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Abstract 
Noises will confuse Support Vector Machine (SVM) in the training phase. To overcome this problem, 

SVM was extended to Fuzzy SVM (FSVM) by incorporating an appropriate fuzzy membership to each 

data point. Thus, how to choose a proper fuzzy membership is of paramount importance in FSVM. In this 

paper, Adaptive Particle Swarm Optimization (APSO) method minimizes the generalization error by 

changing the attributes values of positive and negative class centers to make them free of attribute-noise. 

As the APSO converged, the fuzzy memberships are assigned for each training data points based on their 

distance to the corresponding purified class centers with the same class-label. To demonstrate the 

effectiveness of the proposed FSVM, its performance on artificial and real-world data sets is compared 

with three FSVM algorithms in the literature. 

 

Keywords: Fuzzy support vector machine; Fuzzy membership function; Adaptive particle swarm 

optimization; Attribute-noise. 

1. Introduction 

SVM was developed by Vapnik and his colleagues [1, 2]. SVM minimizes the structural risk rather 

than the empirical risk. Vapnik demonstrates that generalization error is bounded by the sum of the 

empirical error and a confidence interval term, which depends on the Vapnik–Chervonenkis (VC) 



   O. N. Almasi, H. S. Gooqeri, B. S. Asl, W. M. Tang/ J. Math. Computer Sci.    14 (2015), 171-182 
 

172 
 

dimension [3]. He proved that the SVM gets better generalization performance by minimizing that 

bound. 

Training SVM is equivalent to solving a convex quadratic problem, which has the significant 

computational benefit of not getting stuck in local minima in comparison with traditional neural 

networks. A complete tutorial on SVM classifier has been published by Burges [4]. 

One of the main drawbacks of the SVM is that its training phase is sensitive to the existing outliers and 

noises data in the training data set [5]. In some real-world data sets, neither of the training points 

exactly belongs to any of the two classes, because of existing outliers or noises. For instance, one 

training data point may belongs 90% to the positive class and be 10% irrelevant to that class or 

belongs to the negative class. 

Noises are irrelevant or meaningless data points in training data set and confuse SVM algorithm in the 

training phase [6]. Accordingly, accuracy and generalization ability are noticeably reduced [7, 8, 9]. 

Thus, an important phase associated with using of SVM is reducing the effect of noisy data in training 

data set [7, 10].  

Generally, noisy data in the classification problems could be organized in three groups [10-14]. i) Data 

that their corresponding labels include noise (paradoxical labeling error for a data point or 

misclassifications errors . ii) Data that their attribute values get noisy. iii) Data that have noise both in 

their class labels and in their attributes.  

Lin et al. reformulate SVM to FSVM by associating a fuzzy membership to each data point [15]. 

Fuzzy membership of the data point is specified by the distance between the point and its fixed class 

center. However, the class center is very sensitive to noises. It was proved that the FSVM has a better 

performance in comparison to the SVM encounter noises. But, there exists a problem in FSVM about 

how to generate appropriate fuzzy membership functions to cope with all the classes of noise. In Ref. 

[16], two factors named confident and trashy were introduced for the automatic determining of fuzzy 

memberships in FSVM. In this approach, large computation in high-dimensional feature space is 

needed and many parameters must be optimized, which makes it hard and complex to implement. 

Jiang et al. designed a new fuzzy membership function by a kernel extension of the FSVM formulation 

of Lin [17]. Based on the fixed class centers in Ref. [18], a fuzzy membership function is developed 

for separable and non-separable data sets in input space and feature space, respectively. It could be 

considered as a good extension of Refs. [15] and [17]. The optimal hyper-plane is constructed by a 

small part of data called Support Vectors (SVs) which are laid in the convex hull of each class in the 

feature space the same as outlier and third groups of noise. Therefore, in those approaches SVs and 

outliers could not be distinguished accurately. This will reduce the generalization performance and 

accuracy in the FSVM. 

Moreover, attribute-noises have a tendency to occur more often in real-world data sets and there exists 

the risk of discarding the meaningful data points as noises or outliers. It may leads to loss of 

informative data. Just because a noisy data point contains noise in its attribute and class, it does not 

mean that this data point is completely meaningless and therefore needs to be removed from the other 

data. 

In this paper, we propose a new fuzzy membership function based on the pure positive and negative 

class centers for FSVM in linear/nonlinear separable/non-separable classification problems. The class 

centers are purified by using APSO. The APSO method provides a variation in the position of class 

centers by changing their attributes values to make them free of attribute-noise. Therefore, the fuzzy 

memberships can properly generate and assign to each training data points based on their distance to 

the corresponding purified class centers with the same class-label. 
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This paper is organized as follows: Basic SVM and FSVM formulation for binary classification are 

reviewed in Sections 2 and 3, respectively. In Section 4, the APSO as an optimization method is 

introduced for realizing the proposed approach. The details of the new fuzzy membership function 

assignment for FSVM are discussed in Section 5. In Section 6, some experimental results are 

presented and discussed to illustrate the effectiveness of the proposed method. Some concluding 

remarks are given in Section 7. 

2. Support Vector Machine 

The mathematical formulation of SVMs for classification problems is reviewed in this section. 

Assume a two classes set 𝛺 of labeled training points (𝑥𝑖 , 𝑦𝑖) is given. Each training point 𝑥𝑖 ∈  𝑅𝑛 

belongs to either of two classes as determined by a corresponding label 𝑦𝑖 ∈ {−1,1} for 𝑖 = 1, … , 𝑛. 

The optimal hyper plane is obtained by solving quadratic optimization problem Eq. (1) (known as 

primal form), whose number of variables is as large as training data size 𝑛. 

                                    Min 𝜑(𝑤, 𝜉) =
1

2
𝑤T𝑤 + 𝐶 ∑ 𝜉𝑖

𝑛

𝑖=1

 

(1)                                     𝑠. 𝑡.     
𝑦𝑖(𝑤T.  𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,               𝑖 = 1,2, … , 𝑛 

𝜉𝑖 ≥ 0,                                                 𝑖 = 1,2, … , 𝑛 

where ξi s are slack variables representing the violation of pattern separation condition. The user 

defined parameter 𝐶 is regarded as a regularization parameter controlling the model complexity. For 

nonlinear separable data, a kernel trick is utilized to map the input space into a high dimensional space 

named feature space .The optimal hyper-plane is obtained in the feature space. The primal optimal 

problem Eq. (1) can be transformed into dual form as follows: 

           Max 𝑄(𝛼) =  
1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗) − ∑ 𝛼𝑗

𝑛

𝑗=1

𝑛

𝑗=1

𝑛

𝑖=1

 

(2) 
                                    𝑠. 𝑡. 

                                    ∑ 𝛼𝑖𝑦𝑖 = 0

𝑙

𝑗=1

 

                                    0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛 

where K(. , . ) is a kernel function. In practical applications of SVMs, there are several frequently 

substitutions for selecting the kernel function K(. , . )  among. Some of the conventional kernel 

functions are listed in Table 1. In this Table, 𝜎 and 𝑑 are constant and those parameters must be set by 

a user. For MLP kernel a suitable choice for 𝛽0 and 𝛽1 is needed to enable the kernel function to 

satisfy Mercer’s condition [19, 20]. Furthermore, in Eq. (2) 𝛼 = (𝛼1, … , 𝛼𝑛) is the vector of non-

negative Lagrange multipliers. The solution vector 𝛼 = (𝛼1, … , 𝛼𝑛)  is sparse, i.e. 𝛼𝑖  =  0 for most 

indices of training data. This is the so-called SVM sparseness property. The points 𝑥𝑖  corresponds to 

nonzero αi  are called support vectors. Therefore, the points 𝑥𝑖  corresponds to 𝑎𝑖 = 0  have no 

contribution in construction of the optimal hyper-plane and only part of training data, support vectors, 

construct the optimal hyper-plane. Let 𝑣  be the index set of support vectors, then the optimal 

hyperplane is 
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𝑓(𝑥) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏 = 0

#𝑠𝑣

𝑖 ∈ 𝜈

 (3) 

and the resulting classifier is 

Table 1- The conventional kernel functions 

Name Kernel function expression 

Linear Kernel 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

Polynomial Kernel 𝐾(𝑥𝑖, 𝑥𝑗) = (𝑡 + 𝑥𝑖
𝑇𝑥𝑗)𝑑 

RBF Kernel 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−‖𝑥𝑖 − 𝑥𝑗‖
2

/σ2) 

MLP (*)  Kernel 𝐾(𝑥𝑖, 𝑥𝑗) = tanh (𝛽0𝑥𝑖
𝑇𝑥𝑗 + 𝛽1) 

 

𝑦(𝑥) = 𝑠𝑔𝑛 [∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏

#𝑠𝑣

𝑖∈𝜈

] (4) 

where 𝑏 is easily determined by KKT conditions. 

3. Fuzzy SVM 

In many real-world applications, each data point is not fully classified to one of the two classes. Based 

on this fact, Lin extended the theory of classical SVM to Fuzzy SVM (FSVM) [15]. In FSVM, each 

data point can make a different contribution to the construction of the optimal hyper-plane in contrast 

SVM, with all data points having the same effect on the optimal decision surface. To materialize this 

idea, fuzzy memberships are assigned to each data point to make them have different importance. 

Assume the training data in the following form:  

Ω = {(𝑥𝑖, 𝑦𝑖 , 𝑠𝑖), 𝑖 = 1, ⋯ , 𝑛} (5) 

where 𝑥𝑖 ∈  𝑅𝑛  and 𝑦𝑖  are a training sample and its corresponding label. 𝑠𝑖  is represented a fuzzy 

membership satisfying 𝜎 ≤ 𝑠𝑖 ≤ 1 with adequately positive small constant 𝜎. The optimal hyper-plane 

problem in FSVM is regarded as the solution to 

                                     Min 𝜑(𝑤, 𝜉) =
1

2
𝑤T𝑤 + 𝐶 ∑ 𝑠𝑖𝜉𝑖

𝑛

𝑖=1

 

(6)                                     𝑠. 𝑡.     

𝑦𝑖(𝑤T.  𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,               𝑖 = 1,2, … , 𝑛 

𝜉𝑖 ≥ 0,                                                 𝑖 = 1,2, … , 𝑛 

where 𝐶 is a constant. The main difference between SVM and FSVM arises from 𝑠𝑖𝜉𝑖 term. Since 𝜉𝑖is 

known as a measure of error in the SVM, then the fuzzy membership 𝑠𝑖 makes a measure of error 

which has different weights in FSVM. Note that by adjusting the value of fuzzy membership 𝑠𝑖 can 

reduce or increase the effect of each training data point. Similar to the SVM formulation, by some 

manipulating, the solution of FSVM is obtained. Also, the FSVM can be solved by its dual form. For 

meticulous detail see Ref. [15, 16]. 
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4. Adaptive Particle Swarm Optimization 

PSO is a population-based optimization technique. It uses swarm of particles to find a global optimum 

solution in search space [24]. Each particle represents a candidate solution to the cost function and it 

has its own position and velocity. Assume particle swarms are in D-dimensional search space .Let the 

i-th particle in a D-dimensional space be represented as 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑑 , … , 𝑥𝑖𝑑). The best previous 

position of the i-th particle is recorded and represented as 𝑝𝑏𝑖 = (𝑝𝑏𝑖1, … , 𝑝𝑏𝑖𝑑 , … , 𝑝𝑏𝑖𝑑), which gives 

the best value in the cost function and also called pbest. General best position, Gbest, denoted by  𝑝𝑔𝑏 

is the best value of the Pbest among all the particles in the cost function. The velocity for the i-th 

particle is represented as 𝑣𝑖 = (𝑣𝑖1, … , 𝑣𝑖𝑑 , … , 𝑣𝑖𝑑). In each of the iterations, the velocity and the 

position of each particle are updated according to Eq.(7) and Eq.(8), respectively. 

𝑣𝑖𝑑 = 𝑤𝑣𝑖𝑑 + 𝑐1𝑟1(𝑝𝑏𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝑟2(𝑝𝑔𝑏 − 𝑥𝑖𝑑) (7) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (8) 

where 𝑤 is called the inertia coefficient and it is in the interval [0,1]. We reduce the inertia weight, w, 

linearly during the iterations to enhance the search ability of the PSO. 

𝑤(𝑖𝑡𝑒𝑟) = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 (9) 

where iter denoted the iteration of the algorithm and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of algorithm’s 

iteration [24,25]; 𝐶1 and 𝐶2  are non-negative constants of acceleration; 𝑟1 and 𝑟2  are generated 

randomly in the interval [0,1]; 𝑣𝑖𝑑 ∈ [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥]  and 𝑣𝑚𝑎𝑥  is the maximum velocity. The 

termination criterion of the PSO is determined by reaching the maximum iterations number. After the 

maximum number of iterations reached, global best particle represents the optimal solution consisting 

of the optimal positive and negative class centers. 

In order to control the trade-off between exploitation and exploration property of the PSO algorithm 

the beginning of the optimization procedure, a large value for the cognitive weight and a small value 

for the social weight should be chosen. Hence, the exploration property of the PSO is enhanced. By 

contrast, near the final stage of the PSO algorithm, a small cognitive weight and a large social weight 

should be selected for the convergence of the algorithm to the global optimum point [26]. Therefore, it 

is necessary to change the cognitive weight and social weight during the optimization process 

adaptively. The following formula for the APSO is proposed [27, 28]: 

If 𝐶1
𝑓𝑖𝑛𝑎𝑙

< 𝐶1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝐶1 = (𝐶1
𝑓𝑖𝑛𝑎𝑙

− 𝐶1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (

𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) + 𝐶1

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (10) 

If 𝐶2
𝑓𝑖𝑛𝑎𝑙

> 𝐶2
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝐶2 = (𝐶2
𝑓𝑖𝑛𝑎𝑙

− 𝐶2
𝑖𝑛𝑖𝑡𝑖𝑎𝑙) (

𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) + 𝐶2

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (11) 

where the superscripts “initial” and “final” indicate the initial and final values of the cognition weight 

and the social weight factor, respectively. The parameters of the APSO set as follows: 𝐶1
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.7, 

𝐶1
𝑓𝑖𝑛𝑎𝑙

= 1.6, 𝐶2
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.9, 𝐶2

𝑓𝑖𝑛𝑎𝑙
= 1.7. In this study, the maximum number of iterations and the 

number of particles are selected to be 100 and 25, respectively. 

5. Fuzzy membership assignments 
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How to determine appropriate fuzzy memberships to be used in FSVM is a significant problem. 

Basically, the lower bounds of fuzzy memberships are defined, and then the main property of each 

data point is chosen and a connection is made between this property and fuzzy memberships function. 

As a result, FSVM can achieve good performance and therefore discards the effect of noise  

Table 2- The structure of each particle of APSO 

Par. n+2  Par. m+1 Par. m  Par. 1  

𝑀𝑒𝑎𝑛𝑁𝑒𝑔𝑖𝑛+2 −  𝛼 ⋯ 𝑀𝑒𝑎𝑛𝑁𝑒𝑔𝑖𝑚+1 −  𝛼 𝑀𝑒𝑎𝑛𝑃𝑜𝑠𝑖𝑚 −  𝛼 ⋯ 𝑀𝑒𝑎𝑛𝑃𝑜𝑠𝑖1 − 𝛼 Min value 

𝑥𝑖𝑛+2 ⋯ 𝑥𝑖𝑚+1 𝑥𝑖𝑚 ⋯ 𝑥𝑖1  

𝑀𝑒𝑎𝑛𝑁𝑒𝑔𝑖𝑛+2 + 𝛼 ⋯ 𝑀𝑒𝑎𝑛𝑁𝑒𝑔𝑖𝑚+1 + 𝛼 𝑀𝑒𝑎𝑛𝑃𝑜𝑠𝑖𝑚 + 𝛼 ⋯ 𝑀𝑒𝑎𝑛𝑃𝑜𝑠𝑖1 + 𝛼 Max value 

Negative class center Positive class center  

and outliers, if the fuzzy memberships function prepares the fuzzy memberships accurately and 

appropriately. 

Generally, fuzzy memberships are generated by setting the fuzzy membership as a function of the 

distance between the data point and its fixed class center [15,16,17,18]. Many fuzzy membership 

functions have been proposed based on this idea. Although those methods could cope with outliers or 

misclassification noise in classification problem, they could not deal with attribute-noise. 

To overcome this problem and generate fuzzy membership function so that enhances the performance 

of FSVM, APSO is used to change the attributes of positive and negative class centers in such way 

that minimizes the generalization performance error. After the APSO is converged, the fuzzy 

membership functions are generated based on the positions of purified class centers. Generally, each 

data set is divided into two classes and each of them contains some attributes, so the class center is a 

vector of average attributes. Define the mean of positive class label as 𝑥+ and the mean of negative 

class as 𝑥− as follow: 

𝑥+ =
1

𝑛+
∑ 𝑥𝑖

𝑥𝑖∈𝐶+

 (12) 

and  

𝑥− =
1

𝑛−
∑ 𝑥𝑖

𝑥𝑖∈𝐶−

 (13) 

where 𝑛+  and 𝑛−  are the numbers of data points in class 𝐶+  and 𝐶− , respectively. In all previous 

studies, researchers focused on extending the class center-based fuzzy membership assignment in 

which the positions of the class centers are fixed. Thus, the noise data and outliers are discarded and 

eliminated by their distance from their corresponding class centers. It is transparent that the class 

centers of a noisy data set will be noisy and not be adequately pure to be used as reference measure for 

producing fuzzy memberships. In this study we propose to vary the position of the class centers by 

using APSO method to de-noise the class centers attributes. Moreover, by modifying the position of 

the class centers, their data points within each class could achieve different weights relevant to its class 

center. For this aim, we considered a lower and upper bound for class centers attributes and APSO 

used for this goal to change the mean of the class center attributes within those bounds. In other words, 

by altering attributes the class center place is replaced and the class centers will have dynamic 

behaviors. The structure of each particle of APSO is shown in Table 2. 
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As shown in Table 2, each particle consists of two parts. The first part of dimensions of each particle is 

considered for finding the optimal mean attribute of positive class center and the rest dimensions of 

each particle are used for finding the optimal mean attribute of negative class center. First, mean of 

each positive and negative class centers are calculated, then a small positive constant, which is so-

called α, is added and subtracted from these means to obtain the upper and lower bounds of each 

features in positive and negative class centers. The value of α is 0.1 in this study. 

Define the maximum radius of positive class 𝐶+by  

𝑟+ = 𝑚𝑎𝑥|𝑥+ − 𝑥𝑖| 𝑓𝑜𝑟 𝑥𝑖 ∈ 𝐶+ (14) 

where 𝑥𝑖 belongs to 𝐶+and the maximum radius of negative class defined as follows: 

𝑟− = 𝑚𝑎𝑥|𝑥− − 𝑥𝑖| 𝑓𝑜𝑟 𝑥𝑖 ∈ 𝐶− (15) 

where 𝑥𝑖 ∈  𝐶−. Consequently, fuzzy membership 𝑠𝑖 defined to be a function of the mean and radius 

of each class in the following form: 

𝑠𝑖 = {
1 − ‖𝑥+ − 𝑥𝑖‖/(𝑟+ + 𝛿)          𝑖𝑓 𝑦 = 1     

1 − ‖𝑥− − 𝑥𝑖‖/(𝑟− + 𝛿), 𝑖𝑓 𝑦 = −1  
 (16) 

where 𝛿 is a small positive constant which used to avoid the case 𝑠𝑖 = 0. The value of this parameter 

is selected to be 0.01, in this paper. The generalization performance error is regarded as the objective 

function as follows:  

𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐾‐ 𝑓𝑜𝑙𝑑 𝐶𝑉 𝐸𝑟𝑟𝑜𝑟 
(17) 

Various criteria proposed by many researchers such as Leave One Out (LOO) [21], and K-fold Cross 

Validation (CV) method for evaluating the generalization performance of SVM [22,23]. In K-fold  CV 

method, the training data set randomly is divided into K equal subsets and then for K iteration each 

subset is defined as a testing data set and retain subsets, K-1, are used as a training data set. After K 

iterations, the overall generalization performance is averaged over K calculated performances. Totally, 

each part of the entire training data set is separately considered as testing data set. Hence, K-fold CV is 

a robust criterion for evaluating generalization performance. The K value is equal to 10 in this study. 

Algorithm 1 describes the proposed method. 

Algorithm 1: Proposed method  

1: Initialize FSVM model parameters, i.e. C and kernel parameters 

2: Initialize APSO population, i.e., positive and negative class centers 

3: Generate fuzzy memberships based on initial class centers 

4: Train FSVM with initial model parameters 

5: Evaluate the cost function Eq. (17) 

6: Update the initial population based on the procedure of APSO until the optimization approach 

terminate 

7: Use the Gbest of the APSO containing the optimal positive and negative class centers which fuzzy 

memberships are generated based on them 
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6. Computational Experiments 

6.1 Experimental Conditions 

To perform the effectiveness of the proposed cost function, a PC with MATLAB software R2008b is 

utilized. Experiments on artificial data and real data sets will be carried out to compare the 

performance of FSVM using the fuzzy memberships calculated in the input space as that in Ref. [15] 

(FSVM-1), FSVM-2 which is computed fuzzy memberships in the feature space [17], FSVM-3, which 

is calculated the fuzzy memberships in both input space and feature space for linear and nonlinear 

cases [18], and our proposed method FSVM-4.  

In order to provide the same condition to compare the results, similar to Ref. [18] only RBF and 

Polynomial kernel functions are used. The experiment on synthetic data set reporting here is 

implemented using RBF kernel and the other test on real data set using both RBF and Polynomial 

kernel functions. However, the proposed method could be applied to all the existing kernel functions 

[29,30,31]. Similar to Ref. [18] different selections of the regularization parameters are used for the 

training to compare the performance of the FSVM-4 with the FSVM-1, the FSVM-2, and FSVM-3. 

6.2. Experiments on Artificial Data Set 

We use the same artificial data set in Ref. [18]. Ref. [18] generates 200 points with some given outlier 

points in 𝑅6  × {−1, +1}. 120 points are selected as training points and the remaining 80 points are 

selected as testing set. In the training set, 60 points including six outliers belong to one class and the 

other points including three outliers belong to another. 

The experiment results for the FSVM-4 are compared with FSVM-1, FSVM-2, and FSVM-3 (feature 

space form) in Table 3. Results show that the FSVM-4 outperforms the same generalization 

performance in comparison to the FSVM-3 and more better accuracy from the others. But the number 

of Support Vectors (SVs) is smaller than the others FSVMs in FSVM-4. Although the accuracy rate is 

of primary importance to the number of SVs in evaluation of the FSVM methods, less number of SVs 

means FSVM-4 has a smaller model size. By a small model size, the time consumed in testing phase is 

reduced and the memory storage required is decreased. Therefore, it could be concluded that FSVM-4 

has a better performance in reducing the effect of the outliers and de-nosing the attributes noise.  

Figure 1 shows the variation attributes of the positive and negative class centers in FSVM-4 for both 

fixed and variable class centers ideas with C=100 and 𝜎=2. The figure consists of four subplots. In the 

figure, left-upper and right-upper subplots respectively show the fixed positive and negative class 

centers and left-lower and right-lower subplots illustrate the positive and the negative class centers 

after applying the proposed method. The optimal cost function is obtained in FSVM-4 based on the 

purified class centers in comparison with the fixed class centers. As shown in this figure, the proposed 

method properly de-noise the new positive and negative class centers from attribute-noise and also the 

fuzzy memberships which is generated based on the new class centers could appropriately discard the 

boundary data points from class-noise. The convergence of the objective function versus the numbers 

of iterations during the procedure of APSO is shown in Figure 2. 
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Table 3- Experimental results of the FSVM-1 [15], the FSVM-2 [17], the FSVM-3 (feature space 

form) [18], and the FSVM-4 on the artificial data set with Gaussian RBF kernel function (width=2) 

C FSVM-1 FSVM-2 FSVM-3* FSVM-4 

 SVs 
Testing Acc. 

(%) 
SVs 

Testing Acc. 

(%) 
SVs 

Testing Acc. 

(%) 
SVs 

Testing 

Acc. (%) 

10 43(35.8%) 93.8 44(36.7%) 93.8 43(35.8%) 93.8 15(12.2%) 93.8 

50 42(35.0%) 93.8 45(37.5%) 93.8 44(36.7%) 93.8 17(13.9%) 93.8 

100 40(33.3%) 92.5 44(36.7%) 93.8 44(36.7%) 93.8 17(13.9%) 93.8 

300 38(31.7%) 91.3 39(32.5%) 92.5 44(36.7%) 93.8 14(11.4%) 93.8 

400 38(31.7%) 91.3 38(31.7%) 91.3 44(36.7%) 93.8 15(12.2%) 93.8 

500 38(31.7%) 91.3 38(31.7%) 91.3 45(37.5%) 93.8 16(13.1%) 93.8 

600 38(31.7%) 91.3 38(31.7%) 91.3 45(37.5%) 93.8 16(13.1%) 93.8 

1000 38(31.7%) 91.3 38(31.7%) 91.3 43(35.8%) 93.8 17(13.9%) 92.5 

*FSVM-3 is in the input space from 

 

Figure 1- Comparison between the variation of the fixed positive class center (left-upper column) and 

the new positive class center after applying the proposed approach (left-lower column) and the fixed 

negative class center (right-upper column) and the new negative class center from the proposed 

approach (right-lower column) for FLSSVM-4 in artificial data set. 

 

Figure 2- The convergence of objective function via APSO in artificial data set 
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(a) (b) 

Figure 3- Comparison between the variation of the fixed positive class center (left-upper column) and 

the new positive class center after applying the proposed approach (left-lower column) and the fixed 

negative class center (right-upper column) and the new negative class center from the proposed 

approach (right-lower column) for FSVM-4 in Monks data set. a) RBF kernel with C=100 and 𝜎=2. b) 

Polynomial kernel with C=120, t=1, and d=2. 

6.3. Experiments on Real Data Set 

The MONK problem was the basis of the first international comparison of learning algorithms. There 

are three MONK problems. In this paper, the third training and testing data sets of MONK problem 

which contains 5% random noise among the samples are chosen from the UCI Repository [32]. Each 

sample is represented by six discrete-valued attributes. This is a two-class data set. The training set 

consists of 122 patterns (60 patterns belonging to the positive class and 62 patterns belonging to the 

negative class), and the testing set consists of 432 patterns (228 patterns belonging to the positive class 

and 204 patterns belonging to the negative class). Table 4 shows the experimental results of the 

algorithm of the FSVM-1, FSVM-2, FSVM-3 (both input and feature space forms), and the FSVM-4 

using RBF kernel and polynomial kernel.  

The results demonstrate that the proposed FSVM-4 has a considerable better generalization 

performance in comparison with the other FSVM methods. FSVM-3 which has input and feature. 

Table 4- Experimental results of the FSVM-1 [15], the FSVM-2 [17], the FSVM-3 (both input and 

feature space forms) [18], and the FSVM-4 on the Monks data set  

Kernel C FSVM-1 FSVM-2 FSVM-3* FSVM-3** FSVM-4 
 

 SVs 
Testing 

Acc. 
(%) 

SVs 
Testing 

Acc. 
(%) 

SVs 
Testing 

Acc. 
(%) 

SVs 
Testing 

Acc. 
(%) 

SVs 
Testing 

Acc. 
(%) 

RBF 
(𝜎 = 2) 

10 40(32.8%) 77.7 32(26.2%) 80.3 40(32.8%) 85.2 39(32.0%) 91.9 55(45.0%) 97.2 
50 31(25.4%) 84.8 30(24.6%) 85.2 41(33.6%) 91.4 34(27.9%) 94.7 47(38.5%) 97.2 

100 25(20.5%) 84.3 26(21.3%) 84.5 35(28.7%) 93.3 35(28.7%) 94.4 48(39.3%) 97.2 
500 39(32.0%) 83.5 34(27.9%) 84.8 35(28.7%) 95.6 35(28.7%) 93.5 46(37.7%) 96.5 

            

Poly 
(𝑡 = 1, 

𝑑 = 2) 

10 48(39.3%) 78.1 41(33.6%) 83.0 41(33.6%) 94.2 26(21.3%) 94.2 26(21.3%) 96.7 
120 27(22.1%) 80.3 25(20.5%) 80.3 12(9.8%) 49.5 19(15.6%) 94.0 24(19.6%) 95.1 
250 33(27.0%) 81.2 35(28.7%) 83.9 12(9.8%) 46.3 19(15.6%) 89.1 25(20.4%) 94.2 
800 42(34.4%) 79.6 44(36.1%) 80.6 15(12.3%) 91.0 21(17.2%) 89.8 25(20.4%) 94.2 

*FSVM-3 is in the input space from 
** FSVM-3 is in the feature space form 
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forms, reaches to the higher accuracy in its feature space forms compared to its inputs form.   

FSVM-1, FSVM-2, especially FSVM-3 (input form), and FSVM-3 (feature form) are degenerated 

whereas the Polynomial kernel is utilized. FSVM-4 is less sensitive to the kernel type and the value 

variation of the parameter C. Figures 3(a) and 3(b) show the variation attributes of the positive and 

negative class centers in FSVM-4 for both fixed and variable class centers ideas with RBF and 

Polynomial Kernels, respectively. 

7. Conclusions 

In FSVMs, different training points can make different contributions to the learning of the decision 

surface. Choosing a proper fuzzy membership function is the main issue in the FSVM for the 

classification problems. This paper propose a new fuzzy membership function for FSVM 

linear/nonlinear and separable/non-separable classification problem based on purified positive and 

negative class centers. To this end, an APSO is used to vary the attributes of both positive and 

negative class centers. The results demonstrate that the effect of attribute-noise and the outlier data can 

be reduced. In addition, the proposed FSVM can achieve higher generalization performance with 

lower model size (#SVs) in comparison with the other FSVMs. It makes FSVMs more feasible for the 

real applications, containing noise in attribute and the class of data points, in which there is not enough 

information to choose appropriate fuzzy memberships. 

Further work on the extension of the proposed fuzzy membership assignment function to feature space 

and thorough the APSO making feature/data reduction and solving the model selection problem of 

FSVM are under the author's investigation. 
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