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Abstract

Inflated-parameter Harris distribution is introduced and its properties are studied. A character-
ization based on p.g.f is given. The maximum likelihood and moment estimators of the parameters
are found out together with their standard errors. The distribution is seen to be a good fit to a
real life situation concerning the published results of Kerala Public Service Commission. c©2016 All
rights reserved.
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1. Introduction and preliminaries

To model some of real life data we need a richer class of discrete probability distributions other
than the classical discrete distributions. In this aspect recently many generalized forms of discrete
distributions are introduced. In the case of over dispersion and excess of zero’s, zero-inflated dis-
tributions are powerful discrete distributions to catch the situation. Zero-inflated modified power
series distribution is studied by Johnson et al. [3] and Gupta et al. [1]. Roski et al. [12] applied
zero inflated distribution in actuarial literature. Momeni [7] had shown that in modeling insurance
claims zero-inflated distributions are more appropriate than the classical discrete distributions.

Kolev et al. [4] developed a new class of discrete distributions inflated–parameter generalized
power series distribution (IGPSD). It includes inflated form of binomial, Poisson, negative binomial
and logarithmic series distributions. Kolev et al. [4] applied negative binomialand inflated parameter
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Poisson to model real data. Later Minkova [6] gave some characterizations of such distribution.
In this paper we introduce inflated parameter Harris distribution (IHD). Its probability mass

function, distribution function and moments are derived. Also IHD is developed by gamma mixing
of appropriate Poisson distribution. It is shown that Poisson random sum of inflated-logarithmic
series r.v is IHD. A characterization of probability generating function is given in Theorem 4.1. The
unknown parameters are estimated using method of moments and method of maximum likelihood.
We compare it using standard error of simulated samples. In section 5 we present two data sets of
scores of the candidate selected for the interview in public service examination of Kerala state, where
the IHD shown good fit.

1.1. Generalized power series distribution

Definition 1.1. A r.v X is said to have a GPSD with parameter θ≥0 if

P (X = a+ nk) =
cnθ

a+nk

C (θ)
, n = 1, 2, 3, ....

Also cn > 0 and C (θ) =
∑∞

n=0 cnθ
a+nk, a > 0, k > 0 are integer. Without loss of generality we

assumes that C(0)=1 dividing both numerator and denominator by θa we get.

P (X = a+ nk) =
cn
(
θk
)n

C (θ)
, n = 0, 1, 2, ..., (1.1)

C (θ) =
∞∑
n=0

cn
(
θk
)n
,

P (0) = 0. The r.v X takes values on S = {a, a+ k, a+ 2k, ...} ,a ≥ 1, k ≥ 1 integers.

1.2. Harris distribution

Harris distribution was first introduced by Harris [2]. Later it was studied by different authors.
Sandhya et al [11] have shown that it is a member of GPSD. Probability generating function (p.g.f)
of the distribution is

PX (t) =

(
t

m− (m− 1) tk

) 1
k

, k ≥ 1 integer and m > 1

and probability mass function (p.m.f) is given by

P (X = x) =
(x
k
−1

x−1
k
−1

)( 1

m

) 1
k
(

1− 1

m

)x−1
k

, x = 1, 1 + k, 1 + 2k, ....

Putting
(
1− 1

m

)
= θk and x = 1 + nk , we have,

P (X = 1 + nk) =
( 1
k
+n−1

n

) θ1+nk

θ (1− θk)−
1
k

, n = 0, 1, 2, .... (1.2)
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This distribution is denoted as H1

(
θ, k, 1

k

)
We can also consider Harris distribution with support on {0, k, 2k, ...} and it has p.m.f

P (X = nk) =
( 1
k
+n−1

n

) θnk

(1− θk)−
1
k

, n = 0, 1, 2, ....

This satisfies (1.1) with C (θ) =
(
1− θk

)− 1
k =

∑∞
n=0

( 1
k
+n−1

n

)
θnk.

From (1.1) and (1.2) it is clear that Harris distribution belongs to GPSD, where a = 0.
Now we proceed to develop inflated-parameter Harris distribution as given in Kolev et al. [4].

Let PN(t) and PX(t) be p.g.f of two non-negative integer valued r.v N and X respectively. Then
S = X1 +X2 + ...+XN with convention that S = 0 when N = 0. The p.g.f of S is

PS (t) = PN (PX (t)) . (1.3)

If N belongs to the family of GPSD with parameter θ defined by (1.1) and X has an arbitrary discrete
distribution, then the resulting random sum Shas a p.g.f given by

PS (t) =
C (θ (PX (t)))

C (θ)
(1.4)

for different choices of series function C (θ).

2. Inflated parameter Harris distribution

An extension of GPSD including an additional parameter ρ∈(0, 1) is suggested in Kolev et al.
[4] in connection with insurance claims data.

The following theorem gives a method of construction of inflated-parameter Harris distribution
(IHD) in connection with the idea discussed in the last paragraph of Section 1.

Theorem 2.1. If X1, X2 ... are i.i.d geometric r.v’s with parameter(1− ρ) and with p.g.f PX (t) =
(1−ρ)t
1−ρt , 0 < ρ < 1 and if N has Harris distribution defined by (1.2) with series function,

C (θ) =
(
1− θk

)− 1
k and PN (t) =

(
1− (θt)k

1− θk

)− 1
k

, 0 ≤ θk ≤ 1

then the random sum Z = X1 +X2 + ...+XN has IHD with p.g.f PZ (t) =

(
1−( θ(1−ρ)t1−ρt )

k

1−θk

)− 1
k

,

0 ≤ θk ≤ 1. (2.1)

Thus we have,

P (Z = 0) =
(
1− θk

)− 1
k = C1

P (Z = k) =
(
1− θk

)− 1
k θk (1− ρ)k

(
1 / k

1

)
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= C1C2

(
1 / k

1

)
, where C2 = θk (1− ρ)k

P (Z = k + i) = C1C2

(
1 / k

1

)(
k+i−1
i

)
ρi, i = 1, 2, ...k − 1

P (Z = 2k) = C1

[
C2

(
1 / k

1

)(
2k−1
k

)
ρk + C2

2

(
1/1+1

2

)]

P (Z = 2k + i) =C1

n∑
j=1

Cj
2

(
1/1+j−1
j

)(
2k+i−1
(2−j)k+i

)
ρ(2−j)k+i, i = 1, 2, ...k − 1.

In general

P (Z = nk + i) = C1

n∑
j=1

Cj
2

(
1/k+j−1
j

)(
nk+i−1
(n−j)k+i

)
ρ(n−j)k+i, i = 1, 2, ...k − 1, n = 1, 2, · · · . (2.2)

It is to be noted that Z takes values on {0, k, k + 1, ..., 2k, 2k + 1...}.

Letting z = nk + i and hence n=Quotient of
(
z
k

)
= Q

(
z
k

)
, we can write (2.2) as

P (Z = 0) =
(
1− θk

)− 1
k = C1

P (Z = z) = C1

Q
(z/k)∑
j=1

Cj
2

(
1/k+j−1
j

)(
z−1
z−jk

)
ρz−jk, z = k, k + 1, ..., 2k, 2k + 1, ... (2.3)

can be denoted as IHD
(
θk, k, ρ

)
.

Note

(1) When k=1, IHD
(
θk, k, ρ

)
reduces to inflated Parameter geometric distribution (IGD),

IGD (1− θ, ρ) given in Kolev et al. [4].

(2) When k = 1, ρ = 0,IHD
(
θk, k, ρ

)
reduces to geometric distribution with parameter θ.

(3) When ρ = 0, IHD
(
θk, k, ρ

)
reduces to H

(
θk, k, 1

k

)
given in (1.2) above.

Tables 1 and 2 give the p.m.f for different parametersk, θkandρ.
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Table 1:

k = 2 k = 2 k = 2 k = 5 k = 5 k = 5
Z θk = 0.5 θk = 0.5 θk = 0.75 θk = 0.5 θk = 0.5 θk = 0.75

ρ = 0.5 ρ = 0.9 ρ = 0.9 ρ = 0.5 ρ = 0.9 ρ = 0.9

0 0.7071 0.7071 0.5 0.8705 0.87055 0.75785

1 0 0 0 0 0 0

2 0.04419 0.00176 0.00187 0 0 0

3 0.04419 0.00318 0.00337 0 0 0

4 0.03728 0.00430 0.00456 0 0 0

5 0.03038 0.00517 0.00550 0.00272 8.7055×10−7 1.13679×10−6

6 0.02460 0.00585 0.00623 0.00680 3.9174×10−6 5.11554×10−6

7 0.01993 0.00635 0.00679 0.01020 0.00001 0.00001

8 0.01621 0.00672 0.00721 0.01190 0.00002 0.00002

9 0.01322 0.00698 0.00752 0.01190 0.00003 0.00005

10 0.01082 0.00714 0.00774 0.01073 0.00006 0.00008

11 0.00888 0.00723 0.00787 0.00905 0.00009 0.00012

12 0.00730 0.00725 0.00795 0.00736 0.00013 0.00017

13 0.00602 0.00723 0.00798 0.00596 0.00018 0.00024

14 0.00498 0.00716 0.00797 0.00493 0.00024 0.00031

15 0.00412 0.00706 0.00792 0.00425 0.00030 0.00039

16 0.00342 0.00694 0.00785 0.00380 0.00037 0.00048

17 0.00284 0.00680 0.00777 0.00349 0.00044 0.00058

18 0.00236 0.00664 0.00766 0.00323 0.00052 0.00068

19 0.00196 0.00648 0.00754 0.00298 0.00060 0.00079

20 0.00164 0.00630 0.00742 0.00272 0.00069 0.00090

21 0.00137 0.00612 0.00728 0.00246 0.00078 0.00102

22 0.00114 0.00594 0.00715 0.00222 0.00086 0.00113

23 0.00095 0.00576 0.00701 0.00199 0.00095 0.00124

24 0.00080 0.00557 0.00687 0.00178 0.00104 0.00136

25 0.00067 0.00539 0.00672 0.00160 0.00112 0.00146

26 0.00056 0.00521 0.00658 0.00145 0.00120 0.00157

27 0.00047 0.00503 0.00644 0.00132 0.00128 0.00167

28 0.00039 0.00486 0.00630 0.00120 0.00135 0.00177

29 0.00033 0.00469 0.00616 0.00110 0.00142 0.00186

30 0.00027 0.00452 0.00603 0.00100 0.00148 0.00194
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Table 2:

k = 10
θk = 0.5
ρ = 0.5

k = 10
θk = 0.5
ρ = 0.9

k = 10
θk = 0.75
ρ = 0.9

0.9330 0.93303 0.870551

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0.000045 4.66516x10−12 6.52913x10−12

0.000227 4.19865x10−11 5.87622x10−11

0.000626426 2.07833x10−10 2.90873x10−10

0.00125285 7.48199x10−10 1.04714x10−9

0.00203588 2.18848x10−9 3.06289x10−9

0.00285024 5.51498x10−9 7.71848x10−9

0.0035628 1.24087x10−8 1.73666x10−8

0.004077177 2.55265x10−8 6.83251x10−8

0.00432625 4.88194x10−8 1.22958x10−7

0.00432625 8.78748x10−8 2.10305x10−7

0.00410995 1.50266x10−7 3.44135x10−7

0.00373643 2.4589x10−7 5.42012x10−7

0.00326991 3.87276x10−7 8.25527x10−7

0.00276866 5.89852x10−7 1.2206x10−6

0.00227909 8.72138x10−7 1.75766x10−6

0.00183411 1.25588x10−6 2.47172x10−6

0.00145406 1.76608x10−6 3.40224x10−6

0.00114891 2.43096x10−6 4.59303x10−6

0.000920631 3.28179x10−6 6.09181x10−6

0.000765227 4.35269x10−6 7.94981x10−4

0.00067445 5.68026x10−6 0.0000102212

0.000637154 7.30319x10−6 0.0000129623

0.000640509 9.26178x10−6 0.0000162311

0.000671143 0.0000115974 0.000020086

0.000716191 0.0000143517 0.0000245852
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Figure 1, 2 and 3 show the pictorial representation of IHD for the above values k, θk = η and ρ.
Skewness β1 and P(0) are given below.

Figure 1:

Figure 2:

Figure 3: Sender and receiver data packet
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Remark 2.2. For IHD there is a gap between 0 and k and has probability at all integer points after k.
The nature of the distribution change as the parameters k and ρ change more than w.r.t. the change
in θk. This is clearly depicted in figure 2 and 3. Also it can be seen that, for fixed values of k and ρ
the skewness decreases as η increases, and it increases for fixed values of ρ and η as k increases

2.1. Distribution Function

F (z) = P [Z ≤ z] = C1

1 +

Q( zk)∑
j=1

(
1/k+j−1
j

)
Cj

2

[
z−jk∑
i=0

(
jk+i−1
i

)
ρi

] , z = 0, k, k + 1, ....

2.2. Moments

1. Factorial moments

µ(1) =
θk

1− θk
1

1− ρ

µ(2) =
θk

1− θk

[
2ρ+ (k − 1)

(1− ρ)2
+

θk

1− θk
(k + 1)

(1− ρ)2

]
µ(3) =

θk

1− θk

[
(k − 1) (k − 2)

(1− ρ)
+
ρ (k + 1) (k − 1)

(1− ρ)2
+
ρ2 (k + 2) (k + 1)

(1− ρ)3

]
+
(

θk

1−θk

)2
(k + 1)

[
(3+ρ)(k−1)

(1−ρ2) + 3ρ(k+1)

(1−ρ)3

]
+
(

θk

1−θk

)3
(1+k)(1+2k)

(1−ρ)3 .

2. Ordinary moments

Mean = µ
′

1 =
θk

1− θk
1

1− ρ

µ
′

2 =
θk

1− θk
1

(1− ρ)2

[
k + ρ+

θk

1− θk
(k + 1)

]
µ
′

3 =
θk

1− θk
1

(1− ρ)3
[
[(1− ρ) (k2 + 2ρ (k − 1)] + ρ2 (k + 1) (k + 2)

]
+

(
θk

1− θk

)2
(1 + k)

(1− ρ)3
[3k (1− ρ) + ρ (k + 2)] +

(
θk

1− θk

)3
(1 + k) (1 + 2k)

(1− ρ)3
.

3. Central moments

Variance = µ2 =
θk

(1− θk)
1

(1− ρ)2

[
k + ρ+

kθk

(1− θk)

]
µ3 =

θk

1− θk
1

(1− ρ)3
[
[(1− ρ) (k2 + 2ρ (k − 1)] + ρ2 (k + 1) (k + 2)

]
+
(

θk

1−θk

)2
1

(1−ρ)3 [3k2 − 2k2ρ− ρ]

+
(

θk

1−θk

)3
2k2

(1−ρ)3 .
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The expressions for µ(4), µ
′
4 and µ4 are very complicated and not in compact form and we do not

present it here.

Remark 2.3. When ρ =0, all the above moments coincide with that of Harris distribution defined by
(1.2).

Remark 2.4. When k =1, the mean and variance reduces to that of inflated parameter geometric
distribution in Kolev et al. [4].

3. IHD as a Randomized mixture

Let F be a distribution function depending on a parameter θk and u be a probability density
function. Then

W (x) =

∫ ∞
−∞

F
(
x1, θ

k
)
u
(
θk
)
dθk

is monotonic function of x increasing from 0 to 1 and hence a distribution function. If F has
continuing density f, then W has a density w given by

w (x) =

∫ ∞
−∞

f
(
x1, θ

k
)
u
(
θk
)
dθk.

The parameterθk is treated as a r.v. Then the process is called randomization and new probability
density w (x) is called mixture.

Sandhya et al. [10] obtained Harris distribution as a gamma mixture of Poisson distribu-
tion. Minkova [6] generated Inflated–parameter negative binomial distribution by gamma mixing
of Inflated–parameter Poisson distribution.

Theorem 3.1. The inflated extended Poisson mixed with gamma distribution results in Inflated
–parameter Harris distribution.

Proof. The p.g.f of extended Poisson distribution is

eλ(s
k−1), k > 0 integer, λ > 0 (3.1)

and p.g.f of inflated–extended Poisson distribution is

expλ

((
(1− ρ) t

1− ρt

)k
− 1

)
. (3.2)

Here λ is an outcome of a gamma distributed G
(

1−θk
θk

, 1
k

)
r. v with p.d.f

f (λ) =

(
1−θk
θk

)
√

1
k

1/k

e
−
(

1−θk

θk

)
λ
λ

1
k
−1, θk > 0, λ > 0,

then

P (Z = nk) =

∫ ∞
0

P

(
Z =

nk

λ

)
f (λ) dλ
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gives the same p.m.f of (2.2).
It is well known Poisson random sum of logarithmic r.v’s is negative binomial. Harris distribution

had developed from modified logarithmic series distribution stopped sum by generalized Poisson
random variable. (Sandhya et al. [10]). In the same way we develop IHD. Minkova [7] introduced
Inflated- parameter logarithmic series distribution. Hence Inflated-parameter modified logarithmic
series distribution has p.g.f.

PY (t) =

1− α

k
+
α ln

(
1− θk [PX (t)]k

)
k ln (1− θk)


1
k

(3.3)

0 < α ≤ 1, k > 0 an integer, where PX (t) is given in Theorem 2.1.

Theorem 3.2. Let Y1,Y2,Y3. . . . . . be mutually independent and identically distributed inflated –
parameter modified logarithmic series r.vs ,with p.g.f (3.3) and let N follow generalized Poisson r.
v with p.g.f given in (3.1). Then the random sum S=Y1+Y2+Y3+........YN has inflated–parameter
Harris distribution in (2.1).

Proof. From the relation (1.3) together with the p.g.fs (3.1) and (3.3)

PS (t) = expλ

1− α

k
+
α ln

(
1− θk [PX (t)]k

)
k ln (1− θk)

− 1



= expλ

−α
k

+
α ln

(
1− θk [PX (t)]k

)
k ln (1− θk)

 .

Put λ =
− ln(1−θk)

α
, substituting and simplifying we get

= exp

ln

(
1− θk [PX (t)]k

1− θk

)− 1
k


PS (t) =

(
(1−θk[PX(t)]k)

(1−θk)

)− 1
k

, substituting PX (t) we get,

PS (t) =

1−
(
θ(1−ρ)t
1−ρt

)
1− θk

k

− 1
k

,

which is IHD
(
θk, k, ρ

)
.
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4. Characterization of inflated parameter harris distribution

The following theorem gives a characterization of IHD

Theorem 4.1. A r. v X ∼IHD
(
θk, k, ρ

)
iff its p.g.f P(t) satisfies the equation

P
′
(t) =

µtk−1 (1− ρ)k+1

(1− ρt)k+1
[P (t)]1+k , (4.1)

where µ is the mean of IHD
(
θk, k, ρ

)
Proof. P (t) =

(
1−( θ(1−ρ)t1−ρt )

1−θk

k)− 1
k

P
′
(t) = θk (1− ρ)k

(
t

1− ρt

)k−1
1

(1− ρt)2

1−
(
θ(1−ρ)t
1−ρt

)
1− θk

k

− 1
k (

1− θk (1− ρ)k tk

(1− ρt)k

)−1
.

Multiplying and dividing by (1−ρ)
(1−θk)

on the R.H.S we have,

P
′
(t) = P (t) [P (t)]k

(
t

1− ρt

)k−1
(1− ρ)k+1

(1− ρt)2
θk

1− θk
1

1− ρ

= [P (t)]k+1 θk

1− θk
1

(1− ρ)
(1− ρ)k+1

(
t

1− ρt

)k−1
1

(1− ρt)2

P
′
(t) =

µtk−1 (1− ρ)k+1

(1− ρt)k+1
[P (t)]1+k .

Conversely suppose that (4.1) is true.

P
′
(t)

[P (t)]1+k
= µtk−1

(
1− ρ
1− ρt

)k+1

.

Integrating ∫
P
′
(t)

[P (t)]1+k
dt =

∫
µ

tk−1

(1− ρt)k−1
(1− ρ)k+1

(1− ρt)2
dt

= µ (1− ρ)k+1

∫ (
t

1− ρt

)k−1
1

(1− ρt)2
dt.

(P (t))−k

−k = µ
k

(1− ρ)k+1
(

t
1−ρt

)k
+ b, where b is a constant.

As an initial condition put t=1, b = 1
k

1

(1−θk)
, then

[PZ (t)]−k = − θk

1− θk
(1− ρ)k

(
t

1− ρt

)k
+

1

1− θk
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=

(
1

1− θk
− θk (1− ρ)k tk

(1− θk) (1− ρt)k

)

[PZ (t)]−k =

1−
(
θ(1−ρ)t
1−ρt

)
1− θk

k


PZ (t) =

1−
(
θ(1−ρ)t
1−ρt

)
1− θk

k

− 1
k

.

Remark 4.2. When ρ =0, the result reduces to P
′
(t) = µ [P (t)]1+k (Sandhya et al. [9])

5. Estimation of parameters

5.1. Method of moments

The mean x̄ and variance are given in section 2. Equating them to sample moments and S 2 and
solving the resulting system of equation we get,

θ̂k =
(1 + k)x̄2

S2 + x̄(x̄+ 1)
,

ρ̂k =
S2 − kx̄− kx̄2

S2 + x̄− kx̄2
,

assuming that k is known.

5.2. Method of maximum likelihood

Given i.i.d observations z1, z2, ...zn from IHD
(
θk, k, ρ

)
the likelihood function (Sadie Beckett et

al. [11])

L
(
θk, ρ

/
Z̃

)
=

n∏
i=1

P (Z = zi) .

Define y = number of zi’s taking the value 0, zi ∈ Z̃.
Then

L
(
θk, ρ

/
Z̃

)
=
(
1− θk

) y
k

n∏
i = 1
zi 6= 0

(
1− θk

) 1
k

Q
(zi/k)∑
j=1

(
θk (1− ρ)k

)j (1/k+j−1
j

)(
zi−1
zi−jk

)
ρzi−jk,

L
(
θk, ρ

/
Z̃

)
=
(
1− θk

)n
k

n∏
i = 1
zi 6= 0

Q
(zi/k)∑
j=1

(
θk (1− ρ)k

)j (1/k+j−1
j

)(
zi−1
zi−jk

)
ρzi−jk.
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Hence the log likelihood function denoted by L∗is

L∗ =
n

k
ln
(
1− θk

)
+

n∑
i = 1
zi 6= 0

ln

Q
(zi/k)∑
j=1

(
θk (1− ρ)k

)j (1/k+j−1
j

)(
zi−1
zi−jk

)
ρzi−jk.

By taking partial derivatives of L∗ w.r.t θk and ρ , and setting them equal to zero, we get the following
system of equations,

n

k
ln
(
1− θk

)
=

n∑
i = 1
z 6= 0

∑Q
(zi/k)

j=1

(
1/k+j−1
j

)(
zi−1
jk−1

)
ρzi−jkj

(
θk (1− ρ)k

)j−1
(1− ρ)k

∑Q
(zi/k)

j=1

(
1/k+j−1
j

)(
zi−1
jk−1

)
ρzi−jk

(
θk (1− ρ)k

)j , (5.1)

n∑
i = 1
z 6= 0

∑Q
(zi/k)

j=1

(
1/k+j−1
j

)(
zi−1
jk−1

)
ρzi−jk−1

(
θk
)j

(1− ρ)jk−1 (zi (1− ρ)− jk)

∑Q
(zi/k)

j=1

(
1/k+j−1
j

)(
zi−1
jk−1

)
ρzi−jk

(
θk (1− ρ)k

)j = 0. (5.2)

By simulation we solve the above equations. (All of the computations and graphical represen-
tations are done using Mathematica). The MLE’s of θkand ρ are hence forth denoted by θkml and
ρml. The simulation study of moment and maximum likelihood estimates of θkand ρ are done. The
tables are appended.

5.3. Moment estimators (ME) and MLE by simulation

Table 3: Moment estimators of θk and ρ using simulated sample of size 100 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.3925
0.0305

0.5249
0.0142

0.8984
0.007

0.4812
0.0158

0.4051
0.0301

0.5224
0.0186

0.8805
0.0086

0.5142
0.0191

0.75 Estimate
SE

0.5130
0.0354

0.7411
0.0128

0.8058
0.0483

0.8128
0.02992

0.4869
0.0319

0.7484
0.0133

0.7846
0.1565

0.7943
0.0294
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Table 4: Moment estimates of θk and ρ using simulated sample of size 300 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.4940
0.0204

0.4983
0.0098

0.8974
0.0044

0.5103
0.0593

0.4896
0.0333

0.4786
0.0145

0.8712
0.008

0.532
0.0149

0.75 Estimate
SE

0.4918
0.0365

0.7467
0.0136

0.8510
0.0266

0.7590
0.0153

0.4560
0.0389

0.7609
0.0159

0.8690
0.0377

0.7505
0.0294

Table 5: Moment estimates of θk and ρ using simulated sample of size 500 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.5124
0.0143

0.5024
0.008

0.8832
0.0092

0.5217
0.062

0.4258
0.0305

0.5153
0.002

0.8813
0.002

05182
0.0046

0.75 Estimate
SE

0.4999
0.0173

0.7418
0.0077

0.8996
0.0309

0.7296
0.0135

0.4319
0.0396

0.7642
0.0149

0.8763
0.0119

0.7516
0.0218

Table 6: MLEs of θk and ρ using simulated sample of size 100 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.5011
0.138

0.4879
0.0090

0.8925
0.0061

0.5059
0.0071

0.4912
0.1200

0.5031
0.009

0.9016
0.0037

0.488
0.009

0.75 Estimate
SE

0.8985
0.0038

0.7403
0.0221
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Table 7: MLEs of θk and ρ using simulated sample of size 300 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.4995
0.0073

0.5072
0.0077

0.8927
0.003

0.4908
0.004

0.4933
0.007

0.5097
0.0081

0.9004
0.0018

0.5272
0.019

0.75 Estimate
SE

0.8963
0.0022

0.7492
0.0078

Table 8: MLEs of θk and ρ using simulated sample of size 500 and number of repetitions 30

k = 2 k = 5
θk ρ 0.5 0.9 0.5 0.9

ρ θk ρ θk ρ θk ρ θk

0.5 Estimate
SE

0.4928
0.0061

0.5047
0.0052

0.8976
0.0009

0.4950
0.001

0.5021
0.0049

0.4976
0.0059

0.09005
0.0016

0.4880
0.0088

0.75 Estimate
SE

0.9014
0.0011

0.7491
0.0037

Both MLE and ME give good estimates when the sample size increases and they became ap-
proximately equal. But also from the above tables it is very clear that standard error for MLE is
significantly less than that of ME, for different sample size. Hence we prefer MLEs in fitting real
datasets.

6. Application

What is special about IHD is that, there is zero probability between zero and the next value. There
are many such situations, we come across in our daily life, which shows good fit for IHD. The following
dataset are from Kerala government’s recruitment section- Kerala Public Service Commission (PSC)
examination results.

The first data set is PSC exam result of HSST-Physical Education Department, category no.451/07,
from www.keralapsc.gov.in/statewide-ranklist-2010/rl-740/-10,shortlist-2007/sl-49/07. (Table 9).

The second data set is from ranked list of the candidates for the post of microbiologist in the
Health Service Department (www.keralapsc.gov.in/statewideranklist - rl-535-12,sl-110-10,categoryno.
030/2009). (Table 10). Scores of the candidates, who were selected for the interview, are shown in
Table 9 and Table 10.
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The frequency at z =0 gives the number of candidates failed to attend the interview. Next
probability is after a gap k which is the cut-off mark of the test. The estimatorsθkml and ρml are
calculated by taking random sample of size 50 using random number table, and calculating MLE
using Mathematica.

Table 9:
Z 0 58 59 60 61 62 63 64 65-80 82 82> Total
Observed1184 3 5 1 0 3 2 2 0 1 0 1200

Table 10:
Z 0 33 34 35 36 37 38 39 40 41 42 43

Observed 1427 1 0 1 1 1 0 0 0 2 0 2

45 46 47 48 49 50 51 52 53 54 55 Total
0 0 0 0 1 1 0 0 0 0 1 1438

The χ 2 test of goodness of fit is given in Table 11. (For tests of goodness of fit of t-distribution in
similar lines see M. Maghami and M. Bahrami[6].)

Table 11:
Data set Calculated

values of
χ2(0.01)

Degrees of
freedom

Tabled
value

Conclusion

Table 9 7.2852 2 9.21 Good fit
Table 10 6.7371 2 9.21 Good fit

7. Conclusion

IHD seen to be good fit to the published results of Kerala PSC. We may apply IHD to such similar
situations, where there is a chance to occur large number of failures (zeros) preceding successes after
a fixed interval.
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