The weight inequalities on Reich type theorem in b-metric spaces

Zoran D. Mitrovića ${ }^{\text {, Hassen }}$ Aydi $^{\text {b }}$, Mohd Salmi Md Nooranic ${ }^{\text {c }}$, Haitham Qawaqneh ${ }^{\text {c,* }}$
${ }^{a}$ Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
${ }^{b}$ Department of Mathematics, College of Education in Jubail, Imam Abdulrahman Bin Faisal University, P. O. 12020, Industrial Jubail 31961, Saudi Arabia.
${ }^{\text {c S School of }}$ of mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Selangor Darul Ehsan, Malaysia.

Abstract

In this note, we give a generalization of the Reich type theorem in b-metric spaces by using weight inequalities. Here, the existence of nonunique fixed points is ensured. Other known fixed point results in the literature are derived.

Keywords: Fixed point, b-metric space, weight inequalities.
2010 MSC: 47H10, 54H25.
(c)2019 All rights reserved.

1. Introduction and preliminaries

Bakhtin [6] and Czerwik [9] introduced the notion of b-metric spaces and proved some fixed point theorems in b-metric spaces. A large number of results in fixed point theory in b-metric spaces and other generalized metric spaces has been obtained over the past ten years. For more details, see $[1,3-5,11,17-$ $22,24]$. We begin with two known definitions.

Definition 1.1. Let X be a nonempty set and let $b \geqslant 1$ be a given real number. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric if and only if for all $x, y, z \in X$, the following conditions are satisfied:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$;
(3) $d(x, z) \leqslant b[d(x, y)+d(y, z)]$.

[^0]A triplet (X, d, b), is called a b-metric space.
Note that a metric space is included in the class of b-metric spaces. The topological notions of a convergent sequence, a Cauchy sequence and a complete space are defined as in metric spaces.

Definition 1.2. Let (X, d, b) be a b-metric space, $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$.
(a) The sequence $\left\{x_{n}\right\}$ is said to be convergent in (X, d, b) to x, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\varepsilon$ for all $n>n_{0}$. This fact is represented by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
(b) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy in (X, d, b), if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x_{n+p}\right)<\varepsilon$ for all $n>n_{0}, p>0$.
(c) (X, d, b) is said to be complete, if every Cauchy sequence in X converges to some $x \in X$.

In this paper, we use the following result of Miculescu and Mihail [15, Lemma 2.2] and Suzuki [27, Lemma 6].

Lemma 1.3. Let (X, d, b) be a b-metric space and let $\left\{x_{n}\right\}$ be a sequence in X. Assume that there exists $\gamma \in[0,1)$ satisfying $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right) \leqslant \gamma \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}\right)$ for any $\mathrm{n} \in \mathbb{N}$. Then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is Cauchy.

2. Main results

Definition 2.1. In the framework of a b-metric space (X, d, b), a mapping $T: X \rightarrow X$ is called an (r, a) weight type contraction, if there exists $\lambda \in[0,1)$ and such that

$$
\begin{equation*}
d(T x, T y) \leqslant \lambda M^{r}(T, x, y, a) \tag{2.1}
\end{equation*}
$$

where $r \geqslant 0, a=\left(a_{1}, a_{2}, a_{3}\right), a_{i} \geqslant 0, i=1,2,3$ such that $a_{1}+a_{2}+a_{3}=1$ and

$$
M^{r}(T, x, y, a)= \begin{cases}{\left[a_{1}(d(x, y))^{r}+a_{2}(d(x, T x))^{r}+a_{3}(d(y, T y))^{r}\right]^{1 / r},} & r>0 \tag{2.2}\\ (d(x, y))^{a_{1}}(d(x, T x))^{a_{2}}(d(y, T y))^{a_{3}}, & r=0\end{cases}
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\operatorname{Fix}(T)=\{u \in X, T u=u\}$.
Remark 2.2. In all following cases, the $x, y \in X$ are such that $x, y \notin \operatorname{Fix}(T)$.

1. If $r=1, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, we obtain Reich-Rus-Ćirić type contraction,

$$
d(T x, T y) \leqslant \frac{\lambda}{3}[d(x, y)+d(x, T x)+d(y, T y)]
$$

where $\lambda \in[0,1)$, see $[8,23,25]$.
2. 1. If $r=2, a=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, we obtain the following condition,

$$
d(T x, T y) \leqslant \frac{\lambda}{\sqrt{3}}\left[d^{2}(x, y)+d^{2}(x, T x)+d^{2}(y, T y)\right]^{1 / 2}
$$

where $\lambda \in[0,1)$.
3. If $r=1$ and $a=\left(a_{1}, a_{2}, a_{3}\right)$, we have a Reich type contraction,

$$
d(T x, T y) \leqslant \alpha d(x, y)+\beta d(x, T x)+\gamma d(y, T y)]
$$

where $\alpha=\lambda a_{1}, \beta=\lambda a_{2}, \gamma=\lambda a_{3}, \alpha, \beta, \gamma, \lambda \in[0,1)$ and $\alpha+\beta+\gamma<1$, see [23].
4. If $r=1$ and $a=\left(0, \frac{1}{2}, \frac{1}{2}\right)$, we have a Kannan type contraction,

$$
d(T x, T y) \leqslant \frac{\lambda}{2}[d(x, T x)+d(y, T y)]
$$

see [14].
5. If $r=2$ and $a=\left(0, \frac{1}{2}, \frac{1}{2}\right)$, we have

$$
d(T x, T y) \leqslant \frac{\lambda}{\sqrt{2}}\left[d^{2}(x, T x)+d^{2}(y, T y)\right]^{1 / 2}
$$

6. If $r=0$ and $a=(0, \alpha, 1-\alpha)$ with $\alpha \in(0,1)$, we obtain an interpolative Kannan type contraction,

$$
d(T x, T y) \leqslant \lambda(d(x, T x))^{\alpha}(d(y, T y))^{1-\alpha},
$$

see [12].
7. If $r=0$ and $a=(\beta, \alpha, 1-\alpha-\beta)$ with $\alpha, \beta \in(0,1)$, we have an interpolative Reich-Rus-Ćirić type contraction,

$$
d(T x, T y) \leqslant \lambda(d(x, y))^{\beta}(d(x, T x))^{\alpha}(d(y, T y))^{1-\alpha-\beta},
$$

see [13].
Lemma 2.3. If $\mathrm{r} \leqslant \mathrm{s}$, then we have the following weighted inequality:

$$
M^{r}(T, x, y, a) \leqslant M^{s}(T, x, y, a)
$$

Proof. See for example [7].
Our essential main result is
Theorem 2.4. Let $(\mathrm{X}, \mathrm{d}, \mathrm{b})$ be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an (r, a)-weight type contraction mapping. Then T has a fixed point $x^{*} \in X$ and for any $x_{0} \in X$ the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{*} if one of the following conditions holds:
(i) T is continuous at such point x^{*};
(ii) $b^{r} a_{2}<1$;
(iii) $b^{r} a_{3}<1$.

Proof. Let $x_{0} \in X$ be arbitrary. Define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n \geqslant 0$. If there exists n_{0} such that $x_{n_{0}}=x_{n_{0}+1}$, then $x_{n_{0}}$ is a fixed point of T. The proof is completed. From now, assume that $x_{n} \neq x_{n+1}$ for all $n \geqslant 0$.

1. Case $r>0$. From condition (2.1), we have that

$$
d\left(x_{n+1}, x_{n}\right) \leqslant \lambda\left[a_{1}\left(d\left(x_{n}, x_{n-1}\right)\right)^{r}+a_{2}\left(d\left(x_{n}, x_{n+1}\right)\right)^{r}+a_{3}\left(d\left(x_{n-1}, x_{n}\right)\right)^{r}\right]^{1 / r} .
$$

Therefore,

$$
d\left(x_{n+1}, x_{n}\right) \leqslant\left[\frac{\lambda^{r}\left(a_{1}+a_{3}\right)}{1-\lambda^{r} a_{2}}\right]^{1 / r} d\left(x_{n}, x_{n-1}\right) .
$$

Put $\gamma=\left[\frac{\lambda^{r}\left(a_{1}+a_{3}\right)}{1-\lambda^{r} a_{2}}\right]^{1 / r}$. We have that $\gamma \in[0,1)$. It follows from Lemma 1.3 that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. By completeness of (X, d, b), there exists $x^{*} \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*} .
$$

Now, we claim that x^{*} is a fixed point of T. First, for any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathrm{d}\left(x^{*}, T x^{*}\right) \leqslant \mathrm{b}\left[\mathrm{~d}\left(x^{*}, x_{n+1}\right)+\mathrm{d}\left(\mathrm{~T} x_{n}, T x^{*}\right)\right] . \tag{2.3}
\end{equation*}
$$

(i) Suppose that T is a continuous map at the point $x^{*} \in X$.

Since $\lim _{n \rightarrow \infty} d\left(x^{*}, x_{n+1}\right)=0$ and T is a continuous at a point x^{*}, we have

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T x^{*}\right)=d\left(T x^{*}, T x^{*}\right)=0
$$

and from (2.3), we obtain $\mathrm{d}\left(x^{*}, \mathrm{~T} x^{*}\right)=0$, i.e., $\mathrm{T} x^{*}=x^{*}$.
(ii) Suppose that $b^{r} a_{2}<1$. Assume that $T x^{*} \neq x^{*}$. We have

$$
\begin{aligned}
0<\mathrm{d}\left(\mathrm{~T} x^{*}, x^{*}\right) \leqslant & \mathrm{b}\left[\mathrm{~d}\left(\mathrm{~T} x^{*}, x_{n+1}\right)+\mathrm{d}\left(x_{n+1}, x^{*}\right)\right] \\
& =\mathrm{b}\left[\mathrm{~d}\left(\mathrm{~T} x^{*}, \mathrm{~T} x_{n}\right)+\mathrm{d}\left(x_{n+1}, x^{*}\right)\right] \\
\leqslant & \leqslant \mathrm{b}\left[\mathrm{a}_{1} \mathrm{~d}\left(\left(x^{*}, x_{n}\right)\right)^{r}+\mathrm{a}_{2}\left(\mathrm{~d}\left(x^{*}, T x^{*}\right)\right)^{r}+\mathrm{a}_{3}\left(\mathrm{~d}\left(x_{n}, x_{n+1}\right)\right)^{r}\right]^{1 / r} \\
& +\mathrm{bd}\left(x_{n+1}, x^{*}\right) .
\end{aligned}
$$

At the limit as $n \rightarrow \infty$, we have

$$
0<\mathrm{d}\left(\mathrm{~T} x^{*}, x^{*}\right) \leqslant \mathrm{ba} \mathrm{a}_{2}^{1 / \mathrm{r}} \mathrm{~d}\left(\mathrm{~T} x^{*}, x^{*}\right)
$$

Since $\mathrm{ba}_{2}^{1 / \mathrm{r}}<1$, we have a contradiction, that is, $\mathrm{T} x^{*}=x^{*}$.
(iii) Suppose that $b^{r} a_{3}<1$. Again, assume that $d\left(T x^{*}, x^{*}\right)>0$. Then

$$
\begin{aligned}
0<\mathrm{d}\left(x^{*}, \mathrm{~T} x^{*}\right) \leqslant & \mathrm{b}\left[\mathrm{~d}\left(x^{*}, x_{n+1}\right)+\mathrm{d}\left(x_{n+1}, T x^{*}\right)\right] \\
= & \mathrm{b}\left[\mathrm{~d}\left(x^{*}, x_{n+1}\right)+\mathrm{d}\left(\mathrm{~T} x_{n}, \mathrm{~T} x^{*}\right)\right] \\
\leqslant & \operatorname{bd}\left(x^{*}, x_{n+1}\right)+\mathrm{b}\left[\mathrm{a}_{1}\left(\mathrm{~d}\left(x_{n}, x^{*}\right)\right)^{r}+\mathrm{a}_{2}\left(\mathrm{~d}\left(x_{n}, x_{n+1}\right)\right)^{r}\right. \\
& \left.+\mathrm{a}_{3}\left(\mathrm{~d}\left(x^{*}, T x^{*}\right)\right)^{r}\right]^{1 / r} .
\end{aligned}
$$

Taking $n \rightarrow \infty$, we have

$$
0<d\left(T x^{*}, x^{*}\right) \leqslant b a_{3}^{1 / r} d\left(T x^{*}, x^{*}\right)
$$

Since $\mathrm{ba}_{3}^{1 / \mathrm{r}}<1$, we get a contradiction. Thus, $\mathrm{T} x^{*}=x^{*}$.
2. Case $r=0$. Here, (2.1) and (2.2) become

$$
d(T x, T y) \leqslant \lambda(d(x, y))^{a_{1}}(d(x, T x))^{a_{2}}(d(y, T y))^{1-a_{1}-a_{2}},
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\lambda \in[0,1)$ and $a_{1}, a_{2} \in(0,1)$. Following [13, Theorem 2.1 with its metric case], the map T has a fixed point in X. Again, following [13, Example 2.1 and Example 2.2], we have not a uniqueness of fixed points.

Remark 2.5. We note that for $\mathrm{r}=0$, the proof follows from Lemma 2.3 and the case $\mathrm{r}>0$.
We state the following corollaries.
Corollary 2.6. Let $(\mathrm{X}, \mathrm{d}, \mathrm{b})$ be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping such that

$$
d(T x, T y) \leqslant \lambda d^{a_{1}}(x, y) \cdot d^{a_{2}}(x, T x) \cdot d^{a_{3}}(y, T y),
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\lambda \in[0,1), a_{1}, a_{2}, a_{3} \geqslant 0$ and $a_{1}+a_{2}+a_{3}=1$. Then T has a fixed point x^{*} and for any $x_{0} \in X$ the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{*}.
Proof. Put in Theorem 2.4, $\mathrm{r}=0$ and $\mathrm{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$.
Remark 2.7. We note that from Corollary 2.6, we get [13, Theorem 2] (for metric spaces).
Corollary 2.8. Let $(\mathrm{X}, \mathrm{d}, \mathrm{b})$ be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping such that

$$
\begin{equation*}
d(T x, T y) \leqslant \lambda \sqrt[3]{d(x, y) \cdot d(x, T x) \cdot d(y, T y)}, \tag{2.4}
\end{equation*}
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\lambda \in[0,1)$. Then T has a fixed point x^{*} and for any $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}$
converges to x^{*}.
Proof. Put in Theorem 2.4, $\mathrm{r}=0$ and $\mathrm{a}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
Corollary 2.9. Let $(\mathrm{X}, \mathrm{d}, \mathrm{b})$ be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping such that

$$
d(T x, T y) \leqslant \frac{\lambda}{3}[d(x, y)+d(x, T x)+d(y, T y)],
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\lambda \in[0,1)$, then T has a fixed point x^{*} and for any $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{*} if one of the following conditions holds:
(i) T is continuous at such point $\mathrm{x}^{*} \in \mathrm{X}$;
(ii) $\mathrm{b}<3$.

Proof. Put in Theorem 2.4, $\mathrm{r}=1$ and $\mathrm{a}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
Corollary 2.10. Let $(\mathrm{X}, \mathrm{d}, \mathrm{b})$ be a complete b -metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be a mapping such that

$$
d(T x, T y) \leqslant \frac{\lambda}{\sqrt{3}}\left[d^{2}(x, y)+d^{2}(x, T x)+d^{2}(y, T y)\right]^{1 / 2}
$$

for all $x, y \in X \backslash \operatorname{Fix}(T)$, where $\lambda \in[0,1)$, then T has a fixed point x^{*} and for any $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}$ converges to x^{*} if one of the following conditions holds:
(i) T is continuous at such point $\mathrm{x}^{*} \in \mathrm{X}$;
(ii) $\mathrm{b}^{2}<3$.

Proof. Put in Theorem 2.4, $\mathrm{r}=2$ and $\mathrm{a}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.
Theorem 2.4 is illustrated by the following examples.
Example 2.11. Let $X=\{0,1,2,4\}$ be a set endowed with the classical metric $d(x, y)=|x-y|(b=1)$, that is,

$\mathrm{d}(\mathrm{x}, \mathrm{y})$	0	1	2	4
0	0	1	2	4
1	1	0	1	3
2	2	1	0	2
4	4	3	2	0

We define a self-mapping T on X by $T:\left(\begin{array}{llll}0 & 1 & 2 & 4 \\ 2 & 4 & 2 & 4\end{array}\right)$. It is clear that T is not a Reich-Rus-Ćirić contraction. Indeed, there is no $\lambda \in[0,1)$ such that the following inequality is fulfilled

$$
\mathrm{d}(\mathrm{~T} 0, \mathrm{~T} 1) \leqslant \frac{\lambda}{3}[\mathrm{~d}(0,1)+\mathrm{d}(0, \mathrm{~T} 0)+\mathrm{d}(1, \mathrm{~T} 1)],
$$

namely, we have,

$$
2 \leqslant \frac{\lambda}{3}[1+2+3] .
$$

So, we can not apply Corollary 2.9.
Also, from condition (2.4) we obtain

$$
d(T 0, T 1) \leqslant \lambda \sqrt[3]{d(0,1) \cdot d(0, T 0) \cdot d(1, T 1)}
$$

i.e., $2 \leqslant \lambda \sqrt[3]{1 \cdot 2 \cdot 3}$, so $\lambda \geqslant \frac{2}{\sqrt[3]{6}}>1$. Hence can not apply Corollary 2.8.

On the other hand, the conditions of Corollary 2.10 are valid. Let $x, y \in X$ be such that $x, y \in X \backslash F i x(T)$. Then $x, y \in\{0,1\}$. For $\lambda=\sqrt{\frac{6}{7}}$, we have in this case,

$$
d(T x, T y) \leqslant \frac{\lambda}{\sqrt{3}}\left[d^{2}(x, y)+d^{2}(x, T x)+d^{2}(y, T y)\right]^{1 / 2},
$$

for $x, y \in\{0,1\}$ and $\lambda=\sqrt{\frac{6}{7}}$ and $\{2,4\}$ is the set of fixed points of T.
Example 2.12. Consider the set $X=[1,2]$. Take on X the b-metric $d(x, y)=|x-y|^{2}(b=2)$. Obviously, (X, d) is a complete $\mathrm{b}-$ metric space. Consider now the mapping

$$
\mathrm{T} x=\frac{1+x}{2} .
$$

Let $x, y \in X$ be such that $x, y \in X \backslash F i x(T)$. Then $x, y \in(1,2]$. Showing that

$$
d(T x, T y) \leqslant \frac{\lambda}{\sqrt{3}}\left[d^{2}(x, y)+d^{2}(x, T x)+d^{2}(y, T y)\right]^{1 / 2}
$$

is equivalent to

$$
3 d^{2}(T x, T y) \leqslant \lambda^{2}\left[d^{2}(x, y)+d^{2}(x, T x)+d^{2}(y, T y)\right],
$$

that is,

$$
\frac{3}{16}|x-y|^{4} \leqslant \lambda^{2}\left[|x-y|^{4}+\frac{1}{16}|x-1|^{4}+\frac{1}{16}|x-1|^{4}\right],
$$

which holds when taking $\lambda \in\left[\frac{\sqrt{3}}{4}, 1\right)$. Note that T is continuous at 1 . All the conditions of Corollary 2.10 are satisfied. Here, 1 is the fixed point of T.

Acknowledgment

The authors thank UKM university, Malaysia since this work has been financially supported by UKM Grant DIP-2017-011 and FRGS/1/2017/STG06/UKM/01/1. We also thank the editor and reviewers for careful reading of the paper and for helpful comments, allowing us to improve our results.

References

[1] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca, 64 (2014), 941-960. 1
[2] H. Aydi, R. Banković, I. Mitrović, M. Nazam, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discrete Dyn. Nat. Soc., 2018 (2018), 7 pages.
[3] H. Aydi, M.-F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl., 2012 (2012), 8 pages. 1
[4] H. Aydi, M.-F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak ϕ-contractions on b-metric spaces, Fixed Point Theory, 13 (2012), 337-346.
[5] H. Aydi, A. Felhi, S. Sahmim, Common fixed points via implicit contractions on b-metric-like spaces, J. Nonlinear Sci. Appl., 10 (2017), 1524-1537. 1
[6] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Ped. Inst., 30 (1989), 26-37. 1
[7] P. S. Bullen, D. S. Mitrinović, P. M. Vasić, Means and Their Inequalities, D. Reidel Publishing Co., Dordrecht, (1988). 2
[8] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267-273. 2.2
[9] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1
[10] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl., 2010 (2010), 15 pages.
[11] N. Hussain, Z. D. Mitrović, On multi-valued weak quasi-contractions in b-metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 3815-3823. 1
[12] E. Karapinar, Revisiting the Kannan Type Contractions via Interpolation Adv. Theory, J. Nonlinear Anal. Appl., 2 (2018), 85-87. 2.2
[13] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić Type Contractions on Partial Metric Spaces, Mathematics, 60 (2018), 7 pages. 2.2, 2, 2.7
[14] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76. 2.2
[15] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153-2163. 1
[16] Z. Mustafa, M. M. M. Jaradat, H. Aydi, A. Alrhayyel, Some common fixed points of six mappings on G_{b}-metric spaces using (E.A) property, Eur. J. Pure Appl. Math., 11 (2018), 90-109.
[17] H. A. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed Point Results for Geraghty Type Generalized F-contraction for Weak alpha-admissible Mapping in Metric-like Spaces, Eur. J. Pure Appl. Math., 11 (2018), 702-716. 1
[18] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, Fixed Point Theorems for (α, k, θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications, Int. J. Math. Comput. Sci., 14 (2019), 263-283.
[19] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility, J. Math. Anal., 9 (2018), 38-51.
[20] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular (α)-admissible mappings, J. Nonlinear Sci. Appl., 10 (2017), 6192-6204.
[21] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common Fixed Point Theorems for Generalized Geraghty (α, ψ, ϕ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces, Axioms, 7 (2018).
[22] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application, Mathematics, 7 (2018). 1
[23] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124. 2.2
[24] J. R. Roshan, V. Parvaneh, Z. Kadelburg, N. Hussain, New fixed point results in rectangular b-metric spaces, Nonlinear Anal. Model. Control, 21 (2016), 614-634. 1
[25] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Clui-Napoca, (2001). 2.2
[26] S. L. Singh, S. Czerwik, K. Król, A. Singh, Coincidences and fixed points of hybrid contractions, Tamsui Oxf. J. Math. Sci., 24 (2008), 401-416.
[27] T. Suzuki, Basic inequality on a b-metric space and its applications, J. Inequal. Appl., 2017 (2017), 11 pages. 1

[^0]: *Corresponding author
 Email addresses: zoran.mitrovic@tdtu.edu.vn (Zoran D. Mitrović), hmaydi@iau.edu.sa (Hassen Aydi), msn@ukm.my (Mohd
 Salmi Md Noorani), haitham.math77@gmail.com (Haitham Qawaqneh)
 doi: 10.22436/jmcs.019.01.07
 Received: 2018-12-08 Revised: 2019-02-14 Accepted: 2019-02-20

