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Abstract 
Fuzzy relational models of functions have been developed in recent two decades which has 
led to fuzzy relational models of dynamic systems which we call fuzzy relational dynamic 
systems (FRDS). In this paper the effectiveness of smooth fuzzy relational compositions 
(FRC) in such dynamic models is studied after introducing a general framework for 
modeling of dynamic systems using FRDS, and so the smooth FRDS is developed. A modeling 
structure is presented in this regard as well as a related identification algorithm. Finally, the 
modeling capability of the proposed smooth FRDS is verified via some simulations on 
various benchmark problems and actual dynamic systems.  

 
Keywords: Fuzzy relational dynamic system, smooth fuzzy relational composition, fuzzy 
relational modeling. 
 
 

1. Introduction 
A fuzzy relational dynamic system (FRDS) is a fuzzy relational model (FRM) which models a 

dynamic system based on the function approximation. An FRM is based on the fuzzy relational 
equations (FREs) introduced in 1976 by Sanchez in [1]. A typical FRE is written as 𝑏 = 𝑎 ∘ 𝑅, in which 

𝑎 and 𝑏 are fuzzy vectors and  𝑅 is a fuzzy relational matrix. The elements of 𝑎, 𝑏, and  𝑅 all belong to 
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 0,1 . The fuzzy relational composition “∘” is of type s-t in almost all applied papers while it can also be 
of type t-s from the theoretical approach, where “t” and “s” stands for t-norm and t-conorm 

respectively. This equation is evaluated as 𝑏𝑗 = 𝑠𝑖=1
𝑞 𝑡 𝑎𝑖 , 𝑟𝑖𝑗  . The equation may model a static 

function 𝑓, which can be used to model a dynamic system, as shown in Fig. 1. This leads to the so-
called FRDS. 

FRDS is in fact an extension of fuzzy linguistic systems in which each rule has a truth value 
between zero and one. Many papers are available about function approximation and model 
identification by FRMs, such as [2]-[4], but most of them are based on nonsmooth fuzzy relational 
compositions and some of them have used some specific types of smooth fuzzy relational 
compositions, such as sum-prod fuzzy relational composition in which the t-norm is the algebraic 
product and the t-conorm is the algebraic sum. In this paper we present a general framework for FRDS 
based on any smooth fuzzy relational composition and we will show that using smooth fuzzy 
relational compositions improves the modeling capability of the FRDS. This work generalizes the work 
done in [5] for the static case.  

Sections 2 and 3 represent respectively the two important parts of the modeling process, the 
modeling framework and the identification algorithm. The results are verified for several benchmark 
problems in Section 4. A brief conclusion in Section 5 wraps up the paper. 

 

 
 

Figure 1. Block diagram of a dynamic system with external inputs based on a static function 𝒇 and delays 

 

2. General Framework for FRDS with Smooth FRC 
Let 𝑣 =  𝑥 𝑘 − 1 , … , 𝑥 𝑘 − 𝑛 , 𝑢 𝑘 − 1 , … , 𝑢 𝑘 − 𝑟  . It is the vector of all inputs to the function 

block f and is of length 𝜂 ≔ 𝑛 + 𝑟. The function block of Fig. 1 is shown as the outer box with broken 
line in Fig. 2. In this figure the three main parts of an FRM is depicted, the Fuzzifier, the fuzzy 
relational matrix along with the fuzzy relational composition, and the Defuzzifier. 

We consider the part types as follows: 
 Fuzzifier: Standard Fuzzifier which is a fuzzifier with triangular membership functions with 

sum-normality property and with its centers equally spaced in the normalized nonfuzzy 
space. 

 Fuzzy relational matrix: An  𝜂 + 1 -dimensional matrix (instead of 2-dimensional matrix) 
with its elements from  0,1 . We denote this matrix with both 𝑅𝜂+1 and 𝑅. 

 Fuzzy relational composition: This will be defined exactly in this section. It is of type s-t which 
composes the relational matrix 𝑅 with the fuzzy vectors 𝑎1 , … , 𝑎𝜂  as we define in the sequel. 

 Defuzzifier: Weighted average defuzzifier which is defined as 𝑦 =  𝑏𝑗 𝑐𝑗
𝑞
𝑗 =1  𝑏𝑗

𝑞
𝑗 =1  , where 

𝑏𝑗 ’s are the elements of 𝑏,and 𝑐𝑗 ’s are the centers of the membership functions of the 

𝑓 
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defuzzifier, and  𝑞 is the number of linguistic terms of the defuzzifier and hence the length of 

the vectors 𝑏 and 𝑐. 
 

 
 

Figure 2. Main parts of an FRM 

 
Note 1: For any scalar 𝛼 ∈  0,1  and any 𝑛-dimensional relational matrices 𝑅𝑛

1 =  𝑟𝑛
1 𝑖1 , … , 𝑖𝑛  , …, 

𝑅𝑛
𝑞

=  𝑟𝑛
𝑞 𝑖1 , … , 𝑖𝑛   where 𝑟𝑛

𝑗  𝑖1 , … , 𝑖𝑛 ∈  0,1 , we define the following bundle t-norm and t-conorm 

operations. 

 𝑡 𝛼, 𝑅𝑛
𝑗
 ≔  𝑡  𝛼, 𝑟𝑛

𝑗  𝑖1 , … , 𝑖𝑛     

 𝑆 𝑅𝑛
𝑗
, 𝑅𝑛

𝑘 ≔  𝑆  𝑟𝑛
𝑗  𝑖1 , … , 𝑖𝑛 , 𝑟𝑛

𝑘 𝑖1 , … , 𝑖𝑛     

Furthermore due to the associativity of  the t-conorm, the t-conorm on more than two matrices can be 
defined as follows. 

 𝑆𝑖=1
𝑞

 𝑅𝑛
𝑖  ≔  𝑆𝑖=1

𝑞
𝑟𝑛

𝑖 𝑖1 , … , 𝑖𝑛    
Also note the difference between 𝑆 and 𝑠 in this text; 𝑠𝑖=1

𝑞  .   operates on some scalars while 

𝑆𝑖=1
𝑞  .  operates on matrices and performs as a kind of bundle t-conorm. 

 
Now let us define the way 𝑏 is calculated effectively from 𝑎1 , … , 𝑎𝜂  under 𝑅, and let us denote the  

 𝜂 + 1 -dimensional matrix 𝑅 with 𝑅𝜂+1 . The fuzzifier is assumed the same for all the elements of 𝑣, 

and hence we denote by 𝑞 the number of linguistic terms of the fuzzifiers and the defuzzifier, 

𝑞1 = ⋯ = 𝑞𝜂 = 𝑞. First note that for every  𝑗 ∈  1, … , 𝜂  we have 𝑎𝑗 =  𝑎𝑗  1 , … , 𝑎𝑗  𝑞   , 𝑏𝑗 =

 𝑏𝑗  1 , … , 𝑏𝑗  𝑞   where 𝑎𝑗  𝑖 , 𝑏𝑗  𝑖 ∈  0,1 . The structure of the 𝑞 × ⋯ × 𝑞       
 𝜂+1 

 relational matrix 

𝑅𝜂+1 =  𝑟𝜂+1 𝑖1 , … , 𝑖𝜂+1   is determined by an identification process which we will present in the next 

section. 
The operation of 𝑅 on the fuzzy vectors 𝑎1 , … , 𝑎𝜂  is denoted by 𝑏 = 𝑎𝜂 ∘ ⋯ ∘ 𝑎1 ∘ 𝑅𝜂+1. We define 

this operation as follows: 

 𝛬𝑗 +1 ≔ 𝑎𝜂+1−𝑗 ⊗ 𝑅𝑗 +1  , ∀𝑗 ∈  𝜂, … ,1  (1a) 
 𝑅𝑗 = 𝑆𝑖=1

𝑞
 𝛬𝑗 +1 , ∀𝑗 ∈  𝜂, … ,1  (1b) 

 𝑏 = 𝑅1 (1c) 
where the operators 𝑆𝑖=1

𝑞  .   and ⊗  are defined for the 𝑗-dimensional relational matrix 𝑅𝑗  using bundle 

operations of  Note 1, as follows. Note that in this notation, 𝛬𝑗  and 𝑅𝑗  are 𝑗-dimensional matrices. 

 𝑆𝑖=1
𝑞

 𝑅𝑗  ≔ 𝑆𝑖=1
𝑞

 𝑟𝑗  𝑖1 , … , 𝑖𝑗−1 , 𝑖   , ∀𝑖1 , … , 𝑖𝑗−1 ∈  1, … , 𝑞   
 𝑎 ⊗ 𝑅𝑗 ≔  𝑡 𝑎 𝑖 ,  𝑟𝑗  𝑖1 , … , 𝑖𝑗−1 , 𝑖      

This completes the modeling framework for our FRDS. In the next step, the modeling framework 
(1) should be identified to represent an actual dynamic system. The identification algorithm is 
presented in the next section. Note that using a smooth fuzzy relational composition with the FRDS 
framework yields the smooth FRDS. 
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3. Identification 
In this section an actual dynamic system with known inputs and outputs is assumed and a smooth 

FRDS is to be identified to represent that system as good as possible. For simplicity let us denote the 
derivatives of the t-norm 𝑡 and the t-conorm 𝑠 as follows. 

 𝑇  𝑎, 𝑏 ≔  𝜕𝑡 𝑥 ,𝑦 

𝜕𝑥
 
 𝑥 ,𝑦 = 𝑎 ,𝑏 

  

 𝑆  𝑎, 𝑏 ≔  𝜕𝑠 𝑥 ,𝑦 

𝜕𝑥
 
 𝑥 ,𝑦 = 𝑎 ,𝑏 

  

The approach of back propagation is used to identify the smooth FRDS iteratively. Sensitivity of 
the squared error of the output to the relational matrix parameters is used in this regard to tune the 
parameters as follows. 

 𝑒 ≔ 𝑦 − 𝑦𝑡 , 𝐸 ≔ 𝑒2

  
𝛥𝑟 𝑙 ,𝑘1 ,…,𝑘𝜂  = −𝜇

𝜕𝐸

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

𝑟 𝑙 ,𝑘1 ,…,𝑘𝜂   𝑘 + 1 = 𝑟 𝑙 ,𝑘1 ,…,𝑘𝜂   𝑘 + 𝛥𝑟 𝑙 ,𝑘1 ,…,𝑘𝜂  

    ,   ∀𝑙, 𝑘1 , … , 𝑘𝜂 ∈  1, … , 𝑞   

where 𝑦𝑡  is the target output, i.e., the output of the actual system, 𝑘 is the time instant, and 𝜇 is the 
tuning rate which can be adjusted dynamically through the process of tuning the parameters. 
Therefore for fixed 𝑙, 𝑘1 , … , 𝑘𝜂  the sensitivity can be calculated as follows. 

 
𝜕𝐸

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

=
𝜕𝑦

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

𝜕𝑒

𝜕𝑦

𝜕𝐸

𝜕𝑒
=   

𝜕𝑏 𝑗  

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

𝜕𝑦

𝜕𝑏 𝑗  

𝑞
𝑗 =1   1  2𝑒 = 2𝑒

𝜕𝑏 𝑙 

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

𝜕𝑦

𝜕𝑏 𝑙 
  

 
𝜕𝑦

𝜕𝑏 𝑙 
=

𝑐𝑙−𝑦

 𝑏𝑗
𝑞
𝑗=1

 

 
𝜕𝑏 𝑙 

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

=
𝜕 𝑅1 𝑙  

𝜕 𝑅𝜂 +1 𝑙 ,𝑘1 ,…,𝑘𝜂   
=

𝜕 𝛬𝜂 +1 𝑙 ,𝑘1 ,…,𝑘𝜂   

𝜕 𝑅𝜂 +1 𝑙 ,𝑘1 ,…,𝑘𝜂              
𝛼𝜂 +1

𝜕 𝑅𝜂  𝑙 ,𝑘1 ,…,𝑘𝜂−1  

𝜕 𝛬𝜂 +1 𝑙 ,𝑘1 ,…,𝑘𝜂              
𝛽𝜂 +1

⋯ 

⋯

𝜕 𝛬2 𝑙 ,𝑘1  

𝜕 𝑅2 𝑙 ,𝑘1         
𝛼2

𝜕 𝑅1 𝑙  

𝜕 𝛬2 𝑙 ,𝑘1         
𝛽2

 𝛼𝑖 ≔
𝜕 𝛬𝑖 𝑙 ,𝑘1 ,…,𝑘𝑖−1  

𝜕 𝑅𝑖 𝑙 ,𝑘1 ,…,𝑘𝑖−1  
 , ∀𝑖 ∈  2, … , 𝜂 + 1   

 𝛽𝑖 ≔
𝜕 𝑅𝑖−1 𝑙 ,𝑘1 ,…,𝑘𝑖−2  

𝜕 𝛬𝑖 𝑙 ,𝑘1 ,…,𝑘𝑖−1  
  

 
𝜕𝑏 𝑙 

𝜕𝑟 𝑙 ,𝑘1,…,𝑘𝜂  

=  𝛼𝑖𝛽𝑖
𝑛+1
𝑖=2   

The expansion is finally wrapped up as follows. 

 𝛼𝑖 ≔ 𝑇  𝑅𝑖 𝑙, 𝑘1 , … , 𝑘𝑖−1 , 𝑎𝜂+2−𝑖 𝑘𝑖−1   , ∀𝑖 ∈  2, … , 𝜂 + 1  (2a) 

 𝛽𝑖 ≔ 𝑆  𝛬𝑖 𝑙, 𝑘1 , … , 𝑘𝑖−1 , 𝑠 𝑗 =1
𝑗≠𝑘𝑖−1

𝑞
𝛬𝜂+1 𝑙, 𝑘1 , … , 𝑘𝜂−1 , 𝑗   (2b) 

Therefore the tuning procedure is proposed as follows. 
 𝑟 𝑙 ,𝑖1 ,…,𝑖𝜂   𝑘 + 1 = 𝑟 𝑙 ,𝑖1 ,…,𝑖𝜂   𝑘 + 𝛥𝑟 𝑙 ,𝑖1 ,…,𝑖𝜂  (2c)

 𝛥𝑟 𝑙 ,𝑖1 ,…,𝑖𝜂  = −2𝜇𝑒
𝑐𝑙−𝑦

 𝑏𝑗
𝑞
𝑗 =1

 𝛼𝑖𝑛 𝛽𝑖𝑛
𝜂+1
𝑖𝑛 =2 (2d) 

 
  

4. Simulation Results 
In this section some benchmark systems as well as some actual systems are modeled using the 

smooth FRDS driven in the previous sections. 
 

4.1. Box-Jenkins gas furnace [6] 
This data set contains 296 input/output pair and is one of the most popular benchmark problems. 

The mean square error of the approximations is calculated in the literature to assess the performence. 
Table 1 shows some of these results that we could find. The simulation result is depicted in Fig. 3.  
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Figure 3. Actual output, model output, and error curve for modeling the Box-Jenkins gas furnace with smooth FRDS 

 
We achieved mean squared error 𝐽 = 0.18 using the proposed smooth FRDS framework with pi 

fuzzy relational composition which is composed of pi t-norm and pi t-conorm as follows. Here  𝑝 = 2. 

 𝑡 𝑎, 𝑏 = 1 −   1 − 𝑎 2 +  1 − 𝑏 2 −  1 − 𝑎 2 1 − 𝑏 22   

 𝑠 𝑎, 𝑏 =  𝑎2 + 𝑏2 − 𝑎2𝑏22
  

 
 
Table 1. The mean squared error of the outputs of various models for Box-Jenkins gas furnace 

data

Paper J  

[6] 0.710 

[2] 0.478 

[7] 0.469 

[8] 0.407 

[9] 0.328 

[10] 0.312 

 
In the next step, only the first half of the data is used for identification and the second of half of 

the data is used for evaluation of the model. This lead to mean square error 𝐽𝑙𝑒𝑎𝑟𝑛 = 0.0672 for the 
identification part and 𝐽𝑡𝑒𝑠𝑡 = 0.3888 for the evaluation part. The result is depicted in Fig. 4. 
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Figure 4. Actual output, model output, and error curve for modeling the Box-Jenkins gas furnace with smooth FRDS 

 

 
4.2. Electromechanical system 

This system consist of an inverted pendulum coupled to a separately excited DC motor (SEDCM) 
via a gear box. The input is the armature voltage and the output is the vertical angle of the pendulum. 
The system is in open-loop and no controller is involved. So, several experiments have been 
performed to produce the required data. The output datais shown in Fig. 5 together with the output of 
the model. A part of this figure is magnified in Fig. 6. The overall mean square error is 𝐽 = 0.0023. 

 

 
Figure 5. Actual output, model output, and error curve for modeling the electromechanical system with smooth 

FRDS 
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Figure 6. Magnification of a part of Fig. 5 

 
4.3. Nonlinear dynamical system 

The system is described by the following equations. 

 

 
 
 

 
 

𝑥1 = 𝑦 𝑘 

𝑥2 = 𝑦 𝑘 − 1 

𝑥3 = 𝑦 𝑘 − 2 

𝑥4 = 𝑢 𝑘 

𝑥5 = 𝑢 𝑘 − 1 

  , 𝑦 𝑘 + 1 =
𝑥1𝑥2𝑥3𝑥5 𝑥3−1 +𝑥4

1+𝑥2
2+𝑥3

2   

where the input is as follows. 

 𝑢 𝑘 =  

sin 𝜋𝑘 25  
1

0 ≤ 𝑘 ≤ 250
250 ≤ 𝑘 ≤ 500

−1
0.3 sin 𝜋𝑘 25  + 0.1 sin 𝜋𝑘 32  + 0.6 sin 𝜋𝑘 10  

500 ≤ 𝑘 ≤ 750
750 ≤ 𝑘 ≤ 1000

    

To model the system, 1000 data pairs were generated by Simulink. The first 200 data is used for 
identification and the next 800 data is used for evaluation which yields 𝐽𝑙𝑒𝑎𝑟𝑛 = 0.0191 for the 
identification part and 𝐽𝑡𝑒𝑠𝑡 = 0.0177 for the evaluation part. The result can be seen in Fig. 7. 
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Figure 7. Actual output, model output, and error curve for modeling the nonlinear system with smooth FRDS 

 
 

5. Conclusion 
In this paper a general framework for fuzzy linguistic modeling of dynamical systems was 

proposed based on fuzzy relational models and smooth fuzzy compositions which we call it smooth 
FRDS. To this end, a modeling framework and an identification algorithm was introduced. Simulation 
results proved the modeling capability of the proposed smooth FRDS. 
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