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On asymptotically lacunary statistical equivalent functions
via ideals
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Abstract

The goal of this paper is to introduce Jg-asymptotically statistical equivalent by taking nonnegative two real-valued
Lebesgue measurable functions y (v) and p(v) in the interval (1, c0) instead of sequences and we establish some inclusion
relations.
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1. Introduction and preliminaries

Quite recently, Das et al. [1] studied well known summability methods by using ideal and introduced
new notions, namely ideal statistical convergence and ideal lacunary statistical convergence.

In 1993 Marouf [5] introduced definitions of asymptotically equivalent sequences and asymptotic reg-
ular matrices. Later on Patterson [6] extended these concepts by presenting an asymptotically statistical
equivalent. In [8] Savas introduced Jg-asymptotically statistical equivalent sequences. Also Giimiis and
Savas [14] generalized Jg-asymptotically statistical equivalent sequences. In [10], Savas studied general-
ized summability methods of functions and also introduced statistically convergent functions via ideals,
(see, [11]).

The notion of J-convergence was studied by Kostyrko et al. [4]. Some works on ideals can be found
in [3,9, 12, 13].

The main objective is to present Jg-asymptotically statistical equivalent and J-asymptotically statistical
equivalent by taking nonnegative two real-valued Lebesgue measurable functions in the interval (1, c0).
Furthermore we prove some interesting theorems.

Definition 1.1 ([5, Marouf]). Let y = (vi) and p = (1) be two nonnegative sequences. If
lim % =1,
L
then we say that v = (vi) and p = (p) are asymptotically equivalent and it is denoted by x~y.
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Definition 1.2 ([2, Fridy]). Let y = (vi) be a sequence, if for every ¢ >0,
1
lim E{the number of i< n:|yi— Bl = ¢} =0,
n

then we say that y = (vi) is statistically convergent to 3.
The next definition is natural combination of Definitions 1.1 and 1.2.

Definition 1.3 ([6, Patterson]). Let v = (vi) and p = (u;) be two nonnegative sequences. If for every
@ >0,

1 .
lim{thenumber ofi<n: %—B‘ > (p} =0,
nn Hi

then we say that v = (vi) and p = (pi) are asymptotically statistical equivalent of multiple 3 and it is
S
denoted by vy ? wand simply asymptotically statistical equivalent if 3 = 1.

The following definitions and notions will be needed.

Definition 1.4 ([4]). A non-empty family J C 2Y of subsets of a nonempty set Y is said to be an ideal in Y
if the following conditions hold

(i). R,S € JimpliesRUS € §;
(ii). R€ d, S C Rimplies S € §.

Definition 1.5 ([3]). A non-empty family ¥ C 2N is said to be a filter of N if the following conditions
hold:

(i). 0¢5;
(ii). R,S € F implies RNS € T;
(iii). Re F, SC Rimply S € J.

If J is proper ideal of N (i.e., IN ¢ J), then the family of sets F(J) ={K C IN: 3R € J: K=IN\R}is a
filter of IN. It is called the filter associated with the ideal.

Definition 1.6 ([3, 4]). A proper ideal J is said to be admissible if {n} € J for each n € IN.

Given J C 2N be a nontrivial ideal in IN. The sequence (i) is said to be J-convergent to (3, if for each
@ > 0theset A(p) ={neIN:|yi—p| > ¢} belongs to J (see, [3, 4]). Following these results we intro-
duce two new notions Jg-asymptotically statistical equivalent of multiple 3 and strong Jg-asymptotically
equivalent of multiple (3.

By a lacunary 6 = (15); s = 0,1,2,..., where lyp = 0, we shall mean an increasing sequence of non-
negative integers with s = ls —ls_1 — 00 as s — oco. The intervals determined by 6 will be denoted by
Js = (1s—1, ls] and the ratio 1:—; will be denoted by q;.

Patterson and Savas [7] introduced the following definition.

Definition 1.7. Let 0 = (1) be a lacunary sequence, two nonnegative sequences y = (yi) and p = (u) are
said to be asymptotically lacunary statistical equivalent of multiple 3 provided that for every ¢ >0

{ie]s:

where the vertical bars indicate the number elements in the enclose set.

1
lim —
s Tg

Hi

The following definitions are given in [1].
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Definition 1.8. A sequence vy = (i) is said to be J-statistically convergent to (3 or S(J)-convergent to f3 if,
forany ¢ >0and ¢ >0,

1
{ne]N:nl{s<n:vi—f3|>cp}|>tl)}63.

In this case, we write yi — (S(d)). The class of all J-statistically convergent sequences will be denoted
by S(3).

Definition 1.9. Let 6 be a lacunary sequence. A sequence vy = (i) is said to be J-lacunary statistically
convergent to (3 or Sg(J)-convergent to 3 if, for any ¢ > 0and P > 0,

1
{selN:TI{iEIsrlvi—B|><p}|>tb}€H.

In this case, we write yi — 3(Sg(d)). The class of all J-lacunary statistically convergent sequences will be
denoted by Sg(J).

Definition 1.10. Let 6 be a lacunary sequence. A sequence Y = (vi) is said to be strong J-lacunary
convergent to 3 or Ng(J)-convergent to 3 if, for any ¢ >0

1
{S€N~TSZ'Y162(P}€3-

i€]s

In this case, we write yi — (Ng(d)). The class of all strong J-lacunary statistically convergent
sequences will be denoted by Ng(J).

We now introduce the following definitions.

Definition 1.11. Let 0 be a lacunary sequence and y (v) be a nonnegative real-valued Lebesgue measurable
function in the interval (1, oco) if

H—Iimlj ly (v) —Bldv =0.
S—00 TS Ve]s

Then we say that the function y (v) is Ng(J)-summable to . If J = Jg, ={L C N : L is a finite subset},
Ng (J)-summability becomes Ng-summability, which is defined as

lim 1J ly(v) —pBldv =0.
vE]s

$—00 Tg
Definition 1.12. A nonnegative real-valued Lebesgue measurable function vy (v) is said to be Jg-statistically
convergent or Sg(d) convergent to 3, if for every ¢ > 0 and ) >0,

{SGN::I{VGISIY(V)—B|>@}I>¢}€5.

In this case, we write Sg(J) —limy(v) = 3 ory(v) = B (Se(d)). If we take J = Jgn, then Sg(J)-convergence
reduces to lacunary statistical convergence.

2. New definitions

Definition 2.1. Let 0 be a lacunary sequence; and J be an admissible ideal in IN and v (v), u(v) be two
nonnegative real-valued Lebesgue measurable functions in the interval (1,00). If for every ¢ > 0 and
Y >0,

y(v

{selNzll{VEJs:‘)—B‘>@H>¢}GH,
Ts w(v)
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then we say that the functions y(v) and p(v) are Jo-asymptotically equivalent of multiple 3 (denoted by
v(v) Sgig) 1(v)) and simply J-asymptotically lacunary statistical equivalent if 3 = 1. Furthermore, let
Sg (d) denote the set of y(v) and u(v) such that y(v) Sgig) u(v).

If we take J = Jgn, Jo-asymptotically statistical equivalent coincides with lacunary asymptotically
statistical equivalent which is given below.

Definition 2.2. Let 6 be a lacunary sequence; and J be an admissible ideal in IN and v (v), 1 (v) be two
nonnegative real-valued functions which are measurable in the interval (1, co). If for every ¢ > 0

2@}|=0,

then we say that the functions y (v) and p (v) are lacunary asymptotically statistical equivalent of multiple
B

S
 (denoted by v(v) ~ u(v)), and simply asymptotically statistical equivalent if 3 = 1.

Definition 2.3. Let 6 be a lacunary sequence; and J is an admissible ideal in IN and vy (v), u(v) be two
nonnegative real-valued Lebesgue measurable functions in the interval (1, c0). If
)—B‘d\@ @} €4,

{s e]N:lj
Ts vE]s H(V

we say that the functions y(v) and p(v) are strongly Jgo-asymptotically equivalent of multiple 3 (denoted

NG (d)
by v(v) ~ u(v)) and strong simply J-asymptotically lacunary equivalent if p = 1. Let Ng (d) denote

Y(v)

N
the set of y(v) and u(v) such that y(v) ~  pu(v).

If 3 = Jtin ={L C N : Lis a finite subset }, strongly Jg-asymptotically equivalent becomes strongly
lacunary asymptotically equivalent which is defined as

limlj V(V)—ﬁ’dv:o.
§=0 Ts JveJ, H(V)
3. Main result
Theorem 3.1. Let © = {15} be a lacunary sequence, then
, NG (@) s8()
Loify(v) %7 u(v), theny(v) "~ p(v);
: sE(@) NE ()
2. ify(v)and w(v) € B(X,Y) and y(v) "~ wu(v), theny(v) ~ u(v);

3 v T L 0B Y = v ) N ) B V),

where B(X,Y), is set of bounded functions.

Proof.
N§(3)
Part (1): If ¢ >0and ~ p(v), then
) ) )
Le;s h(v) B'deer&mﬁw L) B‘dw“"{%]ﬁ"u(v) B‘ 2“’}‘

and so . ) ) (v

2 Yywl L YW

Ts Jve]s k(v) B‘dV>Ts {VEJS"H(V) 6‘2@}"
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Then, for any { > 0

[y ul
{ fofzolzupefenz],

Hence we have y(v) ~ u(v).

Y I 2(9-14)}63.

sE(@)
Part (2): Suppose y(v) and p(v) are in B(X,Y) and v °."" 1. Then we can assume that

’M—B' < M for all v.
n(v)

Given ¢ > 0, we have

1J Y(V)—B‘dv:lj Y(V)—B'dv—i-lj y(V)—[S‘dv
Ts JveJ, H(V) Ts ve]s&lmz; H(V) Ts Jvels& y(v) H(V)
M yY(v) @ @
<= s =Bl = o
T {VGIS ‘u(v) B' 2 (|12
Consequently, we have
eN: 1J —V—[s cloen:Llvey,: —V—ﬁ P> 2 ey
S Ts Jvey, | (V) =1° T T S u(v) 2 2M ’
NE (3)
Therefore y(v) ~ u(v).
Part (3): It follows from (1) and (2). O

Theorem 3.2. Let J be an ideal and © = {15} be a lacunary sequence with liminf qs > 1, then

SB(9) S5 (9)

y(v)  ~ ulv) implies y(v) m(v).

Proof. Suppose first that liminf qs; > 1, then there exists a & > 0 such that qs > 1+ § for sufficiently large
s, which implies
Ts )
ls =~ 1+96
s§() .
If x '~ vy, then for every ¢ > 0 and for sufficiently large s, we have

1 v(v 1 YV d 1 . Y(V)
e R e A e R R e e A e RO R
Then, for any { > 0, we get

1 y(v 1 v(v
{selN ™ ‘V—B’/ }‘ }g{seN:ls ’V—B }' 110) }63. O

For the next result we suppose that the lacunary sequence 0 satisfies the condition that for any set
CeFd), UHv: i1 <v<l,seCeF).

Theorem 3.3. Let J be an ideal and © = (1) be a lacunary sequence with sup qs < oo, then

S§(3) o St(g)
y(v) "~ u(v) implies y(v) T~ u(v).
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Proof. 1f limsupqs < oo, then without any loss of generality we can assume that there exists a B € (0, 00)
S

B
0

Sg(d)
such that qs < B for all s > 1. Assume thaty '~ pand for @,{,\; > 0 write the sets

C—fseN: Svele: XY _pi> o)< )
Ts w(v)

and .
T=meN: fis <n:lY —Bl> ol < i)

It is clear that C € F(J), the filter associated with the ideal J. Further consider that

y(v)
w(v)

for all j € C. Let n € IN be such that 1;_1 < n < 15 for some s € C. Now

m:;Mth Bzl <

s X gz ol < o< s X - Bl > o)
= e gz e+ e T I > g
— L v e N B ol e o X Bl gl
HEEE e g N Bl o)
= A R Ay B,

1
< suij. < BS.
jeC lsfl

Taking 61 = % and in view of the fact that (J{n:1l;_1 <n < ls,s € C} C T, where C € F(J), it follows from
our assumption on 6 that the set T also belongs to F(J). O]
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