In this method, the shape functions have been constructed by the 

radial point interpolation method (RPIM). The shape functions so formulated posses the delta 

function property. The Heaviside step function was used as the test function in the local weak 

form method in the meshless local radial point interpolation method. Also to demonstrate the 

accuracy and usefulness of this method, one numerical example has been presented. The given 

example demonstrated that using the present approach leads to acceptable results in comparison 

with different approximate methods. 
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