
Available online at www.isr-publications.com/jmcs
J. Math. Computer Sci., 19 (2019), 51–57

Research Article

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

The weight inequalities on Reich type theorem in b-metric
spaces
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Abstract

In this note, we give a generalization of the Reich type theorem in b-metric spaces by using weight inequalities. Here, the
existence of nonunique fixed points is ensured. Other known fixed point results in the literature are derived.
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1. Introduction and preliminaries

Bakhtin [6] and Czerwik [9] introduced the notion of b-metric spaces and proved some fixed point
theorems in b-metric spaces. A large number of results in fixed point theory in b-metric spaces and other
generalized metric spaces has been obtained over the past ten years. For more details, see [1, 3–5, 11, 17–
22, 24]. We begin with two known definitions.

Definition 1.1. Let X be a nonempty set and let b > 1 be a given real number. A function d : X×X→ [0,∞)
is said to be a b-metric if and only if for all x,y, z ∈ X, the following conditions are satisfied:

(1) d(x,y) = 0 if and only if x = y;

(2) d(x,y) = d(y, x);

(3) d(x, z) 6 b[d(x,y) + d(y, z)].
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A triplet (X,d,b), is called a b-metric space.

Note that a metric space is included in the class of b-metric spaces. The topological notions of a
convergent sequence, a Cauchy sequence and a complete space are defined as in metric spaces.

Definition 1.2. Let (X,d,b) be a b-metric space, {xn} be a sequence in X and x ∈ X.

(a) The sequence {xn} is said to be convergent in (X,d,b) to x, if for every ε > 0 there exists n0 ∈ N

such that d(xn, x) < ε for all n > n0. This fact is represented by lim
n→∞ xn = x or xn → x as n→∞.

(b) The sequence {xn} is said to be Cauchy in (X,d,b), if for every ε > 0 there exists n0 ∈ N such that
d(xn, xn+p) < ε for all n > n0,p > 0.

(c) (X,d,b) is said to be complete, if every Cauchy sequence in X converges to some x ∈ X.

In this paper, we use the following result of Miculescu and Mihail [15, Lemma 2.2] and Suzuki [27,
Lemma 6].

Lemma 1.3. Let (X,d,b) be a b-metric space and let {xn} be a sequence in X. Assume that there exists γ ∈ [0, 1)
satisfying d(xn+1, xn) 6 γd(xn, xn−1) for any n ∈N. Then {xn} is Cauchy.

2. Main results

Definition 2.1. In the framework of a b-metric space (X,d,b), a mapping T : X → X is called an (r,a)-
weight type contraction, if there exists λ ∈ [0, 1) and such that

d(Tx, Ty) 6 λMr(T , x,y,a), (2.1)

where r > 0, a = (a1,a2,a3), ai > 0, i = 1, 2, 3 such that a1 + a2 + a3 = 1 and

Mr(T , x,y,a) =
{

[a1(d(x,y))r + a2(d(x, Tx))r + a3(d(y, Ty))r]1/r, r > 0,
(d(x,y))a1(d(x, Tx))a2(d(y, Ty))a3 , r = 0,

(2.2)

for all x,y ∈ X\Fix(T), where Fix(T) = {u ∈ X, Tu = u}.

Remark 2.2. In all following cases, the x,y ∈ X are such that x,y /∈ Fix(T).
1. If r = 1,a = ( 1

3 , 1
3 , 1

3), we obtain Reich-Rus-Ćirić type contraction,

d(Tx, Ty) 6
λ

3
[d(x,y) + d(x, Tx) + d(y, Ty)],

where λ ∈ [0, 1), see [8, 23, 25].
2. 1. If r = 2,a = (1

3 , 1
3 , 1

3), we obtain the following condition,

d(Tx, Ty) 6
λ√
3
[d2(x,y) + d2(x, Tx) + d2(y, Ty)]1/2,

where λ ∈ [0, 1).
3. If r = 1 and a = (a1,a2,a3), we have a Reich type contraction,

d(Tx, Ty) 6 αd(x,y) +βd(x, Tx) + γd(y, Ty)],

where α = λa1,β = λa2,γ = λa3, α,β,γ, λ ∈ [0, 1) and α+β+ γ < 1, see [23].
4. If r = 1 and a = (0, 1

2 , 1
2), we have a Kannan type contraction,

d(Tx, Ty) 6
λ

2
[d(x, Tx) + d(y, Ty)],



Z. D. Mitrović, H. Aydi, M. S. M. Noorani, H. Qawaqneh, J. Math. Computer Sci., 19 (2019), 51–57 53

see [14].
5. If r = 2 and a = (0, 1

2 , 1
2), we have

d(Tx, Ty) 6
λ√
2
[d2(x, Tx) + d2(y, Ty)]1/2.

6. If r = 0 and a = (0,α, 1 −α) with α ∈ (0, 1), we obtain an interpolative Kannan type contraction,

d(Tx, Ty) 6 λ(d(x, Tx))α(d(y, Ty))1−α,

see [12].
7. If r = 0 and a = (β,α, 1 − α− β) with α,β ∈ (0, 1), we have an interpolative Reich-Rus-Ćirić type
contraction,

d(Tx, Ty) 6 λ(d(x,y))β(d(x, Tx))α(d(y, Ty))1−α−β,

see [13].

Lemma 2.3. If r 6 s, then we have the following weighted inequality:

Mr(T , x,y,a) 6Ms(T , x,y,a).

Proof. See for example [7].

Our essential main result is

Theorem 2.4. Let (X,d,b) be a complete b-metric space and T : X → X be an (r,a)-weight type contraction
mapping. Then T has a fixed point x∗ ∈ X and for any x0 ∈ X the sequence {Tnx0} converges to x∗ if one of the
following conditions holds:

(i) T is continuous at such point x∗;

(ii) bra2 < 1;

(iii) bra3 < 1.

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn for all n > 0. If there exists n0
such that xn0 = xn0+1, then xn0 is a fixed point of T . The proof is completed. From now, assume that
xn 6= xn+1 for all n > 0.
1. Case r > 0. From condition (2.1), we have that

d(xn+1, xn) 6 λ[a1(d(xn, xn−1))
r + a2(d(xn, xn+1))

r + a3(d(xn−1, xn))r]1/r.

Therefore,

d(xn+1, xn) 6
[
λr(a1 + a3)

1 − λra2

]1/r

d(xn, xn−1).

Put γ =
[
λr(a1+a3)

1−λra2

]1/r
. We have that γ ∈ [0, 1). It follows from Lemma 1.3 that {xn} is a Cauchy sequence

in X. By completeness of (X,d,b), there exists x∗ ∈ X such that

lim
n→∞ xn = x∗.

Now, we claim that x∗ is a fixed point of T . First, for any n ∈N, we have

d(x∗, Tx∗) 6 b[d(x∗, xn+1) + d(Txn, Tx∗)]. (2.3)
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(i) Suppose that T is a continuous map at the point x∗ ∈ X.
Since lim

n→∞d(x∗, xn+1) = 0 and T is a continuous at a point x∗, we have

lim
n→∞d(Txn, Tx∗) = d(Tx∗, Tx∗) = 0,

and from (2.3), we obtain d(x∗, Tx∗) = 0, i.e., Tx∗ = x∗.
(ii) Suppose that bra2 < 1. Assume that Tx∗ 6= x∗. We have

0 < d(Tx∗, x∗) 6 b[d(Tx∗, xn+1) + d(xn+1, x∗)]
= b[d(Tx∗, Txn) + d(xn+1, x∗)]

6 b[a1d((x
∗, xn))r + a2(d(x

∗, Tx∗))r + a3(d(xn, xn+1))
r]1/r

+ bd(xn+1, x∗).

At the limit as n→∞, we have
0 < d(Tx∗, x∗) 6 ba1/r

2 d(Tx∗, x∗).

Since ba1/r
2 < 1, we have a contradiction, that is, Tx∗ = x∗.

(iii) Suppose that bra3 < 1. Again, assume that d(Tx∗, x∗) > 0. Then

0 < d(x∗, Tx∗) 6 b[d(x∗, xn+1) + d(xn+1, Tx∗)]
= b[d(x∗, xn+1) + d(Txn, Tx∗)]
6 bd(x∗, xn+1) + b[a1(d(xn, x∗))r + a2(d(xn, xn+1))

r

+ a3(d(x
∗, Tx∗))r]1/r.

Taking n→∞, we have
0 < d(Tx∗, x∗) 6 ba1/r

3 d(Tx∗, x∗).

Since ba1/r
3 < 1, we get a contradiction. Thus, Tx∗ = x∗.

2. Case r = 0. Here, (2.1) and (2.2) become

d(Tx, Ty) 6 λ(d(x,y))a1(d(x, Tx))a2(d(y, Ty))1−a1−a2 ,

for all x,y ∈ X\Fix(T), where λ ∈ [0, 1) and a1,a2 ∈ (0, 1). Following [13, Theorem 2.1 with its metric
case], the map T has a fixed point in X. Again, following [13, Example 2.1 and Example 2.2], we have not
a uniqueness of fixed points.

Remark 2.5. We note that for r = 0, the proof follows from Lemma 2.3 and the case r > 0.

We state the following corollaries.

Corollary 2.6. Let (X,d,b) be a complete b-metric space and T : X→ X be a mapping such that

d(Tx, Ty) 6 λda1(x,y) · da2(x, Tx) · da3(y, Ty),

for all x,y ∈ X\Fix(T), where λ ∈ [0, 1) , a1,a2,a3 > 0 and a1 + a2 + a3 = 1. Then T has a fixed point x∗ and for
any x0 ∈ X the sequence {Tnx0} converges to x∗.

Proof. Put in Theorem 2.4, r = 0 and a = (a1,a2,a3).

Remark 2.7. We note that from Corollary 2.6, we get [13, Theorem 2] (for metric spaces).

Corollary 2.8. Let (X,d,b) be a complete b-metric space and T : X→ X be a mapping such that

d(Tx, Ty) 6 λ 3
√
d(x,y) · d(x, Tx) · d(y, Ty), (2.4)

for all x,y ∈ X\Fix(T), where λ ∈ [0, 1) . Then T has a fixed point x∗ and for any x0 ∈ X, the sequence {Tnx0}
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converges to x∗.

Proof. Put in Theorem 2.4, r = 0 and a = ( 1
3 , 1

3 , 1
3).

Corollary 2.9. Let (X,d,b) be a complete b-metric space and T : X→ X be a mapping such that

d(Tx, Ty) 6
λ

3
[d(x,y) + d(x, Tx) + d(y, Ty)],

for all x,y ∈ X\Fix(T), where λ ∈ [0, 1) , then T has a fixed point x∗ and for any x0 ∈ X, the sequence {Tnx0}

converges to x∗ if one of the following conditions holds:

(i) T is continuous at such point x∗ ∈ X;

(ii) b < 3.

Proof. Put in Theorem 2.4, r = 1 and a = ( 1
3 , 1

3 , 1
3).

Corollary 2.10. Let (X,d,b) be a complete b-metric space and T : X→ X be a mapping such that

d(Tx, Ty) 6
λ√
3
[d2(x,y) + d2(x, Tx) + d2(y, Ty)]1/2,

for all x,y ∈ X\Fix(T), where λ ∈ [0, 1) , then T has a fixed point x∗ and for any x0 ∈ X, the sequence {Tnx0}

converges to x∗ if one of the following conditions holds:

(i) T is continuous at such point x∗ ∈ X;

(ii) b2 < 3.

Proof. Put in Theorem 2.4, r = 2 and a = ( 1
3 , 1

3 , 1
3).

Theorem 2.4 is illustrated by the following examples.

Example 2.11. Let X = {0, 1, 2, 4} be a set endowed with the classical metric d(x,y) = |x− y| (b = 1), that
is,

d(x, y) 0 1 2 4
0 0 1 2 4
1 1 0 1 3
2 2 1 0 2
4 4 3 2 0

We define a self-mapping T on X by T :

(
0 1 2 4
2 4 2 4

)
. It is clear that T is not a Reich-Rus-Ćirić

contraction. Indeed, there is no λ ∈ [0, 1) such that the following inequality is fulfilled

d(T0, T1) 6
λ

3
[d(0, 1) + d(0, T0) + d(1, T1)] ,

namely, we have,

2 6
λ

3
[1 + 2 + 3] .

So, we can not apply Corollary 2.9.
Also, from condition (2.4) we obtain

d(T0, T1) 6 λ 3
√
d(0, 1) · d(0, T0) · d(1, T1),
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i.e., 2 6 λ 3
√

1 · 2 · 3, so λ > 2
3√6
> 1. Hence can not apply Corollary 2.8.

On the other hand, the conditions of Corollary 2.10 are valid. Let x,y ∈ X be such that x,y ∈ X\Fix(T).
Then x,y ∈ {0, 1}. For λ =

√
6
7 , we have in this case,

d(Tx, Ty) 6
λ√
3
[d2(x,y) + d2(x, Tx) + d2(y, Ty)]1/2,

for x,y ∈ {0, 1} and λ =
√

6
7 and {2, 4} is the set of fixed points of T .

Example 2.12. Consider the set X = [1, 2]. Take on X the b-metric d(x,y) =| x− y |2 (b = 2). Obviously,
(X,d) is a complete b−metric space. Consider now the mapping

Tx =
1 + x

2
.

Let x,y ∈ X be such that x,y ∈ X\Fix(T). Then x,y ∈ (1, 2]. Showing that

d(Tx, Ty) 6
λ√
3
[d2(x,y) + d2(x, Tx) + d2(y, Ty)]1/2,

is equivalent to
3d2(Tx, Ty) 6 λ2[d2(x,y) + d2(x, Tx) + d2(y, Ty)],

that is,
3
16

| x− y |46 λ2[| x− y |4 +
1

16
| x− 1 |4 +

1
16

| x− 1 |4],

which holds when taking λ ∈ [
√

3
4 , 1). Note that T is continuous at 1. All the conditions of Corollary 2.10

are satisfied. Here, 1 is the fixed point of T .

Acknowledgment

The authors thank UKM university, Malaysia since this work has been financially supported by UKM
Grant DIP-2017-011 and FRGS/1/2017/STG06/UKM/01/1. We also thank the editor and reviewers for
careful reading of the paper and for helpful comments, allowing us to improve our results.

References

[1] A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered
b-metric spaces, Math. Slovaca, 64 (2014), 941–960. 1
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