

FIXED POINTS OF NONEXPANSIVE MAPPINGS
IN BANACH SPACES
F. Golkar, A. Dianatifar, A. M. Aminpour, M. Sadeghi
trment of Mathematics, Shahid Chamran university of Ahvaz, Ahvaz, Iran
E-mail
f-golkar@phdstu.scu.ac.ir
Dianati.math@gmail.com
aminpour@scu.ac.ir
m10sadeghi@gmail.com

Article history:

Received July 2014
Accepted August 2014
Available online August 2014

Abstract

In this paper we study the approximation of common fixed points of a finite family of nonexpansive mappings in uniformly smooth Banach spaces. Also we show that the convergence of the proposed algorithm can be proved under some types of control conditions.
Keywords: Nonexpansive mapping, Strong convergence, Common fixed point, Uniformly smooth Banach space.

1. Introduction

Let X be a real Banach space. A mapping $T: X \rightarrow X$ is said to be nonexpansive provided that

$$
\|T x-T y\| \leq\|x-y\|, \quad x, y \in X
$$

Let $T_{i}, i=1,2, \ldots, N$ be a finite family of nonexpansive self-mappings on X, and let $F i x\left(T_{i}\right)=\left\{x \in X: \quad T_{i} x=x\right\}$. We shall assume that $F:=\bigcap_{i=1}^{N} F i x\left(T_{i}\right) \neq \varnothing$. Assume that for each natural number n , there correspond N real numbers $\alpha_{n, 1}, \alpha_{n, 2}, \ldots, \alpha_{n, N}$ in the half-open interval $(0,1]$. Given N self-mappings $T_{1}, T_{2}, \ldots, T_{N}$ as in [4] one can define, for each n the mappings $U_{n, 1}, U_{n, 2}, \ldots, U_{n, N}$ in the following way:

$$
\begin{align*}
& U_{n, 1}= \alpha_{n, 1} T_{1}+\left(1-\alpha_{n, 1}\right) I \\
& \mathrm{U}_{n, 2}=\alpha_{n, 2} \mathrm{~T}_{2} \mathrm{U}_{n, 1}+\left(1-\alpha_{n, 2}\right) \mathrm{I} \\
& \cdot \\
& \cdot \tag{1.1}\\
& U_{n, N-1}=\alpha_{n, N-1} T_{n-1} U_{n, N-2}+\left(1-\alpha_{n, N-1}\right) I \\
& W_{n}:=U_{n, N}=\alpha_{n, N} T_{N} U_{n, N-1}+\left(1-\alpha_{n, N}\right) I
\end{align*}
$$

Nonexpansivity of T_{i} yields the nonexpansivity of W_{n}. Moreover, in [4], it is shown that Fix $\left(W_{n}\right)=F$.
In the case X equals a real Hilbert space H, Y. Yao in [8] introduced an iterative algorithm to approximate the common fixed points of a finite family of nonexpansive self-mappings defined on the real Hilbert space H. To write down Yao's proposed scheme, we recall that $f: H \rightarrow H$ is said to be a contraction if there exists a number $0<\alpha<1$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\|, \quad x, y \in H .
$$

Recall also that a bounded linear operator A on the Hilbert space H is said to be strongly positive if there exists a positive number $\bar{\gamma}$ such that

$$
\langle A x, x\rangle \geq \vec{\gamma}\|x\|^{2}, \quad x \in H .
$$

Assuming that I denotes the identity operator on H and $\left\{\lambda_{n}\right\}$ is a sequence of real numbers, and $u_{0} \in H$ is arbitrarily chosen, Yao introduced

$$
u_{n+1}=\alpha_{n} \gamma f\left(u_{n}\right)+\beta u_{n}+\left((1-\beta) I-\lambda_{n} A\right) W_{n} u_{n}
$$

Where γ, β are two positive real numbers such that $\beta<1, f: H \rightarrow H$ is a contraction with coefficient $0<\alpha<1, A$ is a strongly positive bounded linear operator with coefficient $\bar{\gamma}>0$ such that $0<\gamma<\frac{\bar{\gamma}}{\alpha}$ and W_{n} is the self-mapping of H generated by (1.1).
Under the assumption that the sequence $\left\{\lambda_{n}\right\}$ satisfies the following two control conditions $\left(C_{1}\right): \lim _{n \rightarrow \infty} \lambda_{n}=0$,
$\left(C_{2}\right): \sum_{n=1}^{\infty} \lambda_{n}=\infty$,
Yao proved that the iterative sequence $\left\{u_{n}\right\}$ converges strongly to the unique solution of the variational inequality

$$
\left\langle(A-\gamma f) u^{*}, u-u^{*}\right\rangle \geq 0 \quad u \in F
$$

Let X be a real Banach space. For $\mathrm{t}>0$, we define

$$
\rho(\mathrm{t})=\frac{1}{2} \sup \{\|\mathrm{x}+\mathrm{ty}\|+\|\mathrm{x}-\operatorname{ty}\|-2:\|x\|=\|y\|=1\} .
$$

A Banach space X is said to be uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho(t)}{t}=0 .
$$

Geometrically, this means that the function $x \mapsto h(x)=\|x\|$ is uniformly Ferechetdifferentiable on the unit sphere, that is,

$$
\lim _{t \rightarrow 0^{+}\|x\|=\| \| y \|=1} \sup \left|\frac{\|x+t y\|-\|x\|}{t}-\left\langle h^{\prime}(x), y\right\rangle\right|=0 .
$$

Let X be a real Banach space. Recall the (normalized) duality mapping J from X to X^{*} the dual space of X, is given by

$$
\begin{equation*}
J(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\|x\|^{2}\right\} \tag{1.2}
\end{equation*}
$$

In this paper we assume that X is a uniformly smooth Banach space and C is a closed convex subset of X. We further assume that $f: C \rightarrow C$ is a contraction with coefficient $0<\alpha<1$. By a slight modification of the sequence introduced by Yao, and replacing the strongly positive operator A by the identity operator I acting instead on a uniformly smooth Banach space X, we shall see that the sequence

$$
u_{n+1}=\lambda_{n} f\left(u_{n}\right)+\beta u_{n}+\left(1-\beta-\lambda_{n}\right) W_{n} u_{n}
$$

Converges strongly to the unique solution of the variational inequality

$$
\begin{equation*}
\left\langle(I-f) u^{*}, u-u^{*}\right\rangle \geq 0 \quad u \in F . \tag{1.3}
\end{equation*}
$$

Here $0<\beta<1$, and W_{n} 's are the self-mappings of C generated by (1.1), moreover the sequence $\left\{\lambda_{n}\right\}$ satisfies the control conditions $\left(C_{1}\right),\left(C_{2}\right)$.

2. PRELIMINARIES

This section collects some lemmas which will be used in the proofs for the main results in the next section.

Lemma 2.1. [7] Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ with $0<\liminf _{n \rightarrow \infty} \alpha_{n} \leq \limsup _{n \rightarrow \infty} \alpha_{n}<1$. Suppose $x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) y_{n}$ for all integers $n \geq 0$ and
$\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \quad\right) \leq 0$. Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.

Lemma 2.2. [6] Let X be a real Banach space. Then for all $x, y \in X$

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle
$$

Lemma 2.3. [1] Assume $\left\{a_{n}\right\}$ to be a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n} \gamma_{n}, \quad \forall n \geq 0
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in R such that
(i) $\sum_{n=0}^{\infty} \gamma_{n}=\infty$
(ii) either $\limsup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|\delta_{n} \gamma_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proposition2.4. [3] If X is a uniformly smooth Banach space, then the normalized duality mapping J defined by (1.2) is single-valued and uniformly continuous on each bounded subset of X from the norm topology of X to the norm topology of X^{*}.

Lemma 2.5. [2] Let X be a uniformly smooth Banach space, C a closed convex subset of X, $T: C \rightarrow C$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \varnothing$, and $f: C \rightarrow C$ be a contraction. then $\left\{x_{t}\right\}$ defined by

$$
\begin{equation*}
x_{t}=t f\left(x_{t}\right)+(1-t) T x_{t} \tag{2.1}
\end{equation*}
$$

Convergence strongly to a point in $\operatorname{Fix}(T)$.

3. Main results

We now state and prove the main result of this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly smooth Banach space X, f be a contraction on C with coefficient $0<\alpha<1$, choose any $u_{0} \in C$. Define $\left\{u_{n}\right\}$ by

$$
u_{n+1}=\lambda_{n} f\left(u_{n}\right)+\beta u_{n}+\left(1-\beta-\lambda_{n}\right) W_{n} u_{n}
$$

Where β is a positive real number such that $\beta<1$ and W_{n} is the self-mapping of C generated by (1.1), suppose the sequence $\left\{\alpha_{n, i}\right\}$ satisfy $\lim _{n \rightarrow \infty}\left(\alpha_{n, i}-\alpha_{n-1, i}\right)=0$ and the sequence $\left\{\lambda_{n}\right\}$ satisfying the control conditions $\left(C_{1}\right),\left(C_{2}\right)$. Then the sequence $\left\{u_{n}\right\}$ converges strongly to the unique solution of the variational inequality defined by (1.3).

Proof. First we observe that $\left\{u_{n}\right\}$ is bounded. Indeed, pick any $p \in F$ to obtain

$$
\begin{align*}
\left\|u_{n+1}-p\right\| & \leq \lambda_{n}\left\|f\left(u_{n}\right)-f(p)\right\|+\beta\left\|u_{n}-p\right\|+\left(1-\beta-\lambda_{n}\right)\left\|W_{n} u_{n}-p\right\|+\lambda_{n}\|f(p)-p\| \\
& \leq\left(\lambda_{n} \alpha+1-\lambda_{n}\right)\left\|u_{n}-p\right\|+\lambda_{n}\|f(p)-p\| \\
& =\left[1-\lambda_{n}(1-\alpha)\right]\left\|u_{n}-p\right\|+\lambda_{n}\|f(p)-p\| \tag{3.1}
\end{align*}
$$

It follows from (1.3) by induction that

$$
\left\|u_{n}-p\right\| \leq \max \left\{\left\|u_{0}-p\right\|, \frac{\|f(p)-p\|}{1-\alpha}\right\}
$$

Hence, $\left\{u_{n}\right\}$ is bounded, and so are $\left\{f\left(u_{n}\right)\right\}$ and $\left\{W_{n} u_{n}\right\}$.
Next, we claim that $\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=0$.
Define

$$
u_{n+1}=(1-\beta) z_{n}+\beta u_{n}
$$

We shall use M to denote the possible different constants appearing in the following reasoning. Observe that from the definition of z_{n}, we obtain

$$
\begin{aligned}
z_{n+1}-z_{n} & =\frac{u_{n+2}-\beta u_{n+1}}{1-\beta}-\frac{u_{n+1}-\beta u_{n}}{1-\beta} \\
& =\frac{\lambda_{n+1} f\left(u_{n+1}\right)+\left(1-\beta-\lambda_{n+1}\right) W_{n+1} u_{n+1}}{1-\beta}-\frac{\lambda_{n} f\left(u_{n}\right)+\left(1-\beta-\lambda_{n}\right) W_{n} u_{n}}{1-\beta} \\
& =\frac{\lambda_{n+1}}{1-\beta} f\left(u_{n+1}\right)-\frac{\lambda_{n}}{1-\beta} f\left(u_{n}\right)+W_{n+1} u_{n+1}-W_{n} u_{n}+\frac{\lambda_{n}}{1-\beta} W_{n} u_{n}-\frac{\lambda_{n+1}}{1-\beta} W_{n+1} u_{n+1} \\
& =\frac{\lambda_{n+1}}{1-\beta}\left[f\left(u_{n+1}\right)-W_{n+1} u_{n+1}\right]+W_{n+1} u_{n+1}+\frac{\lambda_{n}}{1-\beta}\left[W_{n} u_{n}-f\left(u_{n}\right)\right]-W_{n} u_{n} \pm W_{n+1} u_{n} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\|-\left\|u_{n+1}-u_{n}\right\| & \leq \frac{\lambda_{n+1}}{1-\beta}\left(\| f\left(u_{n+1}\|+\| W_{n+1} u_{n+1} \|\right)\right. \\
& +\frac{\lambda_{n}}{1-\beta}\left(\left\|f\left(u_{n}\right)\right\|+\left\|W_{n} u_{n}\right\|\right)+\left\|W_{n+1} u_{n+1}-W_{n+1} u_{n}\right\| \\
& +\left\|W_{n+1} u_{n}-W_{n} u_{n}\right\|-\left\|u_{n+1}-u_{n}\right\| \\
& \leq \frac{\lambda_{n+1}}{1-\beta}\left(\| f\left(u_{n+1}\|+\| W_{n+1} u_{n+1} \|\right)\right. \\
& +\frac{\lambda_{n}}{1-\beta}\left(\left\|f\left(u_{n}\right)\right\|+\left\|W_{n} u_{n}\right\|\right)+\left\|W_{n+1} u_{n}-W_{n} u_{n}\right\| \tag{3.2}
\end{align*}
$$

From (1.1), since T_{N} and $U_{n, N}$ are nonexpansive,

$$
\begin{aligned}
\left\|W_{n+1} u_{n}-W_{n} u_{n}\right\|-\| u_{n+1}-u_{n} & \| \\
& =\left\|\alpha_{n+1, N} T_{N} U_{n+1, N-1} u_{n}+\left(1-\alpha_{n+1, N}\right) u_{n}-\alpha_{n, N} T_{N} U_{n, N-1} u_{n}-\left(1-\alpha_{n, N}\right) u_{n}\right\| \\
& \leq\left|\alpha_{n+1, N}-\alpha_{n, N}\right|\left\|u_{n}\right\|+\left\|\alpha_{n+1, N}\left(T_{N} U_{n+1, N-1} u_{n}-T_{N} U_{n, N-1} u_{n}\right)\right\| \\
& \leq 2 M\left|\alpha_{n+1, N}-\alpha_{n, N}\right|+\alpha_{n+1, N-1}\left\|U_{n+1, N-1} u_{n}-U_{n, N-1} u_{n}\right\|(3.3)
\end{aligned}
$$

Again, from (1.1),

$$
\begin{align*}
\left\|U_{n+1, N-1} u_{n}-U_{n, N-1} u_{n}\right\| & \left\|\alpha_{n+1, N-1} T_{N-1} U_{n+1, N-2} u_{n}+\left(1-\alpha_{n+1, N-1}\right) u_{n}\right\| \\
& -\alpha_{n, N-1} T_{N-1} U_{n, N-2} u_{n}-\left(1-\alpha_{n, N-1}\right) u_{n} \\
& \leq\left|\alpha_{n+1, N-1}-\alpha_{n, N-1}\right|\left\|u_{n}\right\|+\left\|\alpha_{\mathrm{n}+1, \mathrm{~N}-1} U_{\mathrm{n}+1, \mathrm{~N}-2} u_{n}-\alpha_{n, N-1} T_{N-1} U_{n, N-2} u_{n}\right\| \\
& \leq\left|\alpha_{n+1, N-1}-\alpha_{n, N-1}\right|\left\|u_{n}\right\|+\alpha_{n+1, N-1}\left\|U_{n+1, N-2} u_{n}-U_{n, N-2} u_{n}\right\| \\
& +\left|\alpha_{\mathrm{n}+1, \mathrm{~N}-1}-\alpha_{\mathrm{n}, \mathrm{~N}-1}\right|\left\|T_{\mathrm{N}-1} U_{\mathrm{n}, \mathrm{~N}-2} u_{n}\right\| \\
& \leq 2 M\left|\alpha_{n+1, N-1}-\alpha_{n, N-1}\right|+\left\|U_{n+1, N-2} u_{n}-U_{n, N-2} u_{n}\right\| \tag{3.4}
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
\left\|U_{n+1, N-2} u_{n}-U_{n, N-2} u_{n}\right\| & \leq 2 M\left|\alpha_{n+1, N-1}-\alpha_{n, N-1}\right|+2 M\left|\alpha_{n+1, N-2}-\alpha_{n, N-2}\right| \\
& \leq 2 M \sum_{i=2}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right|+\left\|U_{n+1,1} u_{n}-U_{n, 1} u_{n}\right\| \\
& =\left\|\alpha_{n+1,1} T_{1} u_{n}+\left(1-\alpha_{n+1,1}\right)-\alpha_{n, 1} T_{1} u_{n}-\left(1-\alpha_{n, 1}\right) u_{n}\right\|+2 M \sum_{i=2}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right|
\end{aligned}
$$

$$
\begin{align*}
& \leq\left|\alpha_{n+1,1}-\alpha_{n, 1}\right|\left\|u_{n}\right\|+\left\|\alpha_{n+1,1} T_{1} u_{n}-\alpha_{n, 1} T_{1} u_{n}\right\|+2 M \sum_{i=2}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right| \\
& \leq 2 M \sum_{i=1}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right| \tag{3.5}
\end{align*}
$$

Substituting (3.5) into (3.3), we have

$$
\begin{align*}
\left\|W_{n+1} u_{n}-W_{n} u_{n}\right\| & \leq 2 M\left|\alpha_{n+1, N}-\alpha_{n, N}\right|+2 \alpha_{n+1, N} M \sum_{i=1}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right| \\
& \leq 2 M\left|\alpha_{n+1, N}-\alpha_{n, N}\right|+2 M \sum_{i=1}^{N-1}\left|\alpha_{n+1, i}-\alpha_{n, i}\right| \\
& =2 M \sum_{i=1}^{N}\left|\alpha_{n+1, i}-\alpha_{n, i}\right| \tag{3.6}
\end{align*}
$$

Using (3.6) in (3.2), we get
$\left\|z_{n+1}-z_{n}\right\|-\left\|u_{n+1}-u_{n}\right\| \leq \frac{\lambda_{n+1}}{1-\beta}\left(\| f\left(u_{n+1}\|+\| W_{n+1} u_{n+1} \| \quad\right)\right.$

$$
+\frac{\lambda_{n}}{1-\beta}\left(\left\|f\left(u_{n}\right)\right\|+\left\|W_{n} u_{n}\right\|\right)+2 M \sum_{i=1}^{N}\left|\alpha_{n+1, i}-\alpha_{n, i}\right|
$$

Which implies that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|u_{n+1}-u_{n}\right\|\right) \leq 0
$$

We can obtain $\lim _{n \rightarrow \infty}\left\|z_{n}-u_{n}\right\|=0$ easily by lemma (2.1). Consequently

$$
\lim _{n \rightarrow \infty}\left\|u_{n+1}-u_{n}\right\|=\lim _{n \rightarrow \infty}(1-\beta)\left\|z_{n}-u_{n}\right\|=0
$$

We can write the sequence $\left\{u_{n}\right\}$ as follow

$$
\mathrm{u}_{\mathrm{n}+1}=\lambda_{n} \mathrm{f}\left(\mathrm{u}_{n}\right)-\lambda_{n} \mathrm{~W}_{n} \mathrm{u}_{n}+\mathrm{y}_{n}
$$

Where $y_{n}=W_{n} u_{n}+\beta\left(u_{n}-W_{n} u_{n}\right)$
Observing that $\mathrm{u}_{\mathrm{n}+1}-\mathrm{y}_{n}=\lambda_{n}\left(\mathrm{f}\left(\mathrm{u}_{n}\right)-\mathrm{W}_{n} \mathrm{u}_{n}\right)$, we can easily get

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n+1}\right\|=0 \\
\left\|u_{n}-y_{n}\right\| \leq\left\|u_{n}-u_{n+1}\right\|+\left\|u_{n+1}-y_{n}\right\|
\end{gathered}
$$

That is, $\lim _{n \rightarrow \infty}\left\|y_{n}-u_{n}\right\|=0$. On the other hand, we have

$$
\left\|W_{n} u_{n}-u_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-W_{n} u_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\beta\left\|u_{n}-W_{n} u_{n}\right\|
$$

Which implies $(1-\beta)\left\|W_{n} u_{n}-u_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|$ but we have $\beta \in(0,1)$ so we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n} u_{n}-u_{n}\right\|=0 \tag{3.7}
\end{equation*}
$$

Next, we claim that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle \leq 0 \tag{3.8}
\end{equation*}
$$

Let u_{t} be the unique fixed point of the contraction mapping given by

$$
u \mapsto t f(u)+(1-t) W_{n} u
$$

Then, u_{t} solves the fixed point equation $u_{t}=t f\left(u_{t}\right)+(1-t) W_{n} u_{t} \quad t \in(0,1)$. Thus

$$
u_{t}-u_{n}=t\left(f\left(u_{t}\right)-u_{n}\right)+(1-t)\left(W_{n} u_{t}-u_{n}\right) .
$$

We apply Lemma 2.2 to get
$\left\|u_{t}-u_{n}\right\|^{2} \leq(1-t)^{2}\left\|W_{n} u_{t}-u_{n}\right\|^{2}+2 t\left\langle f\left(u_{t}\right)-u_{n}, J\left(u_{t}-u_{n}\right)\right\rangle$
$\leq\left(\left\|W_{n} u_{t}-W_{n} u_{n}\right\|+\left\|W_{n} u_{n}-u_{n}\right\|\right)^{2}+2 t\left\langle f\left(u_{t}\right)-u_{t}, J\left(u_{t}-u_{n}\right)\right\rangle+2 t\left\langle u_{t}-u_{n}, J\left(u_{t}-u_{n}\right)\right\rangle$
$\leq(1-t)^{2}\left(\left\|u_{t}-u_{n}\right\|^{2}+a_{n}(t)\right)+2 t\left\|u_{t}-u_{n}\right\|^{2}+2 t\left\langle f\left(u_{t}\right)-u_{t}, J\left(u_{t}-u_{n}\right)\right\rangle$
Where

$$
\mathrm{a}_{n}(\mathrm{t})=\left(2\left\|u_{t}-u_{n}\right\|+\left\|W_{n} u_{n}-u_{n}\right\|\right)\left\|W_{n} u_{n}-u_{n}\right\|
$$

Noting (3.7) $\lim _{n \rightarrow \infty} a_{n}(t)=0$
The last inequality (3.9) implies

$$
\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \leq \frac{t}{2}\left\|u_{t}-u_{n}\right\|^{2}+\frac{(1-t)^{2}}{2 t} a_{n}(t)
$$

It follows that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \leq \frac{t}{2} M^{2} \tag{3.11}
\end{equation*}
$$

Where $M>0$ is a constant such that $M \geq\left\|u_{t}-u_{n}\right\|$ for all $t \in(0,1)$ and $n \geq 1$. Letting $t \rightarrow 0$ in (3.11) and noting (3.10) yields

$$
\limsup _{n \rightarrow \infty}\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \leq 0 .
$$

Moreover, we have that

$$
\begin{aligned}
\left\langle p-f(p), J\left(p-u_{n}\right)\right\rangle & =\left\langle p-f(p), J\left(p-u_{n}\right)-J\left(u_{t}-u_{n}\right)\right\rangle \\
& +\left\langle p-f(p)-u_{t}+f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle+\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \\
& =\left\langle p-f(p), J\left(p-u_{n}\right)-J\left(u_{t}-u_{n}\right)\right\rangle \\
& +\left\langle p-u_{t}, J\left(u_{t}-u_{n}\right)\right\rangle+\left\langle f\left(u_{t}\right)-f(p), J\left(u_{t}-u_{n}\right)\right\rangle \\
& +\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle
\end{aligned}
$$

Then, we obtain
$\limsup \left\langle p-f(p), J\left(p-u_{n}\right)\right\rangle \leq \limsup \left\langle p-f(p), J\left(p-u_{n}\right)-J\left(u_{t}-u_{n}\right)\right\rangle$

$$
\begin{aligned}
& +\left\|p-u_{t}\right\| \limsup _{n \rightarrow \infty}\left\|u_{t}-u_{n}\right\|+\left\|f\left(u_{t}\right)-f(p)\right\| \underset{n \rightarrow \infty}{\limsup \|} u_{t}-u_{n} \| \\
& +\limsup _{n \rightarrow \infty}\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \\
& \leq \underset{n \rightarrow \infty}{\limsup }\left\langle p-f(p), J\left(p-u_{n}\right)-J\left(u_{t}-u_{n}\right)\right\rangle \\
& +(1+\alpha)\left\|p-u_{t}\right\| \limsup _{n \rightarrow \infty}\left\|u_{t}-u_{n}\right\| \\
& +\underset{n \rightarrow \infty}{\limsup }\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle
\end{aligned}
$$

By Lemma 2.5, $u_{t} \rightarrow p \in F$ ast $\rightarrow 0$, which is the unique solution of the variational inequality (1.3). Noting proposition 2.4 , we obtain

$$
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle p-f(p), J\left(p-u_{n}\right)-J\left(u_{t}-u_{n}\right)\right\rangle=0
$$

Therefore we have
$\underset{n \rightarrow \infty}{\limsup }\left\langle p-f(p), J\left(p-u_{n}\right)\right\rangle=\underset{t \rightarrow 0}{\limsup } \limsup _{n \rightarrow \infty}\left\langle p-f(p), J\left(p-u_{n}\right)\right\rangle$

$$
\leq \limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left\langle u_{t}-f\left(u_{t}\right), J\left(u_{t}-u_{n}\right)\right\rangle \leq 0 .
$$

Finally we show that $\lim _{n \rightarrow \infty} u_{n}=p$.
From Lemma 2.2, we have

$$
\begin{aligned}
\left\|u_{n+1}-p\right\|^{2} & =\left\|\lambda_{n}\left(f\left(u_{n}\right)-p\right)+\beta\left(u_{n}-p\right)+\left(1-\beta-\lambda_{n}\right)\left(W_{n} u_{n}-p\right)\right\|^{2} \\
& \leq\left(\beta\left\|u_{n}-p\right\|+\left(1-\beta-\lambda_{n}\right)\left\|u_{n}-p\right\|\right)^{2}+2 \lambda_{n}\left\langle f\left(u_{n}\right)-p, J\left(u_{n+1}-p\right)\right\rangle \\
& =\left(1-\lambda_{n}\right)^{2}\left\|u_{n}-p\right\|^{2}+2 \lambda_{n}\left\langle f\left(u_{n}\right)-f(p), J\left(u_{n+1}-p\right)\right\rangle+2 \lambda_{n}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle \\
& \left.\leq\left(1-\lambda_{n}\right)^{2}\left\|u_{n}-p\right\|^{2}+\lambda_{n} \alpha\left\|u_{n}-p\right\|^{2}+\left\|u_{n+1}-p\right\|^{2}\right]+2 \lambda_{n}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle
\end{aligned}
$$

Which implies that

$$
\begin{align*}
\left\|u_{n+1}-p\right\|^{2} & \leq \frac{\left(1-\lambda_{n}\right)^{2}+\lambda_{n} \alpha}{1-\lambda_{n} \alpha}\left\|u_{n}-p\right\|^{2}+\frac{2 \lambda_{n}}{1-\lambda_{n} \alpha}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle \\
& \leq\left[1-\frac{2 \lambda_{n}(1-\alpha)}{1-\lambda_{n} \alpha}\left\|u_{n}-p\right\|^{2}\right. \\
& +\frac{2 \lambda_{n}(1-\alpha)}{1-\lambda_{n} \alpha}\left[\frac{1}{1-\alpha}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle+\frac{\lambda_{n}}{2(1-\alpha)}\left\|u_{n}-p\right\|^{2}\right] \\
& =\left(1-\gamma_{n}\right)\left\|u_{n}-p\right\|^{2}+\delta_{n} \gamma_{n} \tag{3.12}
\end{align*}
$$

Where $\gamma_{n}=\frac{2 \lambda_{n}(1-\alpha)}{1-\lambda_{n} \alpha}, \delta_{n}=\frac{1}{1-\alpha}\left\langle f(p)-p, J\left(u_{n+1}-p\right)\right\rangle+\frac{\lambda_{n}}{2(1-\alpha)}\left\|u_{n}-p\right\|^{2}$
It is easily seen that $\sum_{n=1}^{\infty} \gamma_{n}=\infty$ and $\limsup _{n \rightarrow \infty} \delta_{n} \leq 0$.
Finally we apply Lemma 2.3 to (3.12) to conclude that $\lim _{n \rightarrow \infty} u_{n}=p$. This complete the proof.

References

1. H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 241 (2000)
2. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279-291.
3. K. Goebel, S. Reich, Uniform Convexity, Nonexpansive mappings and Hyperbolic Geometry, Dekker, 1984.
4. S. Atsushiba, W. Takahashi Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J. Math. 41 (1999), 435-453.
5. Sh. Banerjee, B. S. Choudhury, Weak and strong convergence theorems of a new iterative process with errors for common fixed points of a finite families of asymptotically nonexpansive mappings in the intermediate sense in Banach spaces. TJMCS, 11(2014), 79-85
6. S. S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal. 33 (1997) 4197-4208.
7. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter

Nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305(2005) 227-239
8. Y. Yao, A general iterative method for a finite family of nonexpansive mappings, Nonlinear Anal. 66 (2007), 2676-2687

